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Outline

Usenumerical simulationof Rayleigh-Bénard convectionin realistic

geometries to learn about complex spatial patterns and dynamics in

spatially extended systems.

Examples:

• Pattern chaos

• Role of mean flow

• Lyapunov exponents and vectors

• Domain chaos: scaling and discrepancies between theory and

experiment
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Rayleigh-Bénard Convection

RBC allows aquantitativecomparison to be made between theory and

experiment.
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Nondimensional Boussinesq Equations

• Momentum Conservation

1

σ

[
∂ Eu
∂t
+
(
Eu • E∇

)
Eu
]
= −E∇p + R T êz +∇2Eu+ 2�êz × Eu

• Energy Conservation

∂T

∂t
+
(
Eu • E∇

)
T = ∇2T

• Mass Conservation
E∇ • Eu = 0

Aspect Ratio:0 = r
h

BC: no-slip, insulating or conducting, and constant1T



Back Forward

Developments in Experimental Pattern Formation -Isaac Newton Institute, 2005 5

Spectral Element Numerical Solution

• Accurate simulation of long-time dynamics

• Exponential convergence in space, third order in time

• Efficient parallel algorithm, unstructured mesh

• Arbitrary geometries, realistic boundary conditions
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Convection in an elliptical container

cf. Ercolani, Indik, and Newell, Physica D (2003)
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How our simulations can complement experiments

• Knowledge of full flow field (e.g. mean flow) and other diagnostics

(e.g. total heat flow)

• Measure quantities inaccessible to experiment e.g. Lyapunov

exponents and vectors

• No experimental/measurement noise (roundoff “noise” very small)

• Readily tune parameters

• Turn on and off particular features of the physics (e.g. centrifugal

effects, mean flow)

• Compare realistic and artificial (e.g. periodic) boundary conditions
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Limitations

• System size and time of simulation limited in context of

patterns/spatiotemporal chaos

• Results reflect a model of the real world (what you get out depends on

what you put in)
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Pattern chaos: convection in small cylindrical geometries

• First experiments:0 = 5.27 cell, cryogenic (normal) liquidHe4 as

fluid. High precision heat flow measurements (no flow visualization).

• Onset of aperiodic time dependence in low Reynolds number flow:

relevance of chaos to “real” (continuum) systems.

• Power law decrease of power spectrumP(f ) ∼ f−4

G. Ahlers, Phys. Rev. Lett.30, 1185 (1974)

G. Ahlers and R.P. Behringer, Phys. Rev. Lett.40, 712 (1978)

H. Gao and R.P. Behringer, Phys. Rev. A30, 2837 (1984)

V. Croquette, P. Le Gal, and A. Pocheau, Phys. Scr. T13, 135 (1986)
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(from Ahlers and Behringer 1978)
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Numerical Simulations

• 0 = 4.72,σ = 0.78, 2600. R . 7000

• Conducting sidewalls

• Random thermal perturbation initial conditions

• Simulation time∼ 100τh

– Simulation time∼ 12 hours on 32 processors

– Experiment time∼ 172 hours or∼ 1 week
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R = 3127 R = 6949
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Power Spectrum

• Simulations oflow dimensional chaos(e.g. Lorenz model) show

exponential decaying power spectrum

• Power law power spectrum easily obtained fromstochasticmodels

(white-noise driven oscillator, etc.)
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Simulation yields a power law over the range accessible to experiment....
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but when larger frequencies are included an exponential tail is found
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Exponential tail not seen in experiment because of instrumental noise floor
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Where does the power law come from?

Power law arises fromquasi-discontinuous changes in the slopeof N(t)

on at = 0.1− 1 time scale associated with roll pinch-off events.

This is clearest to see for the low Rayleigh number where the motion is

periodic, but again the power spectrum has a power law fall off.

Sharp events similar in chaotic and periodic signals
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Spectrogram
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Mean Flow
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What is mean flow?
Remember the fluid equations

σ−1 (∂t + u · ∇)u = −∇p + RT ẑ+∇2u

∇ · u = 0

The pressure is a not an independent dynamical variable. It is determined
implicitly to enforce the incompressibility

∇2p = −σ−1∇ · [(u · ∇)u] + R ∂T/∂z

Focussing on the nonlinear “Reynolds stress” term and writing
p = p0(x, y)+ p̄(x, y, z)

p0(x, y) ∼ σ−1
∫
dx′dy′ ln(1/

∣∣r − r ′
∣∣) 〈∇′ [(u · ∇)u]

〉
z

This gives a “singular” pressure term that depends ondistantparts of the
convection pattern.
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Mean flow is driven bycurvatureof the rolls,compressionof the rolls,

and gradients of theamplitude.

The mean flow thenadvectsthe pattern giving additional slow time

dependence.

Near threshold

U = solenoidal part ofk∇⊥ · (kA2)

Writing U in terms of a stream functionζ so thatU = (−∂yζ, ∂xζ )
ω = −∇2⊥ζ = −γ ẑ · ∇⊥ × [k∇ · (kA2)]
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Mean flow in cylindrical system chaos

3 convection cells with different side wall conditions: (a) rigid; (b) finned;

and (c) ramped. Case (a) is dynamic, the others static.
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Patterns with and without mean flow
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Mean flow and stationary patterns

ε = 0.15, σ = 1 [From Keng-Hwee Chiam, Caltech thesis]
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Wavenumber distribution
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Mean flow favors normal alignment at boundaries
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Sensitive dependence on initial conditions

• Lyapunov exponents:

� Quantify the sensitivity to initial conditions

� Define chaos

• Lyapunov vectors:

� Associate sensitivity with specific events (defect creation, etc.)

� Propagation of disturbances (Lorenz’s question!)

• Lyapunov dimension:

� Quantifies the number of active degrees of freedom

� Scaling with system size may perhaps be used to define

spatiotemporal chaos (microextensive chaos: Tajima and Greenside,

2002)
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Lyapunov exponents

δu0

δu1

δu2

δu = δu0e
λ1t , λ1 = lim

t→∞
1

t
ln
δu

δu0

Line lengths→ eλ1t , Areas→ e(λ1+λ2)t , Volumes→ e(λ1+λ2+λ3)t , . . .

Lyapunov Dimension

DL = ν + 1

|λν+1|
ν∑
i=1

λi

whereν is the largest index such that the sum is positive.
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Numerical Approach
Chaotic Boussinesq driving solution:

1

σ

[
∂ Eu
∂t
+
(
Eu • E∇

)
Eu
]
= −E∇p + RT êz +∇2Eu

∂T

∂t
+
(
Eu • E∇

)
T = ∇2T

E∇ • Eu = 0

Linearized equations (tangent space equations):

(Eu, p, T )→ (Eu+ δEuk, p + δpk, T + δTk), for k = 1, . . . , n

1

σ

[
∂δEuk
∂t
+
(
Eu • E∇

)
δEuk +

(
δEuk • E∇

)
Eu
]
= −E∇δpk + RδT êz +∇2δEuk

∂δTk

∂t
+
(
Eu • E∇

)
δTk +

(
δEuk • E∇

)
T = ∇2δTk

E∇ • δEuk = 0
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Small system Lyapunov exponent…
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…and Lyapunov vector
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Lyapunov vector for spiral defect chaos

(from Keng-HweeChiam, Caltech thesis 2003, after Egolf et al.)
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Scaling near onset of domain chaos
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Amplitude equation description(Tu and MCC, 1992)

Amplitudes of rolls at 3 orientationsAi(r , t), i = 1 . . .3

∂tA1 = εA1+ ∂2
x1
A1− A1(A

2
1+ g+A2

2+ g−A2
3)

∂tA2 = εA2+ ∂2
x2
A2− A2(A

2
2+ g+A2

3+ g−A2
1)

∂tA3 = εA3+ ∂2
x3
A3− A3(A

2
3+ g+A2

1+ g−A2
2)

whereε = (R − Rc(�)/Rc(�)
Rescale space, time, and amplitudes:
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RescaleX = ε1/2x, T = εt, Ā = ε−1/2A

∂T Ā1 = Ā1+ ∂2
X1
Ā1− Ā1(Ā

2
1+ g+Ā2

2+ g−Ā2
3)

∂T Ā2 = Ā2+ ∂2
X2
Ā2− Ā2(Ā

2
2+ g+Ā2

3+ g−Ā2
1)

∂T Ā3 = Ā3+ ∂2
X3
Ā3− Ā3(Ā

2
3+ g+Ā2

1+ g−Ā2
2)

Numerical simulations show chaotic dynamics

Therefore in unscaled (physical) units

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1
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Summary of Tests
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Summary of Tests

• Simulations [MCC and Meiron (1994)] of generalized Swift-Hohenberg equations

in periodic geometries show results consistent with predictions
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Summary of Tests

• Simulations [MCC and Meiron (1994)] of generalized Swift-Hohenberg equations

in periodic geometries show results consistent with predictions

• [Hu et al. (1995) + others] Experiments give results that are consistent either with

finitevalues of ξ, τ at onset, or much smaller power laws ξ ∼ ε−0.2, τ ∼ ε−0.6
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• [MCC, Louie, and Meiron (2001)] Simulations of generalized Swift-Hohenberg

equations in circular geometries of radius0 gave results consistent with finite size

scaling

ξM = ξf (0/ξ) with ξ ∼ ε−1/2
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with Coriolis forces giveτ ∼ ε−1 for small enoughε. For largerε a slower growth is

seen perhaps consistent withτ ∼ ε−0.7.
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Summary of Tests

• Simulations [MCC and Meiron (1994)] of generalized Swift-Hohenberg equations

in periodic geometries show results consistent with predictions

• [Hu et al. (1995) + others] Experiments give results that are consistent either with

finitevalues of ξ, τ at onset, or much smaller power laws ξ ∼ ε−0.2, τ ∼ ε−0.6
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equations in circular geometries of radius0 gave results consistent with finite size

scaling

ξM = ξf (0/ξ) with ξ ∼ ε−1/2

• [Scheel and MCC, preprint (2005)] Simulations of Rayleigh-Bénard convection

with Coriolis forces giveτ ∼ ε−1 for small enoughε. For largerε a slower growth is

seen perhaps consistent withτ ∼ ε−0.7.

• Scaling of largest Lyapunov exponent consistent withλ ∼ c+ ε1 with c comparable

with the finite size shift in onset.
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Summary of Tests

• Simulations [MCC and Meiron (1994)] of generalized Swift-Hohenberg equations

in periodic geometries show results consistent with predictions

• [Hu et al. (1995) + others] Experiments give results that are consistent either with

finitevalues of ξ, τ at onset, or much smaller power laws ξ ∼ ε−0.2, τ ∼ ε−0.6

• [MCC, Louie, and Meiron (2001)] Simulations of generalized Swift-Hohenberg

equations in circular geometries of radius0 gave results consistent with finite size

scaling

ξM = ξf (0/ξ) with ξ ∼ ε−1/2

• [Scheel and MCC, preprint (2005)] Simulations of Rayleigh-Bénard convection

with Coriolis forces giveτ ∼ ε−1 for small enoughε. For largerε a slower growth is

seen perhaps consistent withτ ∼ ε−0.7.

• Scaling of largest Lyapunov exponent consistent withλ ∼ c+ ε1 with c comparable

with the finite size shift in onset.

• …
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Possible explanations for discrepancies?

• Finite size effects?

• Dislocation glide important (not in Tu-Cross model)?

• Other features of physics important (e.g. continuum of orientations)?

• Centrifugal force important in experimental geometry?

• … or critical-like fluctuation effects important?
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Conclusions

Numerical simulations on realistic experimental geometries complement experimental
work and yield new insights

• Pattern chaos

� Lower noise flows gives consistency of power spectrum with expectation based on
deterministic chaos

� Visualization of dynamics explains observed power law observed in spectrum

• Mean flow

� Confirmed role in0 ∼ 5 chaos

� Importance in spiral defect chaos and shape of stationary patterns

� Tends to align rolls normal to boundary (other effects also important)

• Lyapunov exponents and vectors

� Positive exponent confirms early experiments were indeed chaotic

� Vector may give insight into “mechanism”, e.g. role of defects

� Largest exponent scales roughly∝ ε for domain chaos

• Domain chaos
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THE END


