
Back Forward

Noise, AFMs, and Nanomechanical Biosensors:Lancaster University , November, 2005 1

Noise, AFMs, and Nanomechanical
Biosensors

with Mark Paul (Virginia Tech), and the Caltech BioNEMS Collaboration

Support: DARPA



Back Forward

Noise, AFMs, and Nanomechanical Biosensors:Lancaster University , November, 2005 2

Outline

• Motivation: MEMS and NEMS

• BioNEMS: Fluctuations in the linear regime
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[From M. R. Roukes, Caltech]
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Single crystal silicon [From Craighead, Science290, 1532 (2000)]
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Diamond Film [From Sekaric et al., Appl. Phys. Lett.81, 4445 (2002)]
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Array of µ-scale oscillators

[From Buks and Roukes J. MEMS.11, 802 (2002)]
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Self-Oscillations

[Zalalutdinov et al., Appl. Phys. Lett.79, 695 (2001)]
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MicroElectroMechanical Systems and NEMS

Tiny mechanical oscillators:

• driven, dissipative⇒ nonequilibrium

• nonlinear

• collective (arrays)

• noisy

• (potentially) quantum

Goals

• Apply knowledge from statistical mechanics, nonlinear dynamics,

pattern formation etc. to technologically important questions

• Investigate stochastic and nonlinear dynamics, and pattern formation

in new regimes
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BioNEMS - Single BioMolecule Detector/Probe
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BioNEMS Prototype

(Arlett et. al, Nobel Symposium 131, August 2005)
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Example Design Parameters
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Dimensions:L = 3µ, w = 100nm,t = 30nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2

Results: Spring constantK = 8.7mN/m; vacuum frequencyν0 ∼ 6MHz
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Atomic Force Microscopy (AFM)
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Noise in micro-cantilevers

Thermal fluctuations (Brownian motion) important for:

• BioNEMS: detection scheme

• AFM: calibration

Goals:

• Correct formulation of fluctuations for analytic calculations

• Practical scheme for numerical calculations of realistic geometries
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Previous approach (Sader 1998)

• Model molecular collisions with cantilever as white noise force

uniformly distributed along cantilever

• Calculate modal responsex̃n(ω) for periodic driving forceF̃ (ω)

(resonance curves)

? interesting frequency dependent mass loading and damping from

coupling to fluid

• Calculate fluctuation of tip displacement as sum of mode responses

for constant|F̃ (ω)|2
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Problems

This approaches is formallyincorrectandhard to implementfor realistic

geometries and strong damping:

• Noise force is not white

• Noise force is not uniformly distributed along surface

• Mode fluctuations are not in general independent

• Difficult to calculate coupled elastic-fluid modes, and many needed

for strong damping
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Fluid Dynamics Issues

∂ Eu
∂t
+ Eu · E∇ Eu = −E∇p + ν∇2Eu,
E∇ · Eu = 0

with ν the kinematic viscosityη/ρ.

Fluid dynamics is (relatively) easy if we can neglect the inertial terms.

For typical BioNEMS/AFM:

• Eu · E∇ Eu = O(u2) is negligible because of tiny oscillation amplitudes

• Important parameter is the Strouhal number

S = ωw2

4ν
≈ 1.6

ω frequency 2π × 1 MHz

w width 1µ

ν kinematic viscosity 10−6 m2s−1

Low Reynolds number flow: linear …but can’t takeS = 0
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Simple Picture (Sader)

S -1/2

Potential flow

Diffusing
vorticity
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Stokes Theory

Viscous force on sphere of radiusa moving with speedv is

F/v = 6πρνa

Viscous force per unit length of cylinder of radiusa is given by

γ = F/v = πρν × S Im 0(S)

with

0(S) = 1+ 4iK1(−i
√
iS)√

iSK0(−i
√
iS)

Effective mass per unit length from fluid

M = πa2ρ Re0(S) H⇒ Q ' Re0(S)
Im 0(S)

(Other parameterT = π
4
ρ
ρs

w
t
= mass of cylinder of fluid

mass of cantilever ∼ 2)
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New approach: fluctuation-dissipation theorem

(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial

condition

• (near equilibrium) thermodynamics: Onsager regression hypothesis

• statistical mechanics: fluctuation-dissipation theorem, linear response

theory, Kubo formalism …



Back Forward

Noise, AFMs, and Nanomechanical Biosensors:Lancaster University , November, 2005 20

New approach: fluctuation-dissipation theorem

(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial

condition

• (near equilibrium) thermodynamics: Onsager regression hypothesis

• statistical mechanics: fluctuation-dissipation theorem, linear response

theory, Kubo formalism …

Consider Hamiltonian

H = H0− F(t)A
H0 unperturbed Hamiltonian

A(r1 . . . rN,p1 . . .pN) system observable

F(t) (small) time dependent force
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F(t)

t

H = H 0+∆H H = H 0

equi l ibr ium
under  H0+∆H
ρ=ρH(r N,p N)
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F(t)

t

H=H0+∆H H=H0

∆<B(t)>

t

F0

〈δB(t)δA(0)〉e = kBT 1
〈B(t)〉
F0
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Derivation

(e.g. see “Introduction to Modern Statistical Mechanics” byChandler)
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Derivation

(e.g. see “Introduction to Modern Statistical Mechanics” byChandler)

To calculate the change in a measurement〈B(t)〉 due to the application of a small field

F(t) that gives a perturbation to the Hamiltonian1H = −F(t) A.
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Derivation

(e.g. see “Introduction to Modern Statistical Mechanics” byChandler)

To calculate the change in a measurement〈B(t)〉 due to the application of a small field

F(t) that gives a perturbation to the Hamiltonian1H = −F(t) A.

The time dependence is given by the evolution ofrN(t),pN(t) according to Hamilton’s

equations.



Back Forward

Noise, AFMs, and Nanomechanical Biosensors:Lancaster University , November, 2005 23

Derivation

(e.g. see “Introduction to Modern Statistical Mechanics” byChandler)

To calculate the change in a measurement〈B(t)〉 due to the application of a small field

F(t) that gives a perturbation to the Hamiltonian1H = −F(t) A.

The time dependence is given by the evolution ofrN(t),pN(t) according to Hamilton’s

equations.

We can calculate averages in terms of the known distributionρ
(
rN,pN

)
at t = 0:

〈B(t)〉 =
∫
drNdpNρ

(
rN,pN

)
B
(
rN(t),pN(t)

)
whererN(t) is the phase space coordinate that evolves from the valuerN at t = 0.
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Derivation

(e.g. see “Introduction to Modern Statistical Mechanics” byChandler)

To calculate the change in a measurement〈B(t)〉 due to the application of a small field

F(t) that gives a perturbation to the Hamiltonian1H = −F(t) A.

The time dependence is given by the evolution ofrN(t),pN(t) according to Hamilton’s

equations.

We can calculate averages in terms of the known distributionρ
(
rN,pN

)
at t = 0:

〈B(t)〉 =
∫
drNdpNρ

(
rN,pN

)
B
(
rN(t),pN(t)

)
whererN(t) is the phase space coordinate that evolves from the valuerN at t = 0.

We could equivalently follow the time evolution ofρ through Liouville’s equation and

instead evaluate

〈B(t)〉 =
∫
drNdpNρ

(
rN,pN, t

)
B
(
rN,pN

)
but the first form is more convenient.
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Derivation (cont.)

Consider the special case of the step forceF(t) of magnitudeF0:
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Derivation (cont.)

Consider the special case of the step forceF(t) of magnitudeF0:

For t ≤ 0 the distribution is the equilibrium one for theperturbedHamiltonian

H
(
rN,pN

) = H0 +1H

ρ(rN,pN) = e−β(H0+1H)∫
drNdpNe−β(H0+1H)

so that

〈B (0)〉 = T re−β(H0+1H)B
(
rN,pN

)
T re−β(H0+1H)

writing T r ≡ ∫ drNdpN .
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Derivation (cont.)

Consider the special case of the step forceF(t) of magnitudeF0:

For t ≤ 0 the distribution is the equilibrium one for theperturbedHamiltonian

H
(
rN,pN

) = H0 +1H

ρ(rN,pN) = e−β(H0+1H)∫
drNdpNe−β(H0+1H)

so that

〈B (0)〉 = T re−β(H0+1H)B
(
rN,pN

)
T re−β(H0+1H)

writing T r ≡ ∫ drNdpN .

For t ≥ 0 we letrN(t),pN(t) for each member of the ensemble evolve under the

Hamiltonian, nowH0, from its valuerN,pN at t = 0, so that

〈B(t)〉 = T r e−β(H0+1H)B
(
rN(t),pN(t)

)
T r e−β(H0+1H) .

Note that the integral is overrN,pN ≡ rN (0) ,pN (0), and1H = 1H (
rN,pN

)
etc.
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Derivation (cont.)

It is now a simple matter to expand the exponentials to first order in1H (F0 small!)

〈B(t)〉 ' T re−βH0(1− β1H)B (rN(t),pN(t))
T re−βH0(1− β1H)

to give

〈B(t)〉 = 〈B〉0 − β
[〈1H B(t)〉0 − 〈B〉0 〈1H 〉0

]+O (1H)2
where<>0 denotes the average over the ensemble for an unperturbed system i.e. using

ρ0 = e−βH0/T re−βH0.
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Derivation (cont.)

It is now a simple matter to expand the exponentials to first order in1H (F0 small!)

〈B(t)〉 ' T re−βH0(1− β1H)B (rN(t),pN(t))
T re−βH0(1− β1H)

to give

〈B(t)〉 = 〈B〉0 − β
[〈1H B(t)〉0 − 〈B〉0 〈1H 〉0

]+O (1H)2
where<>0 denotes the average over the ensemble for an unperturbed system i.e. using

ρ0 = e−βH0/T re−βH0.

Finally writing δB(t) = B(t)− 〈B〉0 etc., and noticing that putting in the form of1H

1H = −F0A(rN,pN) = −F0A (0)

gives for the change in the measurement1 〈B(t)〉 = 〈B(t)〉 − 〈B〉0
1 〈B(t)〉 = βF0 〈δA (0) δB(t)〉0 .
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Application to single cantilever

Assume observable is tip displacementX(t)

• Apply small step force of strengthF0 to tip

• Calculate or simulate deterministic decay of1X(t) for t > 0. Then

CXX(t) = 〈δX(t)δX(0)〉e = kBT 1X(t)
F0

• Fourier transform ofCXX(t) gives power spectrum ofX fluctuations

GX(ω)
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Advantages

• Correct!

• Essentially no approximations in formulation

� assume1 〈X(t)〉 given by deterministic calculation

� also in implementation assume continuum description

• Incorporates

� full elastic-fluid coupling

� non-white, spatially dependent noise

� no assumption on independence of mode fluctuations

� complex geometries

• Single numerical calculation over decay time gives complete power spectrum

• Can be modified for other measurement protocols by appropriate choice of

conjugate force

� AFM: deflection of light (angle near tip)

� BioNEMS: curvature near pivot (piezoresistivity)
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Single cantilever
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stress

Localized
stress

Dimensions:L = 3µ,W = 100nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2
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Device schematic
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Adjacent cantilevers

Correlation of Brownian fluctuations

〈δX2(t)δX1(0)〉e = kBT 1X2(t)

F1
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Device schematic
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Results: single cantilever

3d Elastic-fluid code from CFD Research Corporation

1µs force sensitivity:K
√
GX(ν)× 1MHz ∼ 7pN
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Results: adjacent cantilevers

F1
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Comparison with AFM experiments
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232.4µ× 20.11µ× 0.573µAsylum Research AFM (Clarke et al., 2005)

Dashed line: calculations from fluctuation-dissipation approach

Dotted line: calculations from Sader (1998) approach
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Wall effects
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Conclusions

I’ve described one aspect of theoretically modelling micron and submicron scale

oscillators

• Linear fluctuations in solution [Paul and MCC, Phys. Rev. Lett.92, 235501 (2004)]

Other areas of interest:

• Nonlinear collective effects of parametrically driven high-Q arrays

[Lifshitz and MCC, Phys. Rev.B67, 134302 (2003)]

• Analysis of a QND scheme to measure the discrete levels in quantum harmonic

oscillator [Santamore, Doherty, and MCC, Phys. Rev.B70, 144301 (2004)]

• Synchronization due to nonlinear frequency pulling and reactive coupling

[MCC, Zumdieck, Lifshitz, and Rogers, Phys. Rev. Lett.93, 224101 (2004)]

• Noise induced transitions between driven (nonequilibrium) states

? Single nonlinear oscillator

[cf. Aldridge and Cleland, Phys. Rev. Lett.94, 156403 (2005) ]

? Collective states in arrays of oscillators


