Noise, AFMs, and Nanomechanical Biosensors

with Mark Paul (Virginia Tech), and the Caltech BioNEMS Collaboration

Support: DARPA

Back

Forward

Outline

- Motivation: MEMS and NEMS
- BioNEMS: Fluctuations in the linear regime

2

[From M. R. Roukes, Caltech]

Single crystal silicon [From Craighead, Science 290, 1532 (2000)]

Forward

Diamond Film [From Sekaric et al., Appl. Phys. Lett. 81, 4445 (2002)]

Forward

Array of μ -scale oscillators

[From Buks and Roukes J. MEMS. 11, 802 (2002)]

Self-Oscillations

[Zalalutdinov et al., Appl. Phys. Lett. 79, 695 (2001)]

MicroElectroMechanical Systems and NEMS

Tiny mechanical oscillators:

- driven, dissipative \Rightarrow nonequilibrium
- nonlinear
- collective (arrays)
- noisy
- (potentially) quantum

Goals

- Apply knowledge from statistical mechanics, nonlinear dynamics, pattern formation etc. to technologically important questions
- Investigate stochastic and nonlinear dynamics, and pattern formation in new regimes

BioNEMS - Single BioMolecule Detector/Probe

BioNEMS Prototype

(Arlett et. al, Nobel Symposium 131, August 2005)

Example Design Parameters

Dimensions: $L = 3\mu$, w = 100nm, t = 30nm, $L_1 = 0.6\mu$, b = 33nm **Material:** $\rho = 2230$ Kg/m³, $E = 1.25 \times 10^{11}$ N/m²

Results: Spring constant K = 8.7mN/m; vacuum frequency $v_0 \sim 6$ MHz

Forward

Atomic Force Microscopy (AFM)

Commercial AFM cantilever (Olympus)

DNA molecule in water

Noise in micro-cantilevers

Thermal fluctuations (Brownian motion) important for:

- BioNEMS: detection scheme
- AFM: calibration

Goals:

- Correct formulation of fluctuations for analytic calculations
- Practical scheme for numerical calculations of realistic geometries

Previous approach (Sader 1998)

- Model molecular collisions with cantilever as white noise force uniformly distributed along cantilever
- Calculate modal response $\tilde{x}_n(\omega)$ for periodic driving force $\tilde{F}(\omega)$ (resonance curves)
 - ★ interesting frequency dependent mass loading and damping from coupling to fluid
- Calculate fluctuation of tip displacement as sum of mode responses for constant $|\tilde{F}(\omega)|^2$

Problems

This approaches is formally incorrect and hard to implement for realistic geometries and strong damping:

- Noise force is not white
- Noise force is not uniformly distributed along surface
- Mode fluctuations are not in general independent
- Difficult to calculate coupled elastic-fluid modes, and many needed for strong damping

Fluid Dynamics Issues

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} = -\vec{\nabla} p + \nu \nabla^2 \vec{u},$$
$$\vec{\nabla} \cdot \vec{u} = 0$$

with ν the kinematic viscosity η/ρ .

Fluid dynamics is (relatively) easy if we can neglect the inertial terms.

For typical BioNEMS/AFM:

- $\vec{u} \cdot \vec{\nabla} \vec{u} = O(u^2)$ is negligible because of tiny oscillation amplitudes
- Important parameter is the Strouhal number

$$\mathcal{S} = \frac{\omega w^2}{4\nu} \approx 1.6$$

ω	frequency	$2\pi \times 1 \text{ MHz}$
w	width	1μ
ν	kinematic viscosity	$10^{-6} \text{ m}^2 \text{s}^{-1}$

Low Reynolds number flow: linear ... but can't take S = 0

Simple Picture (Sader)

Potential flow

Stokes Theory

Viscous force on sphere of radius a moving with speed v is

 $F/v = 6\pi\rho v a$

Viscous force per unit length of cylinder of radius a is given by

$$\gamma = F/v = \pi \rho v \times \mathcal{S} \operatorname{Im} \Gamma(\mathcal{S})$$

with

$$\Gamma(\mathcal{S}) = 1 + \frac{4iK_1(-i\sqrt{i\mathcal{S}})}{\sqrt{i\mathcal{S}}K_0(-i\sqrt{i\mathcal{S}})}$$

Effective mass per unit length from fluid

$$M = \pi a^2 \rho \operatorname{Re} \Gamma(\mathcal{S}) \Longrightarrow Q \simeq \frac{\operatorname{Re} \Gamma(\mathcal{S})}{\operatorname{Im} \Gamma(\mathcal{S})}$$

(Other parameter
$$T = \frac{\pi}{4} \frac{\rho}{\rho_s} \frac{w}{t} = \frac{\text{mass of cylinder of fluid}}{\text{mass of cantilever}} \sim 2)$$

19

Back

New approach: fluctuation-dissipation theorem (Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial condition

- (near equilibrium) thermodynamics: Onsager regression hypothesis
- statistical mechanics: fluctuation-dissipation theorem, linear response theory, Kubo formalism ...

New approach: fluctuation-dissipation theorem (Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial condition

- (near equilibrium) thermodynamics: Onsager regression hypothesis
- statistical mechanics: fluctuation-dissipation theorem, linear response theory, Kubo formalism ...

Consider Hamiltonian

$$H = H_0 - F(t)A$$

H_0	unperturbed Hamiltonian
$A(\mathbf{r}_1 \dots \mathbf{r}_N, \mathbf{p}_1 \dots \mathbf{p}_N)$	system observable
F(t)	(small) time dependent force

22

Back

(e.g. see "Introduction to Modern Statistical Mechanics" by Chandler)

(e.g. see "Introduction to Modern Statistical Mechanics" by Chandler)

To calculate the change in a measurement $\langle B(t) \rangle$ due to the application of a small field F(t) that gives a perturbation to the Hamiltonian $\Delta H = -F(t) A$.

(e.g. see "Introduction to Modern Statistical Mechanics" by Chandler)

To calculate the change in a measurement $\langle B(t) \rangle$ due to the application of a small field F(t) that gives a perturbation to the Hamiltonian $\Delta H = -F(t) A$.

The time dependence is given by the evolution of $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$ according to Hamilton's equations.

(e.g. see "Introduction to Modern Statistical Mechanics" by Chandler)

To calculate the change in a measurement $\langle B(t) \rangle$ due to the application of a small field F(t) that gives a perturbation to the Hamiltonian $\Delta H = -F(t) A$.

The time dependence is given by the evolution of $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$ according to Hamilton's equations.

We can calculate averages in terms of the known distribution $\rho(\mathbf{r}^N, \mathbf{p}^N)$ at t = 0:

$$\langle B(t) \rangle = \int d\mathbf{r}^N d\mathbf{p}^N \rho\left(\mathbf{r}^N, \mathbf{p}^N\right) B\left(\mathbf{r}^N(t), \mathbf{p}^N(t)\right)$$

where $\mathbf{r}^{N}(t)$ is the phase space coordinate that evolves from the value \mathbf{r}^{N} at t = 0.

(e.g. see "Introduction to Modern Statistical Mechanics" by Chandler)

To calculate the change in a measurement $\langle B(t) \rangle$ due to the application of a small field F(t) that gives a perturbation to the Hamiltonian $\Delta H = -F(t) A$.

The time dependence is given by the evolution of $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$ according to Hamilton's equations.

We can calculate averages in terms of the known distribution $\rho(\mathbf{r}^N, \mathbf{p}^N)$ at t = 0:

$$\langle B(t) \rangle = \int d\mathbf{r}^N d\mathbf{p}^N \rho\left(\mathbf{r}^N, \mathbf{p}^N\right) B\left(\mathbf{r}^N(t), \mathbf{p}^N(t)\right)$$

where $\mathbf{r}^{N}(t)$ is the phase space coordinate that evolves from the value \mathbf{r}^{N} at t = 0. We could equivalently follow the time evolution of ρ through Liouville's equation and instead evaluate

$$\langle B(t) \rangle = \int d\mathbf{r}^N d\mathbf{p}^N \rho\left(\mathbf{r}^N, \mathbf{p}^N, t\right) B\left(\mathbf{r}^N, \mathbf{p}^N\right)$$

but the first form is more convenient.

Consider the special case of the step force F(t) of magnitude F_0 :

Consider the special case of the step force F(t) of magnitude F_0 :

For $t \leq 0$ the distribution is the equilibrium one for the *perturbed* Hamiltonian $H(\mathbf{r}^N, \mathbf{p}^N) = H_0 + \Delta H$

$$\rho(\mathbf{r}^{N}, \mathbf{p}^{N}) = \frac{e^{-\beta(H_{0} + \Delta H)}}{\int d\mathbf{r}^{N} d\mathbf{p}^{N} e^{-\beta(H_{0} + \Delta H)}}$$

so that

$$\langle B(0) \rangle = \frac{Tre^{-\beta(H_0 + \Delta H)}B(\mathbf{r}^N, \mathbf{p}^N)}{Tre^{-\beta(H_0 + \Delta H)}}$$

writing $Tr \equiv \int d\mathbf{r}^N d\mathbf{p}^N$.

Consider the special case of the step force F(t) of magnitude F_0 :

For $t \le 0$ the distribution is the equilibrium one for the *perturbed* Hamiltonian $H(\mathbf{r}^N, \mathbf{p}^N) = H_0 + \Delta H$

$$\rho(\mathbf{r}^{N}, \mathbf{p}^{N}) = \frac{e^{-\beta(H_{0} + \Delta H)}}{\int d\mathbf{r}^{N} d\mathbf{p}^{N} e^{-\beta(H_{0} + \Delta H)}}$$

so that

$$\langle B(0) \rangle = \frac{Tre^{-\beta(H_0 + \Delta H)}B\left(\mathbf{r}^N, \mathbf{p}^N\right)}{Tre^{-\beta(H_0 + \Delta H)}}$$

writing $Tr \equiv \int d\mathbf{r}^N d\mathbf{p}^N$.

For $t \ge 0$ we let $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$ for each member of the ensemble evolve under the Hamiltonian, now H_0 , from its value \mathbf{r}^{N} , \mathbf{p}^{N} at t = 0, so that

$$\langle B(t) \rangle = \frac{Tr \, e^{-\beta(H_0 + \Delta H)} B\left(\mathbf{r}^N(t), \mathbf{p}^N(t)\right)}{Tr \, e^{-\beta(H_0 + \Delta H)}}$$

Note that the integral is over \mathbf{r}^{N} , $\mathbf{p}^{N} \equiv \mathbf{r}^{N}(0)$, $\mathbf{p}^{N}(0)$, and $\Delta H = \Delta H(\mathbf{r}^{N}, \mathbf{p}^{N})$ etc.

It is now a simple matter to expand the exponentials to first order in ΔH (F_0 small!)

$$\langle B(t) \rangle \simeq \frac{Tre^{-\beta H_0}(1-\beta\Delta H)B\left(\mathbf{r}^N(t),\mathbf{p}^N(t)\right)}{Tre^{-\beta H_0}(1-\beta\Delta H)}$$

to give

$$\langle B(t) \rangle = \langle B \rangle_0 - \beta \left[\langle \Delta H B(t) \rangle_0 - \langle B \rangle_0 \langle \Delta H \rangle_0 \right] + O \left(\Delta H \right)^2$$

where $<>_0$ denotes the average over the ensemble for an unperturbed system i.e. using $\rho_0 = e^{-\beta H_0} / Tr e^{-\beta H_0}$.

It is now a simple matter to expand the exponentials to first order in ΔH (F_0 small!)

$$\langle B(t) \rangle \simeq \frac{Tre^{-\beta H_0}(1-\beta\Delta H)B\left(\mathbf{r}^N(t),\mathbf{p}^N(t)\right)}{Tre^{-\beta H_0}(1-\beta\Delta H)}$$

to give

$$\langle B(t) \rangle = \langle B \rangle_0 - \beta \left[\langle \Delta H B(t) \rangle_0 - \langle B \rangle_0 \langle \Delta H \rangle_0 \right] + O \left(\Delta H \right)^2$$

where $<>_0$ denotes the average over the ensemble for an unperturbed system i.e. using $\rho_0 = e^{-\beta H_0} / Tr e^{-\beta H_0}$.

Finally writing $\delta B(t) = B(t) - \langle B \rangle_0$ etc., and noticing that putting in the form of ΔH

$$\Delta H = -F_0 A(\mathbf{r}^N, \mathbf{p}^N) = -F_0 A(0)$$

gives for the change in the measurement $\Delta \langle B(t) \rangle = \langle B(t) \rangle - \langle B \rangle_0$

$$\Delta \langle B(t) \rangle = \beta F_0 \langle \delta A(0) \, \delta B(t) \rangle_0$$

Application to single cantilever

Assume observable is tip displacement X(t)

- Apply small step force of strength F_0 to tip
- Calculate or simulate deterministic decay of $\Delta X(t)$ for t > 0. Then

$$C_{XX}(t) = \langle \delta X(t) \delta X(0) \rangle_{\rm e} = k_B T \frac{\Delta X(t)}{F_0}$$

• Fourier transform of $C_{XX}(t)$ gives power spectrum of X fluctuations $G_X(\omega)$

Advantages

- Correct!
- Essentially no approximations in formulation
 - \diamond assume $\Delta \langle X(t) \rangle$ given by deterministic calculation
 - ♦ also in implementation assume continuum description
- Incorporates
 - ♦ full elastic-fluid coupling
 - ◊ non-white, spatially dependent noise
 - \diamond no assumption on independence of mode fluctuations
 - ◊ complex geometries
- Single numerical calculation over decay time gives complete power spectrum
- Can be modified for other measurement protocols by appropriate choice of conjugate force
 - ♦ AFM: deflection of light (angle near tip)
 - ♦ BioNEMS: curvature near pivot (piezoresistivity)

Single cantilever

Dimensions: $L = 3\mu$, W = 100nm, $L_1 = 0.6\mu$, b = 33nm **Material:** $\rho = 2230$ Kg/m³, $E = 1.25 \times 10^{11}$ N/m²

Device schematic

29

Adjacent cantilevers

Correlation of Brownian fluctuations

$$\langle \delta X_2(t) \delta X_1(0) \rangle_{\rm e} = k_B T \frac{\Delta X_2(t)}{F_1}$$

Back

Device schematic

Results: single cantilever

3d Elastic-fluid code from CFD Research Corporation

1µs force sensitivity: $K\sqrt{G_X(\nu) \times 1MHz} \sim 7pN$

Results: adjacent cantilevers

Comparison with AFM experiments

 $232.4\mu \times 20.11\mu \times 0.573\mu$ Asylum Research AFM (Clarke et al., 2005) Dashed line: calculations from fluctuation-dissipation approach Dotted line: calculations from Sader (1998) approach

Wall effects

35

Conclusions

I've described one aspect of theoretically modelling micron and submicron scale oscillators

- Linear fluctuations in solution [Paul and MCC, Phys. Rev. Lett. **92**, 235501 (2004)] Other areas of interest:
 - Nonlinear collective effects of parametrically driven high-*Q* arrays [Lifshitz and MCC, Phys. Rev. **B67**, 134302 (2003)]
 - Analysis of a QND scheme to measure the discrete levels in quantum harmonic oscillator [Santamore, Doherty, and MCC, Phys. Rev. **B70**, 144301 (2004)]
 - Synchronization due to nonlinear frequency pulling and reactive coupling [MCC, Zumdieck, Lifshitz, and Rogers, Phys. Rev. Lett. **93**, 224101 (2004)]
 - Noise induced transitions between driven (nonequilibrium) states
 - Single nonlinear oscillator
 [cf. Aldridge and Cleland, Phys. Rev. Lett. 94, 156403 (2005)]
 - ★ Collective states in arrays of oscillators