Synchronization by Nonlinear Frequency Pulling

Michael Cross

California Institute of Technology Beijing Normal University

May 2006

with Jeff Rogers (HRL), Ron Lifshitz (Tel Aviv), Alex Zumdieck (Dresden)

Support: NSF, BSF, NATO and EU

- Arrays of micro- and nano-scale oscillators provide an interesting dynamical and pattern forming system
- Synchronization is an important feature of nonlinear oscillators and may be important technologically in MEMS/NEMS
- Synchronization in MEMS/NEMS motivates a new analysis of synchronization involving nonlinear frequency pulling and reactive coupling

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Outline

1 Introduction

Motivation: MEMS and NEMS

- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Variety of Devices

[From M. R. Roukes, Caltech]

Array of μ -scale Oscillators

[From Buks and Roukes J. MEMS. 11, 802 (2002)]

Michael Cross (Caltech, BNU)

<ロト < 回 > < 回 > < 回 > < 回</p>

[Zalalutdinov et al., Appl. Phys. Lett. 79, 695 (2001)]

<ロト < 回 > < 回 > < 回 > < 回</p>

Tiny mechanical oscillators:

- driven, dissipative \Rightarrow nonequilibrium
- nonlinear
- collective (arrays)
- noisy
- (potentially) quantum

Goals

- Apply knowledge from statistical mechanics, nonlinear dynamics, pattern formation etc. to technologically important questions
- Investigate stochastic and nonlinear dynamics, and pattern formation in new regimes

$0 = \ddot{x}_n + x_n$ + $\gamma \dot{x}_n$ linear damping + $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n)$ + $\sum_m D_{nm}(x_m - x_n)$ reactive coupling + x_n^3 nonlinear stiffening - $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input + $2g_D \cos[(1 + \delta \omega_D)t]$ signal + Noise

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

$0 = \ddot{x}_n + x_n$ + $\gamma \dot{x}_n$ linear damping + $\delta_n x_n$ with δ_n taken from distribution g(a)+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling + x_n^3 nonlinear stiffening - $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input + $2g_D \cos[(1 + \delta \omega_D)t]$ signal + Noise

э

イロン イロン イヨン イヨン

イロン イロン イヨン イヨン

$$0 = \ddot{x}_n + x_n$$

+ $\gamma \dot{x}_n$ linear damping
+ $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n)$
+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling
+ x_n^3 nonlinear stiffening
- $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input
+ $2g_D \cos[(1 + \delta \omega_D)t]$ signal
+ Noise

$$0 = \ddot{x}_n + x_n$$

+ $\gamma \dot{x}_n$ linear damping
+ $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n)$
+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling
+ x_n^3 nonlinear stiffening
- $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input
+ $2g_D \cos[(1 + \delta \omega_D)t]$ signal
+ Noise

$$0 = \ddot{x}_n + x_n$$

+ $\gamma \dot{x}_n$ linear damping
+ $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n$
+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling
+ x_n^3 nonlinear stiffening
- $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input
+ $2g_D \cos [(1 + \delta \omega_D)t]$ signal
+ Noise

)

$$0 = \ddot{x}_n + x_n$$

+ $\gamma \dot{x}_n$ linear damping
+ $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n)$
+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling
+ x_n^3 nonlinear stiffening
- $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input
+ $2g_D \cos [(1 + \delta \omega_D)t]$ signal
+ Noise

$$0 = \ddot{x}_n + x_n$$

+ $\gamma \dot{x}_n$ linear damping
+ $\delta_n x_n$ with δ_n taken from distribution $g(\delta_n)$
+ $\sum_m D_{nm}(x_m - x_n)$ reactive coupling
+ x_n^3 nonlinear stiffening
- $\gamma_D \dot{x}_n (1 - x_n^2)$ energy input
+ $2g_D \cos [(1 + \delta \omega_D)t]$ signal
+ Noise

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Single driven, damped anharmonic oscillator:

$$\ddot{x} + \gamma \dot{x} + x + x^3 = 2g_D \cos(\omega_D t)$$

Parameters:

γ	damping
g_D	drive strength
ω_D	drive frequency

Spring gets stiffer with increasing displacement.

イロト イヨト イヨト イヨ

We can calculate behavior close to the sinusoidal oscillation $\propto e^{it}$:

- oscillator driving near resonance $\omega_D \simeq 1$
- small damping
- small driving g_D of oscillation implies the effect of the nonlinearity will be small

To implement these "smallnesses" write

$$\omega_D = 1 + \varepsilon \Omega_D$$
$$g_D = \varepsilon^{3/2} g$$
$$\gamma = \varepsilon \Gamma$$

with $\varepsilon \ll 1$ and g, Γ , Ω_D considered to be of order unity. (For these scalings the different effects that perturb the oscillator away from $e^{\pm it}$ are comparable. If there is a different scaling of the small parameters, one or more effects may not be important in the dynamics.)

ヘロト ヘ回ト ヘヨト ヘヨト

We can calculate behavior close to the sinusoidal oscillation $\propto e^{it}$:

- oscillator driving near resonance $\omega_D \simeq 1$
- small damping
- small driving g_D of oscillation implies the effect of the nonlinearity will be small

To implement these "smallnesses" write

$$\omega_D = 1 + \varepsilon \Omega_D$$
$$g_D = \varepsilon^{3/2} g$$
$$\gamma = \varepsilon \Gamma$$

with $\varepsilon \ll 1$ and g, Γ , Ω_D considered to be of order unity. (For these scalings the different effects that perturb the oscillator away from $e^{\pm it}$ are comparable. If there is a different scaling of the small parameters, one or more effects may not be important in the dynamics.)

Amplitude Theory

Introduce the WKB-like ansatz for the displacement

$$x(t) = \varepsilon^{1/2} \mathbf{A}(T) e^{it} + \text{c.c.} + \varepsilon^{3/2} x_1(t) + \cdots$$

A(T) is a *complex* amplitude that gives the slow modulation
T = εt is a *slow* time variable:

$$\frac{d}{dt}A = \varepsilon A'(T) \ll 1$$

• $x_1(t)$ and \cdots give corrections to the ansatz that are required to be small Substitute into the equation of motion using

$$\dot{x} = \varepsilon^{1/2} (iA + \varepsilon A') e^{it} + \text{c.c.} + \varepsilon^{3/2} \dot{x}_1 + \cdots$$
$$\ddot{x} = \varepsilon^{1/2} (-A + 2i\varepsilon A' + \varepsilon^2 A'') e^{it} + \text{c.c.} + \varepsilon^{3/2} \ddot{x}_1 + \cdots$$

and collect terms to give at $O(\varepsilon^{3/2})$

 $\ddot{x}_1 + x_1 = (-2iA' - i\Gamma A - 3|A|^2A + ge^{i\Omega_D T})e^{it} - A^3 e^{3it} + \text{c.c.} + \cdots$

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三

Amplitude Theory

Introduce the WKB-like ansatz for the displacement

$$x(t) = \varepsilon^{1/2} A(T) e^{it} + \text{c.c.} + \varepsilon^{3/2} x_1(t) + \cdots$$

A(T) is a *complex* amplitude that gives the slow modulation
T = εt is a *slow* time variable:

$$\frac{d}{dt}A = \varepsilon A'(T) \ll 1$$

• $x_1(t)$ and \cdots give corrections to the ansatz that are required to be small Substitute into the equation of motion using

$$\dot{x} = \varepsilon^{1/2} (iA + \varepsilon A') e^{it} + \text{c.c.} + \varepsilon^{3/2} \dot{x}_1 + \cdots$$
$$\ddot{x} = \varepsilon^{1/2} (-A + 2i\varepsilon A' + \varepsilon^2 A'') e^{it} + \text{c.c.} + \varepsilon^{3/2} \ddot{x}_1 + \cdots$$

and collect terms to give at $O(\varepsilon^{3/2})$

 $\ddot{x}_1 + x_1 = (-2iA' - i\Gamma A - 3|A|^2A + ge^{i\Omega_D T})e^{it} - A^3e^{3it} + \text{c.c.} + \cdots$

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三

Amplitude Theory

Introduce the WKB-like ansatz for the displacement

$$x(t) = \varepsilon^{1/2} A(T) e^{it} + \text{c.c.} + \varepsilon^{3/2} x_1(t) + \cdots$$

A(T) is a *complex* amplitude that gives the slow modulation
T = εt is a *slow* time variable:

$$\frac{d}{dt}A = \varepsilon A'(T) \ll 1$$

• $x_1(t)$ and \cdots give corrections to the ansatz that are required to be small Substitute into the equation of motion using

$$\dot{x} = \varepsilon^{1/2} (iA + \varepsilon A') e^{it} + \text{c.c.} + \varepsilon^{3/2} \dot{x}_1 + \cdots$$
$$\ddot{x} = \varepsilon^{1/2} (-A + 2i\varepsilon A' + \varepsilon^2 A'') e^{it} + \text{c.c.} + \varepsilon^{3/2} \ddot{x}_1 + \cdots$$

and collect terms to give at $O(\varepsilon^{3/2})$

$$\ddot{x}_1 + x_1 = (-2iA' - i\Gamma A - 3|A|^2 A + ge^{i\Omega_D T})e^{it} - A^3 e^{3it} + \text{c.c.} + \cdots$$

For x_1 to be small, the resonant driving terms on the right hand side must be zero. This gives

$$\frac{d}{dT}A = -\frac{\Gamma}{2}A + i\frac{3}{2}|A|^2A - i\frac{g}{2}e^{i\Omega_D T}$$

After transients the solution is $A = ae^{i\Omega_D T}$ with

$$|a|^{2} = \frac{(g/2)^{2}}{(\Omega_{D} - \frac{3}{2}|a|^{2})^{2} + (\Gamma/2)^{2}}$$

Oľ

$$|x|^{2} = \frac{(g_{D}/2)^{2}}{\left[\omega_{D} - \left(1 + \frac{3}{2}|x|^{2}\right)\right]^{2} + (\gamma/2)^{2}}$$

< □ > < □ > < □ > < □ > < □ > < □ >

For x_1 to be small, the resonant driving terms on the right hand side must be zero. This gives

$$\frac{d}{dT}A = -\frac{\Gamma}{2}A + i\frac{3}{2}|A|^2A - i\frac{g}{2}e^{i\Omega_D T}$$

After transients the solution is $A = ae^{i\Omega_D T}$ with

$$|a|^{2} = \frac{(g/2)^{2}}{(\Omega_{D} - \frac{3}{2}|a|^{2})^{2} + (\Gamma/2)^{2}}$$

Oľ

$$|x|^{2} = \frac{(g_{D}/2)^{2}}{\left[\omega_{D} - \left(1 + \frac{3}{2}|x|^{2}\right)\right]^{2} + (\gamma/2)^{2}}$$

For x_1 to be small, the resonant driving terms on the right hand side must be zero. This gives

$$\frac{d}{dT}A = -\frac{\Gamma}{2}A + i\frac{3}{2}|A|^2A - i\frac{g}{2}e^{i\Omega_D T}$$

After transients the solution is $A = ae^{i\Omega_D T}$ with

$$|a|^2 = \frac{(g/2)^2}{(\Omega_D - \frac{3}{2}|a|^2)^2 + (\Gamma/2)^2}$$

or

$$|x|^{2} = \frac{(g_{D}/2)^{2}}{\left[\omega_{D} - \left(1 + \frac{3}{2}|x|^{2}\right)\right]^{2} + (\gamma/2)^{2}}$$

Nonlinearity: Frequency Pulling

Platinum Wire [Husain et al., Appl. Phys. Lett. 83, 1240 (2003)]

Results

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity

Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Huygen's Clocks 1665

Pendulum clocks hanging on the same wall kept perfect time and oscillated in antiphase.

< ロ > < 回 > < 回 > < 回 > <</p>

Experimental Reconstruction

Bennett, Schatz, Rockwood, and Wiesenfeld (Proc. Roy. Soc. Lond. 2002)

• • • • • • • • • • • •

- Synchronization: collective effects in nonlinear oscillators
- Wide applicability
 - Steven Strogatz Sync: The Emerging Science of Spontaneous Order
 - Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths Synchronization: A Universal Concept in Nonlinear Sciences
- Examples
 - Biology: fireflies, brain
 - Technology
 - laser arrays (increased power)
 - phase coherent detectors (increased sensitivity)
 - MEMS arrays (counteract fabrication differences)

· · · ·

Synchronization occurs through dissipation acting on the phase differences

- Huygen's clocks (cf. Bennett, Schatz, Rockwood, and Wiesenfeld)
- Winfree-Kuramoto phase equation

$$\dot{\theta}_n = \omega_n - \sum_m K_{nm} \sin(\theta_n - \theta_{n+m})$$

with ω_n taken from distribution $g(\omega)$.

- Aronson, Ermentrout and Kopell analysis of two coupled oscillators
- Matthews, Mirollo and Strogatz magnitude-phase model

Results for the Phase Model

Mean field model with all-to-all coupling (Kuramoto, 1975)

$$\dot{\theta}_n = \omega_n - K N^{-1} \sum_m \sin(\theta_n - \theta_{n+m})$$

with ω_n taken from a symmetric distribution $g(\omega)$ (e.g. gaussian) of width w

$$\Psi = N^{-1} \sum_{n} r_n e^{i\theta_n} = R e^{i\Theta}, \qquad r_n = 1$$

Synchronization occurs if $R \neq 0$

• Phase difference $\bar{\theta}_n = \theta_n - \Theta$ satisfies

 $\dot{\bar{\theta}}_n = \omega_n - F(\bar{\theta}_n)$ with $F(\theta) = KR\sin\theta$

(order parameter frequency $\Theta = 0$ for symmetric distribution $g(\omega)$) Self-consistency condition

$$R = N^{-1} \sum \langle \cos \bar{\theta}_n \rangle, \qquad \sum \langle \sin \bar{\theta}_n \rangle = 0$$

ヘロト ヘ節ト ヘヨト ヘヨト

Results for the Phase Model

Mean field model with all-to-all coupling (Kuramoto, 1975)

$$\dot{\theta}_n = \omega_n - K N^{-1} \sum_m \sin(\theta_n - \theta_{n+m})$$

with ω_n taken from a symmetric distribution $g(\omega)$ (e.g. gaussian) of width w

Order parameter

$$\Psi = N^{-1} \sum_{n} r_n e^{i\theta_n} = R e^{i\Theta}, \qquad r_n = 1$$

Synchronization occurs if $R \neq 0$

Phase difference $\bar{\theta}_n = \theta_n - \Theta$ satisfies

 $\dot{\bar{\theta}}_n = \omega_n - F(\bar{\theta}_n)$ with $F(\theta) = KR\sin\theta$

(order parameter frequency $\dot{\Theta} = 0$ for symmetric distribution $g(\omega)$)

Self-consistency condition

$$R = N^{-1} \sum_{n} \langle \cos \bar{\theta}_n \rangle, \qquad \sum_{n} \langle \sin \bar{\theta}_n \rangle = 0$$

・ロト ・回ト ・ヨト ・ヨト
Results for the Phase Model

Mean field model with all-to-all coupling (Kuramoto, 1975)

$$\dot{\theta}_n = \omega_n - K N^{-1} \sum_m \sin(\theta_n - \theta_{n+m})$$

with ω_n taken from a symmetric distribution $g(\omega)$ (e.g. gaussian) of width w

Order parameter

$$\Psi = N^{-1} \sum_{n} r_n e^{i\theta_n} = R e^{i\Theta}, \qquad r_n = 1$$

Synchronization occurs if $R \neq 0$

• Phase difference $\bar{\theta}_n = \theta_n - \Theta$ satisfies

 $\dot{\bar{\theta}}_n = \omega_n - F(\bar{\theta}_n)$ with $F(\theta) = KR\sin\theta$

(order parameter frequency Θ = 0 for symmetric distribution g(ω))
Self-consistency condition

$$R = N^{-1} \sum_{n} \langle \cos \bar{\theta}_n \rangle, \qquad \sum_{n} \langle \sin \bar{\theta}_n \rangle = 0$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results for the Phase Model

Mean field model with all-to-all coupling (Kuramoto, 1975)

$$\dot{\theta}_n = \omega_n - K N^{-1} \sum_m \sin(\theta_n - \theta_{n+m})$$

with ω_n taken from a symmetric distribution $g(\omega)$ (e.g. gaussian) of width w

Order parameter

$$\Psi = N^{-1} \sum_{n} r_n e^{i\theta_n} = R e^{i\Theta}, \qquad r_n = 1$$

Synchronization occurs if $R \neq 0$

• Phase difference $\bar{\theta}_n = \theta_n - \Theta$ satisfies

$$\dot{\bar{\theta}}_n = \omega_n - F(\bar{\theta}_n)$$
 with $F(\theta) = KR\sin\theta$

(order parameter frequency $\dot{\Theta} = 0$ for symmetric distribution $g(\omega)$) Self-consistency condition

$$R = N^{-1} \sum_{n} \langle \cos \bar{\theta}_n \rangle, \qquad \sum_{n} \langle \sin \bar{\theta}_n \rangle = 0$$

Graphical Solution

< ロ > < 回 > < 回 > < 回 > < 回</p>

Synchronization Transition

- Onset of synchronization for $K > K_c = 2(\pi g(0))^{-1}$
- Also: divergence of susceptibility at $K = K_c$

< D > < A > < B >

MEMS equation

$$0 = \ddot{x}_n + (1 + \omega_n)x_n - \nu(1 - x_n^2)\dot{x}_n + ax_n^3 + \sum_m D_{nm}(x_m - x_n)$$

Synchronization in MEMS \Rightarrow alternative mechanism

Synchronization occurs by nonlinear frequency pulling and reactive coupling

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Investigate all-to-all coupling using complex amplitude formulation

$$\dot{A}_n = i(\omega_n - \alpha |A_n|^2)A_n + (1 - |A_n|^2)A_n + \frac{i\beta}{N}\sum_{m=1}^N (A_m - A_n)$$

(cf. Synchronization by Pikovsky, Rosenblum, and Kurths)

Write as equations for magnitude and phase $A_n = r_n e^{i\theta_n}$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n$$
$$\dot{r}_n = (1 - r_n^2)r_n + \beta R \sin \bar{\theta}_n$$

with $\bar{\theta}_n = \theta_n - \Theta$, $\bar{\omega}_n = \omega_n - \alpha - \beta - \dot{\Theta}$

<ロ> < 回 > < 回 > < 回 > < 回 >

Investigate all-to-all coupling using complex amplitude formulation

$$\dot{A}_n = i(\omega_n - \alpha |A_n|^2)A_n + (1 - |A_n|^2)A_n + \frac{i\beta}{N}\sum_{m=1}^N (A_m - A_n)$$

(cf. Synchronization by Pikovsky, Rosenblum, and Kurths)

Write as equations for magnitude and phase $A_n = r_n e^{i\theta_n}$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n$$
$$\dot{r}_n = (1 - r_n^2) r_n + \beta R \sin \bar{\theta}_n$$

with $\bar{\theta}_n = \theta_n - \Theta$, $\bar{\omega}_n = \omega_n - \alpha - \beta - \dot{\Theta}$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Narrow frequency distributions and large α .

• Magnitude relaxes rapidly to the value given by setting $\dot{r} = 0$

 $(1-r^2)r = -\beta R \sin \bar{\theta}$

If $r \simeq 1$ (OK for large α).

$$1-r^2\simeq -\beta R\sin\bar{\theta}$$

Phase equation becomes Kuramoto equation with $K = \alpha \beta$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n \qquad \Rightarrow \qquad \dot{\bar{\theta}} \simeq \bar{\omega} - \alpha \beta R \sin \bar{\theta}$$

(ignore βR compared with $\alpha \beta R$)

Synchronization occurs ($R \neq 0$) for $\alpha\beta > 2(\pi g(0))^{-1}$

ヘロト ヘ節ト ヘヨト ヘヨト

Narrow frequency distributions and large α .

• Magnitude relaxes rapidly to the value given by setting $\dot{r} = 0$

$$(1-r^2)r = -\beta R \sin \bar{\theta}$$

If $r \simeq 1$ (OK for large α)

$$1 - r^2 \simeq -\beta R \sin \bar{\theta}$$

Phase equation becomes Kuramoto equation with $K = \alpha \beta$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n \qquad \Rightarrow \qquad \dot{\bar{\theta}} \simeq \bar{\omega} - \alpha \beta R \sin \bar{\theta}$$

(ignore βR compared with $\alpha \beta R$)

Synchronization occurs $(R \neq 0)$ for $\alpha\beta > 2(\pi g(0))^{-1}$.

Narrow frequency distributions and large α .

• Magnitude relaxes rapidly to the value given by setting $\dot{r} = 0$

$$(1-r^2)r = -\beta R \sin \bar{\theta}$$

If $r \simeq 1$ (OK for large α)

$$1 - r^2 \simeq -\beta R \sin \bar{\theta}$$

Phase equation becomes Kuramoto equation with $K = \alpha \beta$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n \qquad \rightarrow \qquad \dot{\bar{\theta}} \simeq \bar{\omega} - \alpha \beta R \sin \bar{\theta}$$

(ignore βR compared with $\alpha \beta R$)

Synchronization occurs $(R \neq 0)$ for $\alpha\beta > 2(\pi g(0))^{-1}$.

<ロ> < 回 > < 回 > < 回 > < 回 >

Narrow frequency distributions and large α .

• Magnitude relaxes rapidly to the value given by setting $\dot{r} = 0$

$$(1-r^2)r = -\beta R \sin \bar{\theta}$$

If $r \simeq 1$ (OK for large α)

$$1 - r^2 \simeq -\beta R \sin \bar{\theta}$$

Phase equation becomes Kuramoto equation with $K = \alpha \beta$

$$\dot{\bar{\theta}}_n = \bar{\omega}_n + \alpha (1 - r_n^2) + \frac{\beta R}{r_n} \cos \bar{\theta}_n \qquad \rightarrow \qquad \dot{\bar{\theta}} \simeq \bar{\omega} - \alpha \beta R \sin \bar{\theta}$$

(ignore βR compared with $\alpha \beta R$)

Synchronization occurs $(R \neq 0)$ for $\alpha\beta > 2(\pi g(0))^{-1}$.

ヘロン ヘロン ヘビン ヘビン

[MCC, Zumdieck, Lifshitz, and Rogers (2004, 2006)]

$$\dot{A}_n = i(\omega_n - \alpha |A_n|^2)A_n + (1 - |A_n|^2)A_n + i\frac{\beta}{N}\sum_m (A_m - A_n)$$

with ω_n from distribution $g(\omega)$

- Analytics
 - Linear instability of unsynchronized R = 0 state for Lorentzian, triangular, top-hat $g(\omega)$ (cf. Matthews et al.)
 - Instability of fully locked state
- Numerical simulations of amplitude-phase model for up to 10000 oscillators with all-to-all coupling

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Full locking

Amplitude-phase equations

$$\dot{\bar{\theta}} = \bar{\omega} + \alpha (1 - r^2) + \frac{\beta R}{r} \cos \bar{\theta}$$
$$\dot{r} = (1 - r^2)r + \beta R \sin \bar{\theta}$$

If all the oscillators are locked

$$\dot{\bar{\theta}} = \dot{r} = 0$$

• solve cubic equation for $r(\bar{\theta})$

■ solve phase equation

$$\bar{\omega} = \frac{\beta R}{r(\bar{\theta})} (\alpha \sin \bar{\theta} - \cos \bar{\theta}) = F(\bar{\theta})$$

• test stability of single oscillator solution $(r(\bar{\omega}), \bar{\theta}(\bar{\omega}))$

Full locking

Amplitude-phase equations

$$\dot{\bar{\theta}} = \bar{\omega} + \alpha (1 - r^2) + \frac{\beta R}{r} \cos \bar{\theta}$$
$$\dot{r} = (1 - r^2)r + \beta R \sin \bar{\theta}$$

If all the oscillators are locked

$$\dot{\bar{\theta}} = \dot{r} = 0$$

• solve cubic equation for $r(\bar{\theta})$

solve phase equation

$$\bar{\omega} = \frac{\beta R}{r(\bar{\theta})} (\alpha \sin \bar{\theta} - \cos \bar{\theta}) = F(\bar{\theta})$$

• test stability of single oscillator solution $(r(\bar{\omega}), \bar{\theta}(\bar{\omega}))$

イロト イヨト イヨト イヨ

Example

May 2006 34 / 58

ヘロト ヘ回ト ヘヨト ヘヨト

Solution for narrow distribution

Solution for wider distribution

< ロ > < 回 > < 回 > < 回 > < 回</p>

Critical distribution width

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations

Numerical Simulations

- Results
- Conclusions

- Up to N=100,000 oscillators used (interested in phenomena that survive $N \rightarrow \infty$ limit)
- Lorentzian (with cutoff), Gaussian, and top-hat (uniform) distributions
- Usually choose g(0) = 1
- Scan behavior as function of α and β

・ロ・・日・ ・日・ ・日・

Graphical Example

Complex A plane:

<ロ> < 回 > < 回 > < 回 > < 回 >

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

Results for a Triangular Distribution

Show results for g(0) = 1 (w = 2)

(日)

May 2006 44 / 58

< ロ > < 回 > < 回 > < 回 > < 回</p>

May 2006 45 / 58

< ロ > < 回 > < 回 > < 回 > < 回</p>

May 2006 46 / 58

May 2006 47 / 58

イロト イロト イヨト イヨト

May 2006 48 / 58

May 2006 49 / 58

May 2006 50 / 58

May 2006 51 / 58

▶ 둘 ∽ ९ (~ May 2006 52 / 58

・ロン ・四 と ・ 田 と

・ロト ・日 ・ ・ ヨ ・ ・

・ロト ・日 ・ ・ ヨ ・ ・

Lorentzian

g(0) = 1

Michael Cross (Caltech, BNU)

May 2006 55 / 58

<ロ> <同> <同> < 回> < 回>

Top-Hat

g(0) = 1

May 2006 56 / 58

Outline

1 Introduction

- Motivation: MEMS and NEMS
- Nonlinearity
- Huygen's Clocks and the Phase Model

2 Synchronization via Nonlinear Frequency Pulling

- Model
- Analytic Calculations
- Numerical Simulations
- Results
- Conclusions

<ロ> <同> <同> < 回> < 回>

I've described one aspect of theoretically modelling micron and submicron scale oscillators:

 Synchronization due to nonlinear frequency pulling and reactive coupling [MCC, Zumdieck, Lifshitz and Rogers, Phys. Rev. Lett. 93, 224101 (2004)]

Other areas of interest:

- Linear fluctuations in solution
 [Paul and MCC, Phys. Rev. Lett. 92, 235501 (2004)]
- Nonlinear collective effects of parametrically driven high-*Q* arrays [Lifshitz and MCC, Phys. Rev. **B67**, 134302 (2003)]
- A QND scheme to measure discrete levels in a quantum MEMS oscillator [Santamore, Doherty, and MCC, Phys. Rev. **B70**, 144301 (2004)]
- Noise induced transitions between driven (nonequilibrium) states

<ロ> < 回 > < 回 > < 回 > < 回 >