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Outline

• Motivation: MEMS and NEMS

• BioNEMS: Fluctuations in the linear regime

• Pattern formation: Nonlinear and collective effects in parametrically

driven arrays
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Single crystal silicon [From Craighead, Science290, 1532 (2000)]
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MicroElectroMechanical Systems and NEMS

Arrays of tiny mechanical oscillators:

• driven, dissipative⇒ nonequilibrium

• nonlinear

• collective

• noisy

• (potentially) quantum

Goals

• Apply knowledge from statistical mechanics, nonlinear dynamics,

pattern formation etc. to technologically important questions

• Investigate pattern formation and nonlinear dynamics in new regimes
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Part I: Fluctuations of micro-cantilevers in solution
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BioNEMS Prototype

(Arlett et. al, Nobel Symposium 131, August 2005)
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Example Design Parameters
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Dimensions:L = 3µ, w = 100nm,t = 30nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2

Results: Spring constantK = 8.7mN/m; vacuum frequencyν0 ∼ 6MHz
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Atomic Force Microscopy (AFM)
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Noise in micro-cantilevers

Thermal fluctuations (Brownian motion) important for:

• BioNEMS: detection scheme

• AFM: calibration

Goals:

• Correct formulation of fluctuations for analytic calculations

• Practical scheme for numerical calculations of realistic geometries
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Previous approach (Sader 1998)

• Model molecular collisions with cantilever as white noise force

uniformly distributed along cantilever

• Calculate modal responsex̃n(ω) for periodic driving forceF̃ (ω)

(resonance curves)

? interesting frequency dependent mass loading and damping from

coupling to fluid

• Calculate fluctuation of tip displacement as sum of mode responses

for constant|F̃ (ω)|2
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Problems

This approaches is formallyincorrectandhard to implementfor realistic

geometries and strong damping:

• Noise force is not white

• Noise force is not uniformly distributed along surface

• Mode fluctuations are not in general independent

• Difficult to calculate coupled elastic-fluid modes, and many needed

for strong damping
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Fluid Dynamics Issues

∂ Eu
∂t
+ Eu · E∇ Eu = −E∇p + ν∇2Eu,
E∇ · Eu = 0

with ν the kinematic viscosityη/ρ.

Fluid dynamics is (relatively) easy if we can neglect the inertial terms.

For typical BioNEMS/AFM:

• Eu · E∇ Eu = O(u2) is negligible because of tiny oscillation amplitudes

• Important parameter is the Strouhal number

S = ωw2

4ν
≈ 1.6

ω frequency 2π × 1 MHz

w width 1µ

ν kinematic viscosity 10−6 m2s−1

Low Reynolds number flow: linear …but can’t takeS = 0
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Simple Picture (Sader)

S -1/2

Potential flow

Diffusing
vorticity
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Stokes Theory

Viscous force on sphere of radiusa moving with speedv is

F/v = 6πρνa

Viscous force per unit length of cylinder of radiusa is given by

γ = F/v = πρν × S Im 0(S)

with

0(S) = 1+ 4iK1(−i
√
iS)√

iSK0(−i
√
iS)

Effective mass per unit length from fluid

M = πa2ρ Re0(S) H⇒ Q ' Re0(S)
Im 0(S)

(Other parameterT = π
4
ρ
ρs

w
t
= mass of cylinder of fluid

mass of cantilever ∼ 2)
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S

Q
,γ

/π
ρν

10-2 10-1 100 101

5

10
γ/πρν
Q

For smallS: S0(S)→ −4i
1
2 log

( 4
S
)− CE + i π4



Back Forward

Nanomechanical Oscillators: from Thermodynamics to Pattern Formation:TCM, October 2005 16

New approach: fluctuation-dissipation theorem

(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial

condition

• (near equilibrium) thermodynamics: Onsager regression hypothesis

• statistical mechanics: fluctuation-dissipation theorem, linear response

theory, Kubo formalism …(see eg.Chandler)
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New approach: fluctuation-dissipation theorem

(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial

condition

• (near equilibrium) thermodynamics: Onsager regression hypothesis

• statistical mechanics: fluctuation-dissipation theorem, linear response

theory, Kubo formalism …(see eg.Chandler)

Consider Hamiltonian

H = H0− F(t)A
H0 unperturbed Hamiltonian

A(r1 . . . rN,p1 . . .pN) system observable

F(t) (small) time dependent force
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F(t)

t

H = H 0+∆H H = H 0

equi l ibr ium
under  H0+∆H
ρ=ρH(r N,p N)
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F(t)

t

H=H0+∆H H=H0

∆<B(t)>

t

F0

〈δB(t)δA(0)〉e = kBT 1
〈B(t)〉
F0
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Application to single cantilever

Assume observable is tip displacementX(t)

• Apply small step force of strengthF0 to tip

• Calculate or simulate deterministic decay of1X(t) for t > 0. Then

CXX(t) = 〈δX(t)δX(0)〉e = kBT 1X(t)
F0

• Fourier transform ofCXX(t) gives power spectrum ofX fluctuations

GX(ω)
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Advantages

• Correct!

• Essentially no approximations in formulation

� assume1 〈X(t)〉 given by deterministic calculation

� also in implementation assume continuum description

• Incorporates

� full elastic-fluid coupling

� non-white, spatially dependent noise

� no assumption on independence of mode fluctuations

� complex geometries

• Single numerical calculation over decay time gives complete power spectrum

• Can be modified for other measurement protocols by appropriate choice of

conjugate force

� AFM: deflection of light (angle near tip)

� BioNEMS: curvature near pivot (piezoresistivity)
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Single cantilever
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Dimensions:L = 3µ,W = 100nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2
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Adjacent cantilevers

Correlation of Brownian fluctuations

〈δX2(t)δX1(0)〉e = kBT 1X2(t)

F1
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Results: single cantilever

3d Elastic-fluid code from CFD Research Corporation

1µs force sensitivity:K
√
GX(ν)× 1MHz ∼ 7pN
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Results: adjacent cantilevers
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Comparison with AFM experiments

0 4000 8000
0
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1.2

x 10
−11

232.4µ× 20.11µ× 0.573µAsylum Research AFM (Clarke et al., 2005)

Dashed line: calculations from fluctuation-dissipation approach

Dotted line: calculations from Sader (1998) approach
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Part II: Pattern formation in parametrically driven arrays
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Modelling high Q oscillators

0= ẍn + xn
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn linear damping
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn with δn taken from distributiong(δn)
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn) reactive coupling
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n nonlinear stiffening
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
nonlinear damping
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
− gEẋn(1− x2

n) energy input
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn parametric drive
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn

+ 2gDcos[(1+ δωD)t ] signal
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn

+ 2gDcos[(1+ δωD)t ]
+ Noise
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Modelling high Q oscillators

0= ẍn + xn
+ γ ẋn
+ δnxn
+
∑
m

Dnm(xm − xn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn

+ 2gDcos[(1+ δωD)t ]
+ Noise
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Theoretical approach

• Oscillators at frequency unity + small corrections

• Assume dispersion, coupling, damping, driving, noise, and nonlinear

terms are small.

• Introduce small parameterε with εp characterizing the size of these

various terms.

• Then with the “slow” time scaleT = εt
xn(t) = ε1/2 [An(T )eit + c.c.]+ ε3/2x(1)n (t)+ · · ·

derive equations fordAn/dT = · · · .
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Example: single Duffing oscillator

ẍ + γ ẋ + x + x3 = 2gD cos(ωDt)

Parameters:

γ damping

gD drive strength

ωD drive frequency

Spring getsstiffer with increasing displacement.
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We can calculate behavior close to the sinusoidal oscillation∝ eit :
• oscillator driving near resonanceωD ' 1

• small damping

• small drivinggD of oscillation implies the effect of the nonlinearity
will be small
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We can calculate behavior close to the sinusoidal oscillation∝ eit :
• oscillator driving near resonanceωD ' 1

• small damping

• small drivinggD of oscillation implies the effect of the nonlinearity
will be small

To implement these “smallnesses” write

ωD = 1+ ε�D
gD = ε3/2g

γ = ε0
with ε � 1 andg, 0,�D considered to be of order unity.

(For these scalings the different effects that perturb the oscillator away
from e±it are comparable. If there is a different scaling of the small
parameters, one or more effects may not be important in the dynamics.)
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Introduce the WKB-likeansatzfor the displacement

x(t) = ε1/2A(T ) eit + c.c.+ ε3/2 x1(t)+ · · ·

• A(T ) is acomplexamplitude that gives the slow modulation

• T = εt is aslow time variable:

d

dt
A = εA′(T )� 1

• x1(t) and· · · give corrections to the ansatz that are required to be small
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Introduce the WKB-likeansatzfor the displacement

x(t) = ε1/2A(T ) eit + c.c.+ ε3/2 x1(t)+ · · ·

• A(T ) is acomplexamplitude that gives the slow modulation

• T = εt is aslow time variable:

d

dt
A = εA′(T )� 1

• x1(t) and· · · give corrections to the ansatz that are required to be small

Substitute into the equation of motion using

ẋ = ε1/2(iA+ εA′)eit + c.c.+ ε3/2ẋ1+ · · ·
ẍ = ε1/2(−A+ 2iεA′ + ε2A′′)eit + c.c.+ ε3/2ẍ1+ · · ·
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Introduce the WKB-likeansatzfor the displacement

x(t) = ε1/2A(T ) eit + c.c.+ ε3/2 x1(t)+ · · ·

• A(T ) is acomplexamplitude that gives the slow modulation

• T = εt is aslow time variable:

d

dt
A = εA′(T )� 1

• x1(t) and· · · give corrections to the ansatz that are required to be small

Substitute into the equation of motion using

ẋ = ε1/2(iA+ εA′)eit + c.c.+ ε3/2ẋ1+ · · ·
ẍ = ε1/2(−A+ 2iεA′ + ε2A′′)eit + c.c.+ ε3/2ẍ1+ · · ·

and collect terms to give atO(ε3/2)

ẍ1+ x1 = (−2iA′ − i0A− 3 |A|2A+ gei�DT )eit − A3e3it + c.c.+ · · ·
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Forx1 to be small, theresonantdriving terms on the right hand side must

be zero.

This gives

d

dT
A = −0

2
A+ i3

2
|A|2A− i g

2
ei�DT
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Forx1 to be small, theresonantdriving terms on the right hand side must

be zero.

This gives

d

dT
A = −0

2
A+ i3

2
|A|2A− i g

2
ei�DT

After transients the solution isA = aei�DT with

|a|2 = (g/2)2

(�D − 3
2 |a|2)2+ (0/2)2

or

|x|2 = (gD/2)2[
ωD −

(
1+ 3

2 |x|2
)]2+ (γ /2)2
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Nonlinearity: Frequency pulling

A
m

pl
itu

de
 x

/g
D

Frequency ωD

small
driving

large
driving

ẍ + γ ẋ + x + x3 = gDcos(ωDt)
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Experiment

Platinum Wire [Husain et al., Appl. Phys. Lett.83, 1240 (2003)]
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Results
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Parametric drive in MEMS

ẍ + γ ẋ + (1+ gP cosωP t)x + x3 = 0

• oscillation ofparameterof equation—here the spring constant

• x = 0 remains a solution in the absence of noise

• parametric drive decreases effective dissipation (for one quadrature of

oscillations)

? amplificationfor small drive amplitudes

? instability for large enough drive amplitudes

• strongest response forωp = 2
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MEMS Elastic parametric drive

[Harrington and Roukes]
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Amplification

[Harrington and Roukes]
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Parametric instability in arrays of oscillators

270µ× 1µ× 0.25µ gold beams [Buks and Roukes, 2001]
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Simple intuition

Wave vector k

Frequency ωωωω
ωωωωP

ωωωωP/2

ππππ/a−−−−ππππ/a kP-kP

Above the parametric instability nonlinearity is essential to understand the

oscillations.

• Mode Competition

• Pattern formation
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Experimental results
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One beam theory

Drive frequency ωP
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           Include nonlinear damping

2i
dA

dT
− h

2
A∗ei�T + iγA+ 3|A|2A+ iη|A|2A = 0, A(T )⇒ aei

�
2 T
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Many beam theory

Fixed
Fixed

0= ẍn + xn + x3
n

+12(1+ gP cos[(2+ ε�)t ])(xn+1− 2xn + xn−1)

− γ (ẋn+1− 2ẋn + ẋn−1)

+ η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
Local Duffing (elasticity) + Electrostatic Coupling (dc and modulated) +

Dissipation (currents) + Nonlinear Damping (also currents)

[Lifshitz and MCC Phys. Rev. B67, 134302 (2003)]
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2 beam periodic solutions

|xs|
2 |xu|

2

Ω Ω

stable
unstable

Intensity of symmetric mode|xs |2 and antisymmetric mode|xu|2 as

frequency is scanned.
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2 beam periodic solutions

|xs|
2 |xu|

2

Ω Ω

stable
unstable

The green lines correspond to a single excited mode, the remainder to

coupled modes.
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Hysteresis for two beams

0

1

2

3

4

5

-10 -5 0 5 10 15
Ω

R
es

po
ns

e

S2

S1

D1

D2



Back Forward

Nanomechanical Oscillators: from Thermodynamics to Pattern Formation:TCM, October 2005 47

Simulations of 67 Beams
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Many beams

Drive frequency ωP
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 uniform state stable

Single oscillator
Vary pump frequency

ω(k)=ωP/2

Many oscillators
Fixed pump frequency

Continuum approximation: new amplitude equation

[Bromberg, MCC and Lifshitz (preprint, 2005)]

∂A

∂T
= A+ ∂

2A

∂X2
+ i2

3

(
4 |A|2 ∂A

∂X
+ A2∂A

∗

∂X

)
− 2 |A|2A− |A|4A
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Conclusions

I’ve described two aspects of theoretically modelling micron and submicron scale

oscillators

• Linear fluctuations in solution [Paul and MCC, Phys. Rev. Lett.92, 235501 (2004)]

• Nonlinear collective effects of parametrically driven high-Q arrays

[Lifshitz and MCC, Phys. Rev.B67, 134302 (2003)]

Other areas of interest:

• Synchronization due to nonlinear frequency pulling and reactive coupling

[MCC, Zumdieck, Lifshitz, and Rogers, Phys. Rev. Lett.93, 224101 (2004)]

• Noise induced transitions between driven (nonequilibrium) states

? Single nonlinear oscillator

[cf. Aldridge and Cleland, Phys. Rev. Lett.94, 156403 (2005) ]

? Collective states in arrays of oscillators

• Analysis of a QND scheme to measure the discrete levels in quantum harmonic

oscillator [Santamore, Doherty, and MCC, Phys. Rev.B70, 144301 (2004)]


