Spatiotemporal Chaos in Rayleigh-Bénard Convection

Michael Cross

California Institute of Technology Beijing Normal University

June 2006

Janet Scheel, Keng-Hwee Chiam, Mark Paul Henry Greenside, Anand Jayaraman Paul Fischer Yuhai Tu, Dan Meiron, Michael Louie

Support: DOE Computer time: NSF, NERSC, NCSA, ANL

• • • • • • • • • • • •

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

<ロ> < 回 > < 回 > < 回 > < 回 >

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

<ロ> < 回 > < 回 > < 回 > < 回 >

Rayleigh-Bénard Convection

Rayleigh

< □ > < □ > < □ > < □ > < □ > < □ >

Michael Cross (Caltech, BNU)

Rayleigh-Bénard Convection

イロン イヨン イヨン イヨン

	Rigid plate	
Fluid		
	Rigid plate	

<ロ> < 回 > < 回 > < 回 > < 回 >

ヘロト ヘヨト ヘヨト ヘヨト

< ロ > < 回 > < 回 > < 回 > < 回</p>

・ロト ・日 ・ ・ ヨ ・ ・

イロト イヨト イヨト イヨ

Convection Patterns

From the website of Eberhard Bodenschatz

<ロ> < 回 > < 回 > < 回 > < 回 >

Momentum Conservation

$$\frac{1}{\sigma} \left[\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} \right] = -\vec{\nabla}p + R T \hat{e}_z + \nabla^2 \vec{u} + 2\Omega \hat{e}_z \times \vec{u}$$

Energy Conservation

$$\frac{\partial T}{\partial t} + \left(\vec{u} \cdot \vec{\nabla}\right) T = \nabla^2 T$$

Mass Conservation

$$\vec{\nabla} \bullet \vec{u} = 0$$

- BC: no-slip boundaries at z = 0, 1 with T(z = 0) = 1, and T(z = 1) = 0
- Aspect Ratio: $\Gamma = r/d$

(日)

Modern Convection Apparatus

h

< D > < A > < B > <</p>

From de Bruyn et al., Rev. Sci. Instr. (1996)

Modern Convection Apparatus

From de Bruyn et al., Rev. Sci. Instr. (1996)

Allows a quantitative comparison between theory and experiment.

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

What Is It?

- Definitions
 - dynamics, disordered in time and space, of a large, uniform system
 - collective motion of many chaotic elements
 - breakdown of pattern to dynamics
- Natural examples:
 - atmosphere and ocean (weather, climate etc.)
 - arrays of nanomechanical oscillators
 - heart fibrillation

Cultured monolayers of cardiac tissue (from Gil Bub, McGill)

<ロ> < 四 > < 回 > < 回 > < 回 > .

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

- Simplifications over small-system chaos
 - Perhaps smooth dependence on parameters
 - Statistical rather than geometrical description
 - $\blacksquare N \to \infty \text{ limit}$
- Not as difficult as fully developed turbulence!

イロト イヨト イヨト イヨ

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

- Simplifications over small-system chaos
 - Perhaps smooth dependence on parameters
 - Statistical rather than geometrical description
 - $N \to \infty$ limit
- Not as difficult as fully developed turbulence!

Issues

- Role of space as well as time in sensitivity to initial conditions
- Insightful diagnostics
- Specificity and universality of behavior
- Quantitative descriptions
 - Scaling behavior near transitions
 - Reduced long wavelength description (cf. "hydrodynamics")
- Control ...

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

- Simplifications over small-system chaos
 - Perhaps smooth dependence on parameters
 - Statistical rather than geometrical description
 - $\blacksquare N \to \infty \text{ limit}$
- Not as difficult as fully developed turbulence!

Issues

- Role of space as well as time in sensitivity to initial conditions
- Insightful diagnostics
- Specificity and universality of behavior
- Quantitative descriptions
 - Scaling behavior near transitions
 - Reduced long wavelength description (cf. "hydrodynamics")
- Control ...

ヘロト ヘ回ト ヘヨト ヘヨト

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

What is it?

Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Spiral Chaos in Rayleigh-Bénard Convection

... and from experiment

Michael Cross (Caltech, BNU)

Domain Chaos in Rayleigh-Bénard Convection

Spiral and Domain Chaos in Rayleigh-Bénard Convection

Spiral and Domain Chaos in Rayleigh-Bénard Convection

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Amplitude equation theory predicts

Length scale $\xi \sim \varepsilon^{-1/2}$ Time scale $\tau \sim \varepsilon^{-1}$ Velocity scale $v \sim \varepsilon^{1/2}$

with $\varepsilon = (R - R_c(\Omega))/R_c(\Omega)$

- Numerical Tests
 - generalized Swift-Hohenberg equations
 - full fluid dynamic simulations \checkmark
- Experiment × (but now we understand why)

・ロン ・雪 と ・ ヨン・

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

Amplitude equation theory

- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Rayleigh's linear stability analysis gives

$$u = u_0 e^{\gamma t} \cos(qx) \dots = A(t) \cos(qx) \dots$$

so that in the linear approximation and for R near R_c

$$\frac{dA}{dt} = \gamma A$$
 with $\gamma \propto \varepsilon = \frac{R - R_c}{R_c}$

Rayleigh's linear stability analysis gives

$$u = u_0 e^{\gamma t} \cos(qx) \dots = A(t) \cos(qx) \dots$$

so that in the linear approximation and for R near R_c

$$\frac{dA}{dt} = \gamma A$$
 with $\gamma \propto \varepsilon = \frac{R - R_c}{R_c}$

• Use ε as small parameter in expansion about threshold

Rayleigh's linear stability analysis gives

$$u = u_0 e^{\gamma t} \cos(qx) \dots = A(t) \cos(qx) \dots$$

so that in the linear approximation and for R near R_c

$$\frac{dA}{dt} = \gamma A$$
 with $\gamma \propto \varepsilon = \frac{R - R_c}{R_c}$

- Use ε as small parameter in expansion about threshold
- Nonlinear saturation

$$\frac{dA}{dt} = (\varepsilon - A^2)A$$

Rayleigh's linear stability analysis gives

$$u = u_0 e^{\gamma t} \cos(qx) \dots = A(t) \cos(qx) \dots$$

so that in the linear approximation and for R near R_c

$$\frac{dA}{dt} = \gamma A$$
 with $\gamma \propto \varepsilon = \frac{R - R_c}{R_c}$

• Use ε as small parameter in expansion about threshold

Nonlinear saturation

$$\frac{dA}{dt} = (\varepsilon - A^2)A$$

Spatial variation

$$\frac{\partial A}{\partial t} = \varepsilon A - A^3 + \frac{\partial^2 A}{\partial x^2}$$

Amplitude Equations for KL Instability

(Busse-Heikes, May-Leonard)

$$dA_1/dt = \varepsilon A_1 - A_1(A_1^2 + g_+ A_2^2 + g_- A_3^2)$$

$$dA_2/dt = \varepsilon A_2 - A_2(A_2^2 + g_+ A_3^2 + g_- A_1^2)$$

$$dA_3/dt = \varepsilon A_3 - A_3(A_3^2 + g_+ A_1^2 + g_- A_2^2)$$

give a heteroclinic cycle

Three Amplitudes + Rotation + Spatial Variation (Tu and MCC, 1992)

$$\partial A_1 / \partial t = \varepsilon A_1 - A_1 (A_1^2 + g_+ A_2^2 + g_- A_3^2) + \partial^2 A_1 / \partial x_1^2 \partial A_2 / \partial t = \varepsilon A_2 - A_2 (A_2^2 + g_+ A_3^2 + g_- A_1^2) + \partial^2 A_2 / \partial x_2^2 \partial A_3 / \partial t = \varepsilon A_3 - A_3 (A_3^2 + g_+ A_1^2 + g_- A_2^2) + \partial^2 A_3 / \partial x_3^2$$

gives chaos!

< ロ > < 回 > < 回 > < 回 > <</p>

Simulations of Amplitude Equations

(Tu and MCC, 1992)

Grey: A1 largest; White: A2 largest; Black: A3 largest

Michael Cross (Caltech, BNU)

Spatiotemporal Chaos

Rescale
$$X = \varepsilon^{1/2} x$$
, $T = \varepsilon t$, $\overline{A} = \varepsilon^{-1/2} A$

$$\begin{aligned} \partial_T \bar{A}_1 &= \bar{A}_1 - \bar{A}_1 (\bar{A}_1^2 + g_+ \bar{A}_2^2 + g_- \bar{A}_3^2) + \partial_{X_1}^2 \bar{A}_1 \\ \partial_T \bar{A}_2 &= \bar{A}_2 - \bar{A}_2 (\bar{A}_2^2 + g_+ \bar{A}_3^2 + g_- \bar{A}_1^2) + \partial_{X_2}^2 \bar{A}_2 \\ \partial_T \bar{A}_3 &= \bar{A}_3 - \bar{A}_3 (\bar{A}_3^2 + g_+ \bar{A}_1^2 + g_- \bar{A}_2^2) + \partial_{X_3}^2 \bar{A}_3 \end{aligned}$$

Numerical simulations show chaotic dynamics with O(1) length and time scales Therefore in unscaled (physical) units

> Length scale $\xi \sim \varepsilon^{-1/2}$ Time scale $\tau \sim \varepsilon^{-1}$ Velocity scale $v \sim \varepsilon^{1/2}$

・ロト ・ 一 ト ・ 三 ト ・ 三 ト

Issues

Important Issues

- Validity of scaling results from truncated expansions
- Validity of "mean field" results in nonlinear fluctuating state

Other Approximations

- Restriction to 3 roll orientations
- Amplitudes assumed real
 - No wave number variation
 - No dislocations or phase grain boundaries
- No perpendicular derivative terms

$$\left(\partial_{x_i} - \frac{i}{2q_c}\partial_{y_i}^2\right)^2 \longrightarrow \partial_{x_i}^2$$

イロン イヨン イヨン イヨン

- Simulations of generalized Swift-Hohenberg equations in periodic geometries show results consistent with predictions [MCC, Meiron, and Tu (1994)]
- Experiments give results that are consistent either with finite values of ξ, τ at onset, or much smaller power laws ξ ~ ε^{-0.2}, τ ~ ε^{-0.6}
 [Hu et al. (1995) + many others]
- Simulations of generalized Swift-Hohenberg equations in circular geometries of radius Γ gave results similar to experiment but also consistent with finite size scaling

$$\xi_M = \xi f(\Gamma/\xi)$$
 with $\xi \sim \varepsilon^{-1/2}$

[MCC, Louie, and Meiron (2001)]

Fluid simulations ...

・ロト ・ 一 ト ・ 三 ト ・ 三 ト

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Generalized Swift-Hohenberg Simulations

MCC, Meiron, and Tu (1994)

Real field of two spatial dimensions $\psi(x, y; t)$

$$\frac{\partial \psi}{\partial t} = \varepsilon \psi + (\nabla^2 + 1)^2 \psi - \psi^3 \qquad \text{gives stripes}$$

Generalized Swift-Hohenberg Simulations

MCC, Meiron, and Tu (1994)

Real field of two spatial dimensions $\psi(x, y; t)$

$$\frac{\partial \psi}{\partial t} = \varepsilon \psi + (\nabla^2 + 1)^2 \psi - \psi^3 + g_2 \hat{\mathbf{z}} \cdot \nabla \times [(\nabla \psi)^2 \nabla \psi] + g_3 \nabla \cdot [(\nabla \psi)^2 \nabla \psi]$$

gives domain chaos!

Orientations

Scaling of Correlation Length

MCC, Meiron, and Tu (1994)

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations

Experiment

Simulations of full fluid equations

4 Conclusions

Experiment and Diagnosis

Hu et al. (1995)

э

Experimental Results for Correlation Length Hu et al. (1995)

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

Spectral Element Numerical Solution

MCC, Greenside, Fischer et al.

- Accurate simulation of long-time dynamics
- Exponential convergence in space, third order in time
- Efficient parallel algorithm, unstructured mesh
- Arbitrary geometries, realistic boundary conditions

< D > < A > < B > <</p>

- Knowledge of full flow field and other diagnostics (e.g. total heat flow)
- No experimental/measurement noise (roundoff "noise" very small)
- Measure quantities inaccessible to experiment e.g. Lyapunov exponents and vectors
- Readily tune parameters
- Turn on and off particular features of the physics (e.g. centrifugal effects, realistic v. periodic boundary conditions)

Full Fluid Dynamic Simulations

Scheel, Caltech thesis (2006)

Periodic Boundaries

< □ > < □ > < □ > < □ > < □ > < □ >

Realistic Boundaries

Michael Cross (Caltech, BNU)

Spatiotemporal Chaos

Lyapunov Exponent

Jayaraman et al. (2005)

Temperature

Temperature Perturbation

・ロ・・日・ ・日・ ・日・

Michael Cross (Caltech, BNU)

Spatiotemporal Chaos

June 2006 44 / 54

Lyapunov Exponent

(Jayaraman et al., 2005)

Aspect ratio $\Gamma = 40$, Prandtl number $\sigma = 0.93$, rotation rate $\Omega = 40$

< ロ > < 回 > < 回 > < 回 > <</p>

Summary of results of full 3d fluid simulations:

- Simulations of Rayleigh-Bénard convection with Coriolis forces give $\tau \sim \varepsilon^{-1}$ for small enough ε . For larger ε a slower growth is seen perhaps consistent with $\tau \sim \varepsilon^{-0.7}$ [Scheel and MCC (2005)]
- Scaling of largest Lyapunov exponent consistent with λ ~ c + ε¹ with c comparable to the finite size shift in onset [Jayaraman et al. (2006)]
- Role of centrifugal force [Becker, Scheel, MCC, and Ahlers (2006)]

イロン イボン イヨン イヨン

Slopes give frequency $\propto \varepsilon^{1.07}$ ($\Gamma = 40$ cylinder) and $\varepsilon^{1.04}$ (periodic)

Scaling of Lyapunov Exponent

Jayaraman et al. (2005)

イロン イヨン イヨン イヨン

Importance of Centrifugal Force

Becker, Scheel, MCC, and Ahlers (2006)

Aspect ratio $\Gamma = 20, \varepsilon \simeq 1.05, \Omega = 17.6$

Centrifugal force 0

Centrifugal force x4

Centrifugal force x10

• • • • • • • • • • • •

Time Scaling

Becker, Scheel, MCC, and Ahlers (2006)

o simulations $\Gamma = 20$ with centrifugal force $\times 2$; \Box experiment $\Gamma = 40$ \diamond simulations $\Gamma = 40$ no centrifugal force

< D > < A > < B >

- Simulations of the full fluid equations near onset without centrifugal forces are consistent with predictions of scaling of times as ε⁻¹; not yet able to probe scaling of lengths.
- Centrifugal forces are important in experiment, enhancing the finite size effects and limiting size of region of domain chaos.
- Maximum centrifugal force cf. Coriolis force $\sim (\alpha \Delta T)\Omega\Gamma/u$. (Near threshold $\Omega_{KL} \sim 10^1$, $u \sim \varepsilon^{1/2}$).

イロン イロン イヨン イヨン

Outline

Rayleigh-Bénard Convection

2 Spatiotemporal Chaos

- What is it?
- Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos

- Amplitude equation theory
- Generalized Swift-Hohenberg simulations
- Experiment
- Simulations of full fluid equations

4 Conclusions

- Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos, turbulence)
- Rotating convection shows spatiotemporal chaos in the weakly nonlinear regime near onset where there is hope for a quantitative understanding.
- Numerical simulations of realistic experimental geometries are now feasible

- Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos, turbulence)
- Rotating convection shows spatiotemporal chaos in the weakly nonlinear regime near onset where there is hope for a quantitative understanding.
- Numerical simulations of realistic experimental geometries are now feasible
- Truncated amplitude equation model makes predictions for scaling of lengths $\propto \varepsilon^{-1/2}$ and times $\propto \varepsilon^{-1}$
- Scalings and features of dynamics predicted by truncated amplitude model confirmed by GSH simulations and full fluid simulations
- Disagreement between experiment and predictions resolved (finite size, centrifugal effects)

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

- More precise experimental tests of the (homogeneous) theory
- Understand theoretically how good the truncated amplitude equation model should be
- Relate to lattice systems of coupled heteroclinic oscillators
- Understand the origins of chaos in the system and models

<ロ> < 回 > < 回 > < 回 > < 回 >

- More precise experimental tests of the (homogeneous) theory
- Understand theoretically how good the truncated amplitude equation model should be
- Relate to lattice systems of coupled heteroclinic oscillators
- Understand the origins of chaos in the system and models

THE END