Pattern Formation in Spatially Extended Systems

Lecture 3: Oscillatory Instabilities

Outline

In this lecture I will discuss pattern formation in oscillatory systems.
As in the stationary case I will introduce the phenomenon using the behavior near an instability from the stationary, spatially uniform state.

- Convective v. Absolute Instability
- Oscillatory Instability
\diamond CGL equation
\diamond Benjamin-Feir instability
\diamond Properties of nonlinear waves
\diamond Importance of spiral sources in 2d
- Wave Instability
\diamond Unidirectional wave
\diamond Counterpropagating waves

Linear Instability

Linear Instability

If $\omega_{c}=-\operatorname{Im} \sigma_{q_{c}} \neq 0$ we have an instability to

- for $q_{c}=0$: a nonlinear oscillator which also supports travelling waves
- for $q_{c} \neq 0$: a wave pattern (standing or travelling)

Linear Instability

If $\omega_{c}=-\operatorname{Im} \sigma_{q_{c}} \neq 0$ we have an instability to

- for $q_{c}=0$: a nonlinear oscillator which also supports travelling waves
- for $q_{c} \neq 0$: a wave pattern (standing or travelling)

Important new concept: absolute v . convective instability

Absolute and convective instability

Conditions for convective and absolute instability

- Convective instability: same as condition for instability to

Fourier mode

- Absolute instability: for a growth rate spectrum σ_{q}, the system is absolutely unstable if

$$
\operatorname{Re} \sigma\left(\mathbf{q}_{s}\right)=0
$$

where \mathbf{q}_{s} is a complex wave vector given by the solution of the stationary phase condition

$$
\frac{d \sigma_{\mathbf{q}}}{d \mathbf{q}}=0
$$

Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition $u_{p}(\mathbf{x}, t=0)$ can be expressed as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d q e^{i q x+\sigma_{q} t} \int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) e^{-i q x^{\prime}}
$$

Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition $u_{p}(\mathbf{x}, t=0)$ can be expressed as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d q e^{i q x+\sigma_{q} t} \int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) e^{-i q x^{\prime}}
$$

Rewrite the integral as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) \int_{-\infty}^{\infty} d q e^{i q\left(x-x^{\prime}\right)+\sigma_{q} t}
$$

Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition $u_{p}(\mathbf{x}, t=0)$ can be expressed as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d q e^{i q x+\sigma_{q} t} \int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) e^{-i q x^{\prime}}
$$

Rewrite the integral as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) \int_{-\infty}^{\infty} d q e^{i q\left(x-x^{\prime}\right)+\sigma_{q} t}
$$

For large time and at fixed distance the integral can be estimated using the stationary phase method: the integral is dominated by the region around the complex wave number $q=q_{s}$ given by the solution of

$$
\frac{d \sigma_{q}}{d q}=0
$$

Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition $u_{p}(\mathbf{x}, t=0)$ can be expressed as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d q e^{i q x+\sigma_{q} t} \int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) e^{-i q x^{\prime}}
$$

Rewrite the integral as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) \int_{-\infty}^{\infty} d q e^{i q\left(x-x^{\prime}\right)+\sigma_{q} t}
$$

For large time and at fixed distance the integral can be estimated using the stationary phase method: the integral is dominated by the region around the complex wave number $q=q_{s}$ given by the solution of

$$
\frac{d \sigma_{q}}{d q}=0
$$

Estimating the integral from the value of the integrand at the stationary phase point gives

$$
u_{p}(x=0, t) \sim e^{\sigma_{q_{s}} t}
$$

Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition $u_{p}(\mathbf{x}, t=0)$ can be expressed as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d q e^{i q x+\sigma_{q} t} \int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) e^{-i q x^{\prime}}
$$

Rewrite the integral as

$$
u_{p}(x, t)=\int_{-\infty}^{\infty} d x^{\prime} u_{p}\left(x^{\prime}, 0\right) \int_{-\infty}^{\infty} d q e^{i q\left(x-x^{\prime}\right)+\sigma_{q} t}
$$

For large time and at fixed distance the integral can be estimated using the stationary phase method: the integral is dominated by the region around the complex wave number $q=q_{s}$ given by the solution of

$$
\frac{d \sigma_{q}}{d q}=0
$$

Estimating the integral from the value of the integrand at the stationary phase point gives

$$
u_{p}(x=0, t) \sim e^{\sigma_{q s} t}
$$

Thus the system will be absolutely unstable for $\operatorname{Re} \sigma_{q_{s}}>0$.

Nonlinear oscillators and waves

Insights from amplitude and phase equations

- Oscillatory instability $q_{c}=0$
- Wave instability $q_{c} \neq 0$

Oscillatory intability: Complex Ginzburg-Landau

1d: $\quad \partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}$

Oscillatory intability: Complex Ginzburg-Landau

1d: $\quad \partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}$

2d: $\quad \partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \nabla_{\perp}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}$

Simulations of the CGL equation

General equation (2d)

$$
\partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \nabla_{\perp}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Case simulated: $c_{1}=0$ (choice of parameter), $c_{0}=-c_{3}$ (for simplicity of plots)

$$
\partial_{T} \bar{A}=\left(1-i c_{3}\right) \bar{A}+\nabla_{\perp}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Simulations...

Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave solutions, but with properties that are strange to those of us brought up on linear waves:

Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave solutions, but with properties that are strange to those of us brought up on linear waves:

- Waves annhilate at shocks rather than superimpose
- Waves disappear at boundaries rather than reflect (not shown)
- Defects: importance as persistent sources
- Spiral defects play a conspicuous role, because they are topologically defined persistent sources.
- Instabilities can lead to spatiotemporal chaos

Wave solutions

$$
\partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \nabla_{\perp}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Travelling wave solutions

$$
\begin{aligned}
\bar{A}_{K}(\mathbf{X}, T) & =a_{K} e^{i\left(\mathbf{K} \cdot \mathbf{X}-\Omega_{K} T\right)} \\
a_{K}^{2}=1-K^{2} \quad \Omega_{K} & =-\left(c_{0}+c_{3}\right)+\left(c_{1}+c_{3}\right) K^{2}
\end{aligned}
$$

Group speed

$$
S=d \Omega_{K} / d K=2\left(c_{1}+c_{3}\right) K
$$

Wave solutions

$$
\partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \nabla_{\perp}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Travelling wave solutions

$$
\begin{aligned}
\bar{A}_{K}(\mathbf{X}, T) & =a_{K} e^{i\left(\mathbf{K} \cdot \mathbf{X}-\Omega_{K} T\right)} \\
a_{K}^{2}=1-K^{2} \quad \Omega_{K} & =-\left(c_{0}+c_{3}\right)+\left(c_{1}+c_{3}\right) K^{2}
\end{aligned}
$$

Group speed

$$
S=d \Omega_{K} / d K=2\left(c_{1}+c_{3}\right) K
$$

Standing waves, based on the addition of waves at \mathbf{K} and $-\mathbf{K}$ can be constructed, but they are unstable towards travelling waves

Stability analysis

$$
\bar{A}_{K}(\mathbf{X}, T)=\left(a_{K}+\delta a\right) e^{i\left(\mathbf{K} \cdot \mathbf{X}-\Omega_{K} T+\delta \theta\right)}
$$

For small, slowly varying phase perturbations

$$
\partial_{T} \delta \theta+S \partial_{X} \delta \theta=D_{\|}(K) \partial_{X}^{2} \delta \theta+D_{\perp}(K) \partial_{Y}^{2} \delta \theta
$$

with longitudinal and transverse diffusion with constants

$$
D_{\|}(K)=\left(1-c_{1} c_{3}\right) \frac{1-\nu K^{2}}{1-K^{2}} \quad D_{\perp}(K)=\left(1-c_{1} c_{3}\right)
$$

with

$$
v=\frac{3-c_{1} c_{3}+2 c_{3}^{2}}{1-c_{1} c_{3}}
$$

- $D_{\|}=0 \Rightarrow$ Benjamin-Feir instability (longitudingal sideband instability analogous to Eckhaus) for

$$
|K| \geq \Lambda_{B}=v^{-1}
$$

leaving a stable band of wave numbers with width a fraction v^{-1} of the existence band.

- For $1-c_{1} c_{3}<0$ all wave states are unstable (Newell)

Stability balloon

Shocks: the nonlinear phase equation
For slow phase variations about spatially uniform oscillations (now keeping all terms up to second order in derivatives)

$$
\partial_{T} \theta=\Omega+\alpha \nabla_{\perp}^{2} \theta-\beta\left(\vec{\nabla}_{\perp} \theta\right)^{2}
$$

with

$$
\begin{aligned}
\alpha & =1-c_{1} c_{3} \\
\beta & =c_{1}+c_{3} \\
\Omega & =c_{0}+c_{3}
\end{aligned}
$$

Cole-Hopf transformation

The Cole-Hopf transformation

$$
\chi(X, Y, T)=\exp [-\beta \theta(X, Y, T) / \alpha]
$$

transforms the nonlinear phase equation into the linear equation for χ

$$
\partial_{T} \chi=\alpha \nabla_{X}^{2} \chi
$$

Plane wave solutions

$$
\chi=\exp \left[\left(\mp \beta K X+\beta^{2} K^{2} T\right) / \alpha\right]
$$

correspond to the phase variations

$$
\theta= \pm K X-\beta K^{2} T
$$

Cole-Hopf transformation (cont)

Since the χ equation is linear, we can superimpose a pair of these solutions

$$
\chi=\exp \left[\left(-\beta K X+\beta^{2} K^{2} T\right) / \alpha\right]+\exp \left[\left(+\beta K X+\beta^{2} K^{2} T\right) / \alpha\right]
$$

The phase is

$$
\theta=-\beta K^{2} T-\frac{\alpha}{\beta} \ln [2 \cosh (\beta K X / \alpha)] .
$$

For large $|X|$ the phase is given by (assuming βK positive)

$$
\theta \rightarrow-K X-\beta K^{2} T-\frac{\alpha}{\beta} \exp (-2 \beta K X / \alpha) \quad \text { for } \quad X \rightarrow+\infty
$$

i.e. left moving waves plus exponentially decaying right moving waves with the decay length $\alpha / 2 \beta K$. Similarly for $X \rightarrow-\infty$ get left moving waves with exponentially small right moving waves.

Shocks

- Shocks are sinks, not sources
- For positive group speed shocks between waves of different freuqency move so that the higher frequency region expands

Spiral Defects

$$
\text { m-armed spiral: } \quad \oint \nabla \theta \cdot \mathbf{d} \mathbf{l}=m \times 2 \pi
$$

$$
\bar{A}=a(R) e^{i\left(K(R) R+m \theta-\Omega_{s} T\right)}
$$

with for $R \rightarrow \infty$

$$
a(R) \rightarrow a_{K} \quad K(R) \rightarrow K_{s} \quad \text { with } \quad \Omega_{K}\left(K_{s}\right)=\Omega_{s}
$$

Uniqueness

A key question is whether there is a family of spirals giving a continuous range of possible frequencies Ω_{s}, or there is a unique spiral structure with a prescribed frequency that selects a particular wave number (or possibly a discrete set of possible spirals).

A perturbative treatments of the CGLE for small $c_{1}+c_{3}$ about the real amplitude equation predicts a unique stable spiral structure, with a wave number K_{s} that varies as (Hagan, 1982)

$$
K_{s} \rightarrow \frac{1.018}{\left|c_{1}+c_{3}\right|} \exp \left[-\frac{\pi}{2\left|c_{1}+c_{3}\right|}\right]
$$

Stability revisited

- Wave number of nonlinear waves determined by spirals
- Only BF stability of waves at K_{s} relevant to stability of periodic state
- Convective instability may not lead to breakdown
- Core instabilities may intervene

Stability lines of the CGLE (unstable states are towards larger positive $c_{1} c_{3}$)

solid line: Newell criterion $c_{1} c_{3}=1$
dotted line: convective Benjamin-Feir instability of spiral-selected wavenumber dashed: absolute instability of spiral selected wavenumber dashed-dotted: absolute instability of whole wavenumber band

Waves in excitable media
Waves in reaction-diffusion systems such as chemicals or heart tissue show similar properties

[From Winfree and Strogatz (1983) and the website of G. Bub, McGill]

Wave instabilities

No single scaling of x, t with ε eliminates the small parameter ε from equation.

Formal multiple-scales derivation

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.
- Introduce new time scale $T_{p}=\varepsilon^{1 / 2} t$ corresponding to the propagation time over the slow length scale, as well as the usual time scale $T=\varepsilon t$ on which spreading and dispersion occur.

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.
- Introduce new time scale $T_{p}=\varepsilon^{1 / 2} t$ corresponding to the propagation time over the slow length scale, as well as the usual time scale $T=\varepsilon t$ on which spreading and dispersion occur.
- Scaled amplitude is now written as a function of X and the two time scales $\bar{A}\left(X, T_{p}, T\right)$.

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.
- Introduce new time scale $T_{p}=\varepsilon^{1 / 2} t$ corresponding to the propagation time over the slow length scale, as well as the usual time scale $T=\varepsilon t$ on which spreading and dispersion occur.
- Scaled amplitude is now written as a function of X and the two time scales $\bar{A}\left(X, T_{p}, T\right)$.
- Lowest order equation is just the propagation

$$
\partial_{T_{p}} \bar{A}+s \partial_{X} \bar{A}=0 .
$$

Solution is that \bar{A} is a function of the reduced coordinate $\xi=X-s T_{p}$, i.e. $\bar{A}\left(X, T_{p}, T\right)=\bar{A}(\xi, T)$. Physically this corresponds to transforming to a frame moving at the group speed s.

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.
- Introduce new time scale $T_{p}=\varepsilon^{1 / 2} t$ corresponding to the propagation time over the slow length scale, as well as the usual time scale $T=\varepsilon t$ on which spreading and dispersion occur.
- Scaled amplitude is now written as a function of X and the two time scales $\bar{A}\left(X, T_{p}, T\right)$.
- Lowest order equation is just the propagation

$$
\partial_{T_{p}} \bar{A}+s \partial_{X} \bar{A}=0
$$

Solution is that \bar{A} is a function of the reduced coordinate $\xi=X-s T_{p}$, i.e. $\bar{A}\left(X, T_{p}, T\right)=\bar{A}(\xi, T)$. Physically this corresponds to transforming to a frame moving at the group speed s.

- At next order dispersion, diffusion, and nonlinear saturation are found in the moving frame

$$
\tau_{0} \partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \xi_{0}^{2} \partial_{\xi}^{2} \bar{A}-g_{0}\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Formal multiple-scales derivation

- Introduce reduced amplitude $\bar{A}=\varepsilon^{-1} A$ and the slow length scale $X=\varepsilon^{1 / 2} x$ as usual.
- Introduce new time scale $T_{p}=\varepsilon^{1 / 2} t$ corresponding to the propagation time over the slow length scale, as well as the usual time scale $T=\varepsilon t$ on which spreading and dispersion occur.
- Scaled amplitude is now written as a function of X and the two time scales $\bar{A}\left(X, T_{p}, T\right)$.
- Lowest order equation is just the propagation

$$
\partial_{T_{p}} \bar{A}+s \partial_{X} \bar{A}=0
$$

Solution is that \bar{A} is a function of the reduced coordinate $\xi=X-s T_{p}$, i.e. $\bar{A}\left(X, T_{p}, T\right)=\bar{A}(\xi, T)$. Physically this corresponds to transforming to a frame moving at the group speed s.

- At next order dispersion, diffusion, and nonlinear saturation are found in the moving frame

$$
\tau_{0} \partial_{T} \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \xi_{0}^{2} \partial_{\xi}^{2} \bar{A}-g_{0}\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

- Then use

$$
\partial_{\xi} \rightarrow \varepsilon^{-1 / 2} \partial_{x}, \quad \partial_{T} \rightarrow \varepsilon^{-1}\left(\partial_{t}+s \partial_{x}\right)
$$

Solutions

$$
\left(\partial_{t}+s \partial_{x}\right) A=\varepsilon\left(1+i c_{0}\right) A+\xi_{0}^{2}\left(1+i c_{1}\right) \partial_{x}^{2} A-g_{0}\left(1-i c_{3}\right)|A|^{2} A
$$

Solutions

$$
\left(\partial_{t}+s \partial_{x}\right) A=\varepsilon\left(1+i c_{0}\right) A+\xi_{0}^{2}\left(1+i c_{1}\right) \partial_{x}^{2} A-g_{0}\left(1-i c_{3}\right)|A|^{2} A
$$

- Single wave in uniform periodic geometry (annulus): transform to moving frame and eliminate $s \partial_{x}$ term

Solutions

$$
\left(\partial_{t}+s \partial_{x}\right) A=\varepsilon\left(1+i c_{0}\right) A+\xi_{0}^{2}\left(1+i c_{1}\right) \partial_{x}^{2} A-g_{0}\left(1-i c_{3}\right)|A|^{2} A
$$

- Single wave in uniform periodic geometry (annulus): transform to moving frame and eliminate $s \partial_{x}$ term
- (MCC 1986) Assume s is small $s=\varepsilon^{1 / 2} S$ and do usual scaling

$$
\left(\partial_{T}+S \partial_{X}\right) \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Also can treat counterpropagating waves for case with $x \rightarrow-x$ symmetry

$$
\begin{aligned}
\left(\partial_{T}+S \partial_{X}\right) \bar{A}_{R} & =\left(1+i c_{0}\right) \bar{A}_{R}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{R}-\left(1-i c_{3}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{R}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{R} \\
\left(\partial_{T}-S \partial_{X}\right) \bar{A}_{L} & =\left(1+i c_{0}\right) \bar{A}_{L}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{L}-\left(1-i c_{3}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{L}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{L}
\end{aligned}
$$

Solutions

$$
\left(\partial_{t}+s \partial_{x}\right) A=\varepsilon\left(1+i c_{0}\right) A+\xi_{0}^{2}\left(1+i c_{1}\right) \partial_{x}^{2} A-g_{0}\left(1-i c_{3}\right)|A|^{2} A
$$

- Single wave in uniform periodic geometry (annulus): transform to moving frame and eliminate $s \partial_{x}$ term
- (MCC 1986) Assume s is small $s=\varepsilon^{1 / 2} S$ and do usual scaling

$$
\left(\partial_{T}+S \partial_{X}\right) \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Also can treat counterpropagating waves for case with $x \rightarrow-x$ symmetry

$$
\begin{aligned}
& \left(\partial_{T}+S \partial_{X}\right) \bar{A}_{R}=\left(1+i c_{0}\right) \bar{A}_{R}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{R}-\left(1-i c_{3}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{R}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{R} \\
& \left(\partial_{T}-S \partial_{X}\right) \bar{A}_{L}=\left(1+i c_{0}\right) \bar{A}_{L}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{L}-\left(1-i c_{3}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{L}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{L}
\end{aligned}
$$

- (Knobloch and de Luca 1990) For $s=O(1)$ and ε small, interaction with inhomogeneity in medium or counterpropagating wave is nonlocal e.g.

$$
\left|\bar{A}_{L}\right|^{2} \bar{A}_{R} \rightarrow\left(L^{-1} \int\left|\bar{A}_{L}\right|^{2} d X\right) \bar{A}_{R}
$$

Solutions

$$
\left(\partial_{t}+s \partial_{x}\right) A=\varepsilon\left(1+i c_{0}\right) A+\xi_{0}^{2}\left(1+i c_{1}\right) \partial_{x}^{2} A-g_{0}\left(1-i c_{3}\right)|A|^{2} A
$$

- Single wave in uniform periodic geometry (annulus): transform to moving frame and eliminate $s \partial_{x}$ term
- (MCC 1986) Assume s is small $s=\varepsilon^{1 / 2} S$ and do usual scaling

$$
\left(\partial_{T}+S \partial_{X}\right) \bar{A}=\left(1+i c_{0}\right) \bar{A}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}-\left(1-i c_{3}\right)|\bar{A}|^{2} \bar{A}
$$

Also can treat counterpropagating waves for case with $x \rightarrow-x$ symmetry

$$
\begin{aligned}
\left(\partial_{T}+S \partial_{X}\right) \bar{A}_{R} & =\left(1+i c_{0}\right) \bar{A}_{R}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{R}-\left(1-i c_{3}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{R}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{R} \\
\left(\partial_{T}-S \partial_{X}\right) \bar{A}_{L} & =\left(1+i c_{0}\right) \bar{A}_{L}+\left(1+i c_{1}\right) \partial_{X}^{2} \bar{A}_{L}-\left(1-i c_{3}\right)\left|\bar{A}_{L}\right|^{2} \bar{A}_{L}-g_{1}\left(1-i c_{2}\right)\left|\bar{A}_{R}\right|^{2} \bar{A}_{L}
\end{aligned}
$$

- (Knobloch and de Luca 1990) For $s=O(1)$ and ε small, interaction with inhomogeneity in medium or counterpropagating wave is nonlocal e.g.

$$
\left|\bar{A}_{L}\right|^{2} \bar{A}_{R} \rightarrow\left(L^{-1} \int\left|\bar{A}_{L}\right|^{2} d X\right) \bar{A}_{R}
$$

- (Martel and Vega 1998) "Hyperbolic" equations without ∂_{X}^{2} terms

Wave instability in 2d

[From La Porta and Surko (1998)]

Other issues for wave instabilities

- Noise sustained structures in convectively unstable domain
- Global modes (e.g. for $\varepsilon(x)$): local absolutely unstable region sustains disturbance in convectively unstable region (Chomaz et al., 1988)
- Complex dynamics of counterpropagating waves in finite geometry (e.g. blinking states)

Conclusions

In this lecture I discussed pattern formation in oscillatory systems. Some of the key concepts were:

- Convective v. Absolute Instability
- Oscillatory Instability
\diamond CGL equation
\diamond Benjamin-Feir instability
\diamond Properties of nonlinear waves
\diamond Importance of spiral sources in 2 d
- Wave Instability
\diamond Importance of propagation term

