Pattern Formation in Spatially Extended Systems

Lecture 2: Symmetry

- Symmetry and stripes
 - ♦ Rotational invariance near threshold
 - ★ Amplitude equation
 - ★ Swift-Hohenberg equation
 - ♦ Translational invariance: the phase equation
 - \star Near threshold
 - ★ Far from threshold
 - ♦ Defects
- Lattice states

Rotational symmetry: linear instability

Back

2

Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

$$\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \left(\partial_x - \frac{i}{2q_c} \partial_y^2 \right)^2 A - g_0 |A|^2 A$$

$$q_c + \mathbf{Q}$$

$$q_c + \mathbf{Q}$$

$$Q_x$$

$$Q_x$$

$$Q_x$$

$$Q_x + \frac{Q_y^2}{2q_c}$$

Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

$$\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \left(\partial_x - \frac{i}{2q_c} \partial_y^2 \right)^2 A - g_0 |A|^2 A$$

$$q_c + Q$$

$$q_c + Q$$

$$Q_x$$

$$Q_y$$

$$q_c = \sqrt{(q_c + Q_x)^2 + Q_y^2} - q_c \approx Q_x + \frac{Q_y^2}{2q_c}$$

Note: the complex amplitude can only describe *small* reorientations of the stripes.

3

Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

$$\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \left(\partial_x - \frac{i}{2q_c} \partial_y^2 \right)^2 A - g_0 |A|^2 A$$

$$q_c + Q$$

$$q_c + Q$$

$$Q_x$$

$$Q_y$$

$$Q_x$$

$$Q_x$$

$$Q_x$$

$$Q_x + \frac{Q_y^2}{2q_c}$$

Note: the complex amplitude can only describe *small* reorientations of the stripes. Isotropic system gives anisotropic scaling: $x = \varepsilon^{-1/2} \xi_0 X$; $y = \varepsilon^{-1/4} (\xi_0/q_c)^{1/2} Y$

Forward

Simple equation for an *order parameter* $\psi(x, y, t)$ that is rotationally invariant in the plane and captures the same physics as the amplitude equation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi - \psi^3$$

Simple equation for an *order parameter* $\psi(x, y, t)$ that is rotationally invariant in the plane and captures the same physics as the amplitude equation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi - \psi^3$$

• originally introduced to investigate *universal* aspects of the transition to stripes

Simple equation for an *order parameter* $\psi(x, y, t)$ that is rotationally invariant in the plane and captures the same physics as the amplitude equation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi - \psi^3$$

- originally introduced to investigate *universal* aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation

Simple equation for an *order parameter* $\psi(x, y, t)$ that is rotationally invariant in the plane and captures the same physics as the amplitude equation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi - \psi^3$$

- originally introduced to investigate *universal* aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation
- no systematic derivation: model rather than controlled approximation

Simple equation for an *order parameter* $\psi(x, y, t)$ that is rotationally invariant in the plane and captures the same physics as the amplitude equation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi - \psi^3$$

- originally introduced to investigate *universal* aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation
- no systematic derivation: model rather than controlled approximation
- equation is relaxational

$$\partial_t \psi = -\frac{\delta V}{\delta \psi}, \qquad V = \iint dx dy \left\{ -\frac{1}{2}r\psi^2 + \frac{1}{2}\left[(\nabla^2 + 1)\psi \right]^2 + \frac{1}{4}\psi^4 \right\}$$

Back

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• To be able to write this as a local equation for the Fourier transform $\psi(x, y, t)$ approximate this by

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - (\xi_0^2/4q_c^2)(q^2 - q_c^2)^2] \psi_{\mathbf{q}}$$

5

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• To be able to write this as a local equation for the Fourier transform $\psi(x, y, t)$ approximate this by

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - (\xi_0^2 / 4q_c^2)(q^2 - q_c^2)^2] \psi_{\mathbf{q}}$$

• In real space this gives

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2/4q_c^2)(\nabla_{\perp}^2 + q_c^2)^2 \psi$$

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• To be able to write this as a local equation for the Fourier transform $\psi(x, y, t)$ approximate this by

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - (\xi_0^2 / 4q_c^2)(q^2 - q_c^2)^2] \psi_{\mathbf{q}}$$

• In real space this gives

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_{\perp}^2 + q_c^2)^2 \psi$$

• Add simplest possible nonlinear saturating term

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_{\perp}^2 + q_c^2)^2 \psi - g_0 \psi^3$$

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• To be able to write this as a local equation for the Fourier transform $\psi(x, y, t)$ approximate this by

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - (\xi_0^2 / 4q_c^2)(q^2 - q_c^2)^2] \psi_{\mathbf{q}}$$

• In real space this gives

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_{\perp}^2 + q_c^2)^2 \psi$$

• Add simplest possible nonlinear saturating term

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_{\perp}^2 + q_c^2)^2 \psi - g_0 \psi^3$$

• Alternatively can think

$$A(x, y)e^{i\mathbf{q}_{c}x} \Rightarrow \psi(x, y)$$

Back

Relaxation to steady state

(from Greenside and Coughran, 1984)

Coarsening in a periodic geometry

(From Elder, Vinals, and Grant 1992)

Qualitatively include other physics:

Qualitatively include other physics:

• break $\psi \rightarrow -\psi$ symmetry

$$\partial_t \psi = \left[r - (\nabla_\perp^2 + 1)^2 \right] \psi + \gamma \psi^2 - \psi^3$$

Qualitatively include other physics:

• break $\psi \rightarrow -\psi$ symmetry

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2 \right] \psi + \gamma \psi^2 - \psi^3$$

- add mean flow \boldsymbol{V}

$$(\partial_t + \mathbf{V} \cdot \nabla)\psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right]\psi - \psi^3$$
$$\nabla^2 \mathbf{V} = g\hat{\mathbf{z}} \cdot \nabla(\nabla^2 \psi) \times \nabla\psi$$

Qualitatively include other physics:

• break $\psi \rightarrow -\psi$ symmetry

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right]\psi + \gamma \psi^2 - \psi^3$$

- add mean flow \boldsymbol{V}

$$(\partial_t + \mathbf{V} \cdot \nabla)\psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right]\psi - \psi^3$$
$$\nabla^2 \mathbf{V} = g\hat{\mathbf{z}} \cdot \nabla(\nabla^2 \psi) \times \nabla \psi$$

• change nonlinearity to make equation non-potential, e.g.

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi + (\nabla \psi)^2 \nabla^2 \psi$$

Qualitatively include other physics:

• break $\psi \rightarrow -\psi$ symmetry

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2 \right] \psi + \gamma \psi^2 - \psi^3$$

- add mean flow \boldsymbol{V}

$$(\partial_t + \mathbf{V} \cdot \nabla)\psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right]\psi - \psi^3$$
$$\nabla^2 \mathbf{V} = g\hat{\mathbf{z}} \cdot \nabla(\nabla^2 \psi) \times \nabla\psi$$

• change nonlinearity to make equation non-potential, e.g.

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2\right] \psi + (\nabla \psi)^2 \nabla^2 \psi$$

• model effects of rotation

$$\partial_t \psi = \left[r - (\nabla_{\perp}^2 + 1)^2 \right] \psi - \psi^3 + g_2 \hat{\mathbf{z}} \cdot \nabla \times \left[(\nabla \psi)^2 \nabla \psi \right] + g_3 \nabla \cdot \left[(\nabla \psi)^2 \nabla \psi \right]$$

Forward

• The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta)$ + harmonics.

- The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta) + \text{harmonics}$.
- A constant phase change is just a spatial shift of the pattern.

- The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta)$ + harmonics.
- A constant phase change is just a spatial shift of the pattern.
- A phase change that varies slowly in space (over a length η^{-1} , say, with η small) will evolve slowly in time.

Back

- The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta) + \text{harmonics}$.
- A constant phase change is just a spatial shift of the pattern.
- A phase change that varies slowly in space (over a length η^{-1} , say, with η small) will evolve slowly in time.
- For small enough η the phase variation is slow compared with the relaxation of other degrees of freedom such as the magnitude or the internal structure, and a particularly simple description is obtained.

- The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta)$ + harmonics.
- A constant phase change is just a spatial shift of the pattern.
- A phase change that varies slowly in space (over a length η^{-1} , say, with η small) will evolve slowly in time.
- For small enough η the phase variation is slow compared with the relaxation of other degrees of freedom such as the magnitude or the internal structure, and a particularly simple description is obtained.
- The phase variable describes the symmetry properties of the system: the connection between symmetry and slow dynamics is known as Goldstone's theorem.

- The local structure of a stripe pattern is $\propto \cos(\mathbf{q} \cdot \mathbf{x} + \theta) + \text{harmonics}$.
- A constant phase change is just a spatial shift of the pattern.
- A phase change that varies slowly in space (over a length η^{-1} , say, with η small) will evolve slowly in time.
- For small enough η the phase variation is slow compared with the relaxation of other degrees of freedom such as the magnitude or the internal structure, and a particularly simple description is obtained.
- The phase variable describes the symmetry properties of the system: the connection between symmetry and slow dynamics is known as Goldstone's theorem.
- Near threshold θ is simply the phase of the complex amplitude, and an equation for the phase dynamics can be derived from the amplitude equation for η « ε (Pomeau and Manneville, 1979)

Equation for small phase distortions near threshold

For a phase variation $\theta = kx + \delta\theta$

$$\partial_t \delta \theta = D_{\parallel} \partial_x^2 \delta \theta + D_{\perp} \partial_y^2 \delta \theta$$

with diffusion constants for the state with wave number $q = q_c + k$

$$D_{\parallel} = (\xi_0^2 \tau_0^{-1}) \frac{\varepsilon - 3\xi_0^2 k^2}{\varepsilon - \xi_0^2 k^2}$$
$$D_{\perp} = (\xi_0^2 \tau_0^{-1}) \frac{k}{q_c}.$$

Equation for small phase distortions near threshold

For a phase variation $\theta = kx + \delta\theta$

$$\partial_t \delta \theta = D_{\parallel} \partial_x^2 \delta \theta + D_{\perp} \partial_y^2 \delta \theta$$

with diffusion constants for the state with wave number $q = q_c + k$

$$D_{\parallel} = (\xi_0^2 \tau_0^{-1}) \frac{\varepsilon - 3\xi_0^2 k^2}{\varepsilon - \xi_0^2 k^2}$$
$$D_{\perp} = (\xi_0^2 \tau_0^{-1}) \frac{k}{q_c}.$$

A negative diffusion constant leads to exponentially growing solutions, i.e. the state with wave number $q_c + k$ is unstable to long wavelength phase perturbations for

$$|\xi_0 k| > \varepsilon^{1/2}/\sqrt{3}$$
 longitudinal (Eckhaus)
 $k < 0$ transverse (ZigZag)

Back

Stability balloon near threshold

11

Back

Phase dynamics away from threshold (MCC and Newell, 1984) Away from threshold the other degrees of freedom relax even more quickly, and so idea of a slow phase equation remains.

- pattern is given by the lines of constant phase θ of a local stripe solution;
- wave vector **q** is the gradient of this phase $\mathbf{q} = \nabla \theta$.

12

$$\mathbf{u} = \mathbf{u}_q(\theta, z, t) \qquad \theta = qx$$

13

$$\mathbf{u} = \mathbf{u}_q(\theta, z, t) \qquad \theta = qx$$

For slow spatial variations of the wave vector over a length scale η^{-1} this leads to the ansatz for a pattern of slowly varying stripes

$$\mathbf{u} \approx \mathbf{u}_q(\theta, z, t) + O(\eta), \qquad \mathbf{q} = \nabla \theta(\mathbf{x})$$

where $\mathbf{q} = \mathbf{q}(\eta \mathbf{x})$ so that $\nabla \mathbf{q} = O(\eta)$.

$$\mathbf{u} = \mathbf{u}_q(\theta, z, t) \qquad \theta = qx$$

For slow spatial variations of the wave vector over a length scale η^{-1} this leads to the ansatz for a pattern of slowly varying stripes

$$\mathbf{u} \approx \mathbf{u}_q(\theta, z, t) + O(\eta), \qquad \mathbf{q} = \nabla \theta(\mathbf{x})$$

where $\mathbf{q} = \mathbf{q}(\eta \mathbf{x})$ so that $\nabla \mathbf{q} = O(\eta)$.

We can develop an equation for the phase variation by expanding in η

 $\tau(q)\partial_t\theta = -\nabla \cdot [\mathbf{q}B(q)]$

$$\mathbf{u} = \mathbf{u}_q(\theta, z, t) \qquad \theta = qx$$

For slow spatial variations of the wave vector over a length scale η^{-1} this leads to the ansatz for a pattern of slowly varying stripes

$$\mathbf{u} \approx \mathbf{u}_q(\theta, z, t) + O(\eta), \qquad \mathbf{q} = \nabla \theta(\mathbf{x})$$

where $\mathbf{q} = \mathbf{q}(\eta \mathbf{x})$ so that $\nabla \mathbf{q} = O(\eta)$.

We can develop an equation for the phase variation by expanding in η

$$\tau(q)\partial_t\theta = -\nabla \cdot [\mathbf{q}B(q)]$$

The form of the equation derives from symmetry and smoothness arguments, and expanding up to second order derivatives of the phase. The parameters $\tau(q)$, B(q) are system dependent functions depending on the equations of motion, \mathbf{u}_q , etc.

Small deviations from stripes

$$\tau(q)\partial_t\theta = -\nabla \cdot [\mathbf{q}B(q)]$$

For $\theta = qx + \delta\theta$ this reduces to

$$\partial_t \delta \theta = D_{\parallel}(q) \partial_x^2 \delta \theta + D_{\perp}(q) \partial_y^2 \delta \theta$$

with

$$D_{\perp}(q) = -\frac{B(q)}{\tau(q)}$$
$$D_{\parallel}(q) = -\frac{1}{\tau(q)} \frac{d(q B(q))}{dq}$$

Small deviations from stripes

$$\tau(q)\partial_t\theta = -\nabla \cdot [\mathbf{q}B(q)]$$

For $\theta = qx + \delta\theta$ this reduces to

$$\partial_t \delta \theta = D_{\parallel}(q) \partial_x^2 \delta \theta + D_{\perp}(q) \partial_y^2 \delta \theta$$

with

$$D_{\perp}(q) = -\frac{B(q)}{\tau(q)}$$
$$D_{\parallel}(q) = -\frac{1}{\tau(q)} \frac{d(q B(q))}{dq}$$

A negative diffusion constant signals instability:

- [qB(q)]' < 0: Eckhaus instability
- B(q) < 0: zigzag instability

Phase parameters for the Swift-Hohenberg equation

Application: wave number selection by a focus

i.e. $q \rightarrow q_f$ with $B(q_f) = 0$, the wave number of the zigzag instability!

Forward

Defects

Focus/target defect

Wavevector winding number = 1

Back

Disclinations

Winding numbers: (a) $\frac{1}{2}$; (b) 1; (c) -1

Dislocation

Phase winding number
$$=\frac{1}{2\pi}\oint \nabla\theta \cdot \mathbf{dl} = 1$$

Dislocation climb

Smooth motion through symmetry related states

$$v_d \approx \beta(q-q_d)$$

Dislocation glide

Motion involves stripe pinch off, and is pinned to the periodic structure

Spiral Dynamics: experiments of Plapp et al. (1998)

Dislocation motion

$$v_d = \omega r_d = \beta(q(r_d) - q_d) \tag{*}$$

Spiral motion from phase equation

$$\tau_q \partial_t \theta = -\nabla \cdot [\mathbf{q} B(q)]$$
$$\omega = -\tau_q^{-1} \frac{1}{r} \frac{\partial}{\partial r} (rq B(q))$$

Dislocation motion

$$v_d = \omega r_d = \beta(q(r_d) - q_d) \tag{*}$$

Spiral motion from phase equation

$$\tau_q \partial_t \theta = -\nabla \cdot [\mathbf{q} B(q)]$$
$$\omega = -\tau_q^{-1} \frac{1}{r} \frac{\partial}{\partial r} (rq B(q))$$

Approximating $\tau_q \approx \overline{\tau}$ and $\overline{\tau}^{-1}q B(q) = \alpha(q - q_f)$ gives

$$q(r) - q_f = -\omega r/2\alpha + Cr^{-1}.$$

Evaluating at r_d and combining with Eq. (*) gives ω .

Dislocation motion

$$v_d = \omega r_d = \beta(q(r_d) - q_d) \tag{*}$$

Spiral motion from phase equation

$$\tau_q \partial_t \theta = -\nabla \cdot [\mathbf{q}B(q)]$$
$$\omega = -\tau_q^{-1} \frac{1}{r} \frac{\partial}{\partial r} (rqB(q))$$

Approximating $\tau_q \approx \overline{\tau}$ and $\overline{\tau}^{-1}q B(q) = \alpha(q - q_f)$ gives

$$q(r) - q_f = -\omega r/2\alpha + Cr^{-1}.$$

Evaluating at r_d and combining with Eq. (*) gives ω . Is this relevant to spiral defect chaos?

Lattice States

[From Bodenschatz et al., Phys. Rev. Lett. 67, 3078 (1991)]

Stripe state

Square state

Rectangular (orthorhombic) state

Hexagonal state

29

Supersquare state

Superhexagon state

Quasicrystal state

Amplitude equation description

Introduce amplitudes A_i for each "component" set of stripes

$$\delta \mathbf{u}(\mathbf{x}_{\perp}, z, t) \approx \sum_{i} A_{i}(\mathbf{x}_{\perp}, t) \times \left[\mathbf{u}_{q_{c}\hat{\mathbf{q}}_{i}}(z) e^{iq_{c}\hat{\mathbf{q}}_{i} \cdot \mathbf{x}_{\perp}} \right] + c.c.$$

For no space dependence

$$\tau_0 \partial_t A_i = \varepsilon A_i - g_0 \left[|A_i|^2 + \sum_{j \neq i} G(\theta_{ij}) |A_j|^2 \right] A_i$$

e.g. for *squares* would have $A_1 = A_2$ and $\theta_{12} = \pi/2$ so need to know $G(\pi/2)$.

Find stationary solutions and test for stability.

Hexagons without $u \rightarrow -u$ symmetry

Special case because $\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 = 0$ leading to "3 mode resonance" terms

$$\tau_0 \partial_t A_1 = \varepsilon A_1 + \gamma A_2^* A_3^* - g_0 \left[|A_1|^2 + \sum_{j \neq i} G(\pi/3) \left(|A_2|^2 + |A_3|^2 \right) \right] A_1$$

Conclusions

In the second lecture I have described the implications of symmetry on the theoretical methods for stationary patterns:

- amplitude equation in 2d
- Swift-Hohenberg equation and generalizations
- phase equation

The methods have various advantages and disadvantages, and have given great insights, but none is a complete approach even near threshold.

Conclusions

In the second lecture I have described the implications of symmetry on the theoretical methods for stationary patterns:

- amplitude equation in 2d
- Swift-Hohenberg equation and generalizations
- phase equation

The methods have various advantages and disadvantages, and have given great insights, but none is a complete approach even near threshold.

I then briefly discussed:

- topological defects
- competition between different planforms (stripes, lattices, quasicrystals).

35

Conclusions

In the second lecture I have described the implications of symmetry on the theoretical methods for stationary patterns:

- amplitude equation in 2d
- Swift-Hohenberg equation and generalizations
- phase equation

The methods have various advantages and disadvantages, and have given great insights, but none is a complete approach even near threshold.

I then briefly discussed:

- topological defects
- competition between different planforms (stripes, lattices, quasicrystals).

Next lecture: oscillatory instabilities.