Pattern Formation in Spatially Extended Systems

Lecture 1

- some pictures
- linear instability
- nonlinear saturation
- stability balloon
- amplitude equation

Pattern formation

The formation of spatial structure in systems that are:

Pattern formation

The formation of spatial structure in systems that are:

- driven...

Pattern formation

The formation of spatial structure in systems that are:

- driven...
- dissipative...

Pattern formation

The formation of spatial structure in systems that are:

- driven...
- dissipative...
- therefore, nonequilibrium...

Pattern formation

The formation of spatial structure in systems that are:

- driven...
- dissipative...
- therefore, nonequilibrium...
- characterized by energy injection, transport, and dissipation...

Pattern formation

The formation of spatial structure in systems that are:

- driven...
- dissipative...
- therefore, nonequilibrium...
- characterized by energy injection, transport, and dissipation...
- and so cannot be described in terms of the minimization of a (free) energy

Microwave background from a 30° by 100° portion of the sky showing fluctuations of about $10^{-4} \mathrm{~K}$. (Boomerang project).

Angular power spectrum of Boomerang data.

Wind-swept sand at the Kelso dune field of the Mojave desert in California. The ripple spacing is about 10 cm .

Photomicrographs of snowflakes by Wilson Bentley.

Starving slime mold colony in the early stages of aggregation. The light regions correspond to cells that are moving with a speed of about $400 \mu \mathrm{~min}^{-1}$ towards higher secretant concentrations (chemotaxis). [Figure from Florian Siegert].

From the website of G. Ahlers

Vertically shaken layer of fluid [From Kudrolli, Pier, and Gollub]

Vertically shaken layer of tiny balls (layer depth 1.2 mm , ball diameter $0.15-0.18 \mathrm{~mm}$) [From Melo, Umbanhowar, and Swinney]

Pattern formation occurs in a spatially extended system when the growing perturbation about the spatially uniform state has spatial structure (a mode with nonzero wave vector).

Dynamical Equations

I shall confine my discussion to systems far from equilibrium that are macroscopic and continuous.

These are defined by dynamical equations that

- Reflect the laws of thermodynamics and the return to (local) equilibrium
- Are the familiar phenomenological equations

Leads us to the study of nonlinear, deterministic, PDEs

Equations for Convection (Boussinesq)

$$
\begin{aligned}
\sigma^{-1}\left(\partial_{t}+\mathbf{v} \cdot \nabla\right) \mathbf{v} & =-\nabla p+R T \hat{\mathbf{z}}+\nabla^{2} \mathbf{v} \\
\left(\partial_{t}+\mathbf{v} \cdot \nabla\right) T & =\nabla^{2} T \\
\nabla \cdot \mathbf{v} & =0
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
& \mathbf{v}=0 \quad \text { at } \quad z=0,1 \\
& T=\left\{\begin{array}{lll}
1 & \text { at } & z=0 \\
0 & \text { at } & z=1
\end{array}\right.
\end{aligned}
$$

Equations for Convection (Boussinesq)

$$
\begin{aligned}
\sigma^{-1}\left(\partial_{t}+\mathbf{v} \cdot \nabla\right) \mathbf{v} & =-\nabla p+R T \hat{\mathbf{z}}+\nabla^{2} \mathbf{v} \\
\left(\partial_{t}+\mathbf{v} \cdot \nabla\right) T & =\nabla^{2} T \\
\nabla \cdot \mathbf{v} & =0
\end{aligned}
$$

Boundary conditions

$$
\begin{gathered}
\mathbf{v}=0 \quad \text { at } \quad z=0,1 \\
T=\left\{\begin{array}{lll}
1 & \text { at } & z=0 \\
0 & \text { at } & z=1
\end{array}\right.
\end{gathered}
$$

Conducting (no pattern) solution: $\mathbf{v}=0, T=1-z$

A first approach to patterns: linear stability analysis

1. Find equations of motion of the physical variables $\mathbf{u}(x, y, z, t)$
2. Find the uniform base solution $\mathbf{u}_{b}(z)$ independent of x, y, t
3. Focus on deviation from \mathbf{u}_{b}

$$
\mathbf{u}(\mathbf{x}, t)=\mathbf{u}_{b}(z)+\delta \mathbf{u}(\mathbf{x}, t)
$$

4. Linearize equations about \mathbf{u}_{b}, i.e. substitute into equations of part (1) and keep all terms with just one power of $\delta \mathbf{u}$. This will give an equation of the form

$$
\partial_{t} \delta \mathbf{u}=\hat{\mathbf{L}} \delta \mathbf{u}
$$

where $\hat{\mathbf{L}}$ may involve \mathbf{u}_{b} and include spatial derivatives acting on $\delta \mathbf{u}$
5. Since $\hat{\mathbf{L}}$ is independent of x, y, t we can find solutions

$$
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)=\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}
$$

Re $\sigma_{\mathbf{q}}$ gives exponential growth or decay

$$
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)=\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}
$$

$\operatorname{Re} \sigma_{\mathbf{q}}$ gives exponential growth or decay
$\operatorname{Im} \sigma_{\mathbf{q}}=-\omega_{\mathbf{q}}$ gives oscillations, waves $e^{i\left(\mathbf{q} \mathbf{x}_{\perp}-\omega_{\mathbf{q}} t\right)}$

$$
\begin{array}{rll}
\operatorname{Im} \sigma_{\mathbf{q}}=0 & \Longrightarrow & \text { Stationary instability } \\
\operatorname{Im} \sigma_{\mathbf{q}} \neq 0 & \Longrightarrow & \text { Oscillatory instability }
\end{array}
$$

$$
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)=\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}
$$

$\operatorname{Re} \sigma_{\mathbf{q}}$ gives exponential growth or decay
$\operatorname{Im} \sigma_{\mathbf{q}}=-\omega_{\mathbf{q}}$ gives oscillations, waves $e^{i\left(\mathbf{q} \cdot \mathbf{x}_{\perp}-\omega_{\mathbf{q}} t\right)}$

$$
\begin{array}{rll}
\operatorname{Im} \sigma_{\mathbf{q}}=0 & \Longrightarrow & \text { Stationary instability } \\
\operatorname{Im} \sigma_{\mathbf{q}} \neq 0 & \Longrightarrow & \text { Oscillatory instability }
\end{array}
$$

For this lecture I will look at the case of stationary instability

Rayleigh's calculation

$T+\Delta T$

$$
\begin{aligned}
\delta T_{q}(x, z) & =\left(q^{2}+\pi^{2}\right)^{2} \cos (\pi z) \cos (q x) \\
\delta w_{q}(x, z) & =q^{2} \cos (\pi z) \cos (q x) \\
\delta u_{q}(x, z) & =-i \pi q \sin (\pi z) \sin (q x)
\end{aligned}
$$

Rayleigh's calculation

$$
\left(\sigma^{-1} \sigma_{q}+\pi^{2}+q^{2}\right)\left(\sigma_{q}+\pi^{2}+q^{2}\right)-R q^{2} /\left(\pi^{2}+q^{2}\right)=0
$$

Parabolic approximation near maximum

For R near R_{c} and q near q_{c}

$$
\operatorname{Re} \sigma_{\mathbf{q}}=\tau_{0}^{-1}\left[\varepsilon-\xi_{0}^{2}\left(q-q_{c}\right)^{2}\right] \quad \text { with } \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Parabolic approximation near maximum

For R near R_{c} and q near q_{c}

$$
\operatorname{Re} \sigma_{\mathbf{q}}=\tau_{0}^{-1}\left[\varepsilon-\xi_{0}^{2}\left(q-q_{c}\right)^{2}\right] \quad \text { with } \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Neutral stability curve

Setting $\operatorname{Re} \sigma_{\mathbf{q}}=0$ defines the neutral stability curve $R=R_{c}(q)$
Rayleigh : $\quad R_{c}(q)=\frac{\left(q^{2}+\pi^{2}\right)^{3}}{q^{2}} \Rightarrow \quad R_{c}=\frac{27 \pi^{4}}{4}, q_{c}=\frac{\pi}{\sqrt{2}}$

Linear stability theory is often a useful first step in understanding pattern formation:

- Often is quite easy to do either analytically or numerically
- Displays the important physical processes
- Gives the length scale of the pattern formation $1 / q_{c}$

Linear stability theory is often a useful first step in understanding pattern formation:

- Often is quite easy to do either analytically or numerically
- Displays the important physical processes
- Gives the length scale of the pattern formation $1 / q_{c}$

But:

- Leaves us with unphysical exponentially growing solutions

Nonlinearity

Tools for the Nonlinear Problem

Amplitude Equations

Systematic approach for describing weakly nonlinear solutions near onset

Linear onset solution

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}_{-}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned} \times \begin{aligned}
& {\left[\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{i}_{c} \cdot \mathbf{x}_{\perp}}\right]+c . c .} \\
& \\
& \text { Onset solution }
\end{aligned}
$$

Linear onset solution

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned} \times \begin{aligned}
& {\left[\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+c . c .} \\
& \\
& \text { Onset solution }
\end{aligned}
$$

Weakly nonlinear, slowly modulated, solution

$$
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \quad A\left(\mathbf{x}_{\perp}, t\right) \quad \times\left[\mathbf{u}_{\mathbf{q}_{c}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+c . c .
$$

Complex amplitude Onset solution

Linear onset solution

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned} \times \begin{aligned}
& {\left[\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+c . c .} \\
& \\
& \text { Onset solution }
\end{aligned}
$$

Weakly nonlinear, slowly modulated, solution

$$
\begin{aligned}
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \approx & \begin{array}{c}
A\left(\mathbf{x}_{\perp}, t\right) \\
\text { Complex amplitude }
\end{array}
\end{aligned} \times \underset{ }{\left[\mathbf{u}_{\mathbf{q}_{c}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+c . c .} \begin{aligned}
& \text { Onset solution }
\end{aligned}
$$

Substituting into the dynamical equations gives the amplitude equation, which in $1 \mathrm{~d}\left[\mathbf{q}_{c}=q_{c} \hat{\mathbf{x}}, A=A(x, t)\right]$ is

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Pictorially

A convection pattern that varies gradually in space

$$
\begin{gathered}
u \propto \operatorname{Re}\left[A(x) e^{i q_{c} x}\right] \\
q_{c}=3.117 ; \quad A(x)=1+0.1 \cos (0.2 x)
\end{gathered}
$$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
A(x, y, t)=a(x, y, t) e^{i \theta(x, y, t)}
$$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!
- x-gradient $\partial_{x} \theta$ gives change of wave number $q=q_{c}+\partial_{x} \theta$ $A=a e^{i k x}$ corresponds to $q=q_{c}+k$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!
- x-gradient $\partial_{x} \theta$ gives change of wave number $q=q_{c}+\partial_{x} \theta$ $A=a e^{i k x}$ corresponds to $q=q_{c}+k$
- y-gradient $\partial_{y} \theta$ gives rotation of wave vector through angle $\partial_{y} \theta / q_{c}$ (plus $O\left[\left(\partial_{y} \theta\right)^{2}\right]$ change in wave number)

The amplitude equation describes

$$
\tau_{0} \partial_{t} A=\underset{\text { growth }}{\varepsilon A}+\underset{\text { dispersion/diffusion }}{\xi_{0}^{2} \partial_{x}^{2} A} \quad-\underset{\text { saturation }}{g_{0}|A|^{2} A}
$$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{C}$
- system specific constants τ_{0}, ξ_{0}, g_{0}

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$
- system specific constants τ_{0}, ξ_{0}, g_{0}
$\diamond \tau_{0}, \xi_{0}$ fixed by matching to linear growth rate $A=a e^{i \mathbf{k} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}$ gives pattern at $\left.\mathbf{q}=\mathbf{q}_{c} \hat{x}+\mathbf{k}\right)$

$$
\sigma_{\mathbf{q}}=\tau_{0}{ }^{-1}\left[\varepsilon-\xi_{0}{ }^{2}\left(q-q_{c}\right)^{2}\right]
$$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$
- system specific constants τ_{0}, ξ_{0}, g_{0}
$\diamond \tau_{0}, \xi_{0}$ fixed by matching to linear growth rate $A=a e^{i \mathbf{k} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}$ gives pattern at $\left.\mathbf{q}=\mathbf{q}_{c} \hat{x}+\mathbf{k}\right)$

$$
\sigma_{\mathbf{q}}=\tau_{0}{ }^{-1}\left[\varepsilon-\xi_{0}^{2}\left(q-q_{c}\right)^{2}\right]
$$

$\diamond g_{0}$ by calculating nonlinear state at small ε and $q=q_{c}$.

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

This reduces the amplitude equation to a universal form

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

This reduces the amplitude equation to a universal form

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A}
$$

Since solutions to this equation will develop on scales $X, Y, T, \bar{A}=O(1)$ this gives us scaling results for the physical length scales.

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Symmetry arguments: equation invariant under:
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A\left(\mathbf{x}_{\perp}\right) e^{i \Delta}$ with Δ a constant, corresponding to a physical translation;
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A^{*}\left(-\mathbf{x}_{\perp}\right)$, corresponding to inversion of the horizontal coordinates (parity symmetry);

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Symmetry arguments: equation invariant under:
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A\left(\mathbf{x}_{\perp}\right) e^{i \Delta}$ with Δ a constant, corresponding to a physical translation;
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A^{*}\left(-\mathbf{x}_{\perp}\right)$, corresponding to inversion of the horizontal coordinates (parity symmetry);
- Multiple scales perturbation theory (Newell and Whitehead, Segel 1969)

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Symmetry arguments: equation invariant under:
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A\left(\mathbf{x}_{\perp}\right) e^{i \Delta}$ with Δ a constant, corresponding to a physical translation;
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A^{*}\left(-\mathbf{x}_{\perp}\right)$, corresponding to inversion of the horizontal coordinates (parity symmetry);
- Multiple scales perturbation theory (Newell and Whitehead, Segel 1969)
- Mode projection (MCC 1980)

Amplitude Equation $=$ Ginzburg Landau equation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

Familiar from other branches of physics:

- Good: take intuition from there
- Bad: no really new effects
e.g. equation is relaxational (potential, Lyapunov)

$$
\tau_{0} \partial_{t} A=-\frac{\delta V}{\delta A^{*}}, \quad V=\int d x\left[-\varepsilon|A|^{2}+\frac{1}{2} g_{0}|A|^{4}+\xi_{0}^{2}\left|\partial_{x} A\right|^{2}\right]
$$

This leads to

$$
\frac{d V}{d t}=-\tau_{0}^{-1} \int d x\left|\partial_{t} A\right|^{2} \leq 0
$$

and dynamics runs "down hill" to a minimum of V - no chaos!

Example: one dimensional geometry with boundaries that suppress the pattern (e.g. rigid walls in a convection system)
First consider a single wall

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A} \quad \bar{A}(0)=0
$$

$$
\begin{gathered}
\bar{A}=e^{i \theta} \tanh (X / \sqrt{2}) \\
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi) \quad \text { with } \quad \xi=\sqrt{2} \varepsilon^{-1 / 2} \xi_{0}
\end{gathered}
$$

$$
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi)
$$

- arbitrary position of rolls
- asymptotic wave number is $k=0$, giving $q=q_{c}$: no band of existence

$$
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi)
$$

- arbitrary position of rolls
- asymptotic wave number is $k=0$, giving $q=q_{c}$: no band of existence

Extended amplitude equation to next order in ε (MCC, Daniels, Hohenberg, and Siggia 1980) shows

- discrete set of roll positions
- solutions restricted to a narrow $O\left(\varepsilon^{1}\right)$ wave number band with wave number far from the wall

$$
\alpha_{-} \varepsilon<q-q_{c}<\alpha_{+} \varepsilon
$$

V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)

From Morris et al. (1991) and Mao et al. (1996)

Two sidewalls

Conclusions

In today's lectures I introduced some of the basic ideas of pattern formation:

- linear instability at nonzero wave number;
- nonlinear saturation;
- stability balloons.

I then introduced the amplitude equation which is the simplest theoretical approach that captures the key effects in pattern formation (growth, saturation, and dispersion).

I focussed on the equation in one dimension, and on a phenomenological derivation. You can find more technical aspects in the supplementary notes.

Next lecture: the role of continuous symmetries - rotation and translation

