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Pattern Formation in Spatially Extended Systems
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Lecture 1

• linear instability

• nonlinear saturation

• stability balloon

• amplitude equation
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Pattern formation occurs in a spatially extended

system when the growing perturbation about the

spatially uniform state has spatial structure (a mode

with nonzero wave vector).
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A first approach to patterns: linear stability analysis

1. Find equations of motion of the physical variablesu(x, y, z, t)

2. Find theuniformbase solutionub(z) independentof x, y, t

3. Focus on deviation fromub

u(x, t) = ub(z)+ δu(x, t)
4. Linearize equations aboutub, i.e. substitute into equations of part (1)

and keep all terms with just one power ofδu. This will give an

equation of the form

∂tδu = L̂ δu

whereL̂ may involveub and include spatial derivatives acting onδu

5. SinceL̂ is independent ofx, y, t we can find solutions

δuq(x⊥, z, t) = uq(z) e
iq·x⊥ eσqt
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x

u

Exponential growth:  exp[σqt]

λ=2π/q

δuq(x⊥, z, t) = uq(z) e
iq·x⊥ eσqt
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x

u

Exponential growth:  exp[σqt]

λ=2π/q

δuq(x⊥, z, t) = uq(z) e
iq·x⊥ eσqt

Re σq gives exponential growth or decay
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x

u

Exponential growth:  exp[σqt]

λ=2π/q

δuq(x⊥, z, t) = uq(z) e
iq·x⊥ eσqt

Re σq gives exponential growth or decay

Im σq = −ωq gives oscillations, wavesei(q·x⊥−ωqt)

Im σq = 0 H⇒ Stationary instability

Im σq 6= 0 H⇒ Oscillatory instability
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x

u

Exponential growth:  exp[σqt]

λ=2π/q

δuq(x⊥, z, t) = uq(z) e
iq·x⊥ eσqt

Re σq gives exponential growth or decay

Im σq = −ωq gives oscillations, wavesei(q·x⊥−ωqt)

Im σq = 0 H⇒ Stationary instability

Im σq 6= 0 H⇒ Oscillatory instability

For this lecture I will look at the case ofstationary instability
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Rayleigh’s calculation

1 2 3 4 5

q

σq

5

-5

-10

0

R=1.5Rc

R=0.5Rc

R=R c

(σ−1σq + π2+ q2)(σq + π2+ q2)− Rq2/(π2+ q2) = 0
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Parabolic approximation near maximum

Re σq

q

R < Rc

R = Rc

R > Rc

qc

ForR nearRc andq nearqc

Re σq = τ0−1[ε − ξ02 (q − qc)2] with ε = R − Rc
Rc
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Neutral stability curve

qqc

R

Rc

Re σq > 0

Re σq < 0

Setting Reσq = 0 defines the neutral stability curveR = Rc(q)

Rayleigh : Rc(q) = (q2+ π2)3

q2
⇒ Rc = 27π4

4
, qc = π√

2
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Linear stability theoryis often a useful first step in understanding pattern

formation:

• Often is quite easy to do either analytically or numerically

• Displays the important physical processes

• Gives the length scale of the pattern formation 1/qc
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Linear stability theoryis often a useful first step in understanding pattern

formation:

• Often is quite easy to do either analytically or numerically

• Displays the important physical processes

• Gives the length scale of the pattern formation 1/qc

But:

• Leaves us with unphysical exponentially growing solutions
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Nonlinearity
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Re σq > 0

Re σq < 0

Rc(q) or
qN(R)
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qqc

R

q = n 2π/l

Rc

R

δu

Forward Bifurcation



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 1 19

qqc

R

q = n 2π/l

Rc

R

δu

Backward Bifurcation



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 1 20

qqc

R

nonl inear states

Rc



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 1 21
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Patterns exist.
Are they stable?

No patterns
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Tools for the Nonlinear Problem



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 1 29

Amplitude Equations
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Systematic approach for describing weakly nonlinear solutions near onset

qqc
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Re σq < 0
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Linear onset solution

δuq(x⊥, z, t) =
[
a0e

i(q−qc)·x⊥ eReσqt
] × [

uq(z) e
iqc·x⊥] + c.c.

Small terms near onset Onset solution
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Linear onset solution

δuq(x⊥, z, t) =
[
a0e

i(q−qc)·x⊥ eReσqt
] × [

uq(z) e
iqc·x⊥] + c.c.

Small terms near onset Onset solution

Weakly nonlinear, slowly modulated, solution

δu(x⊥, z, t) ≈ A(x⊥, t) × [
uqc (z) e

iqc·x⊥] + c.c.

Complex amplitude Onset solution
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Linear onset solution

δuq(x⊥, z, t) =
[
a0e

i(q−qc)·x⊥ eReσqt
] × [

uq(z) e
iqc·x⊥] + c.c.

Small terms near onset Onset solution

Weakly nonlinear, slowly modulated, solution

δu(x⊥, z, t) ≈ A(x⊥, t) × [
uqc (z) e

iqc·x⊥] + c.c.

Complex amplitude Onset solution

Substituting into the dynamical equations gives the amplitude equation,

which in 1d [qc = qcx̂, A = A(x, t)] is

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc
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Pictorially

A convection pattern that variesgraduallyin space

u

x

5040302010

u ∝ Re[A(x)eiqcx ]

qc = 3.117; A(x) = 1+ 0.1 cos(0.2x)
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.

• magnitudea = |A| gives strength of disturbance
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.

• magnitudea = |A| gives strength of disturbance

• phaseδθ gives shift of pattern (byδx = δθ/qc)
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.

• magnitudea = |A| gives strength of disturbance

• phaseδθ gives shift of pattern (byδx = δθ/qc)— symmetry!
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.

• magnitudea = |A| gives strength of disturbance

• phaseδθ gives shift of pattern (byδx = δθ/qc)— symmetry!

• x-gradient∂xθ gives change of wave numberq = qc + ∂xθ
A = aeikx corresponds toq = qc + k
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)eiθ(x,y,t)
δu(x⊥, z, t) = aeiθ × eiqcxuqc (z) + c.c.

• magnitudea = |A| gives strength of disturbance

• phaseδθ gives shift of pattern (byδx = δθ/qc)— symmetry!

• x-gradient∂xθ gives change of wave numberq = qc + ∂xθ
A = aeikx corresponds toq = qc + k

• y-gradient∂yθ gives rotation of wave vector through angle∂yθ/qc
(plusO[(∂yθ)2] change in wave number)
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The amplitude equation describes

τ0∂tA = εA + ξ2
0∂

2
xA − g0 |A|2A

growth dispersion/diffusion saturation
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Parameters

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A,

• control parameterε = (R − Rc)/Rc
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Parameters

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A,

• control parameterε = (R − Rc)/Rc
• system specific constantsτ0, ξ0, g0
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Parameters

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A,

• control parameterε = (R − Rc)/Rc
• system specific constantsτ0, ξ0, g0

� τ0, ξ0 fixed by matching to linear growth rate

A = a eik·x⊥eσqt gives pattern atq = qcx̂ + k)

σq = τ0−1[ε − ξ02(q − qc)2]
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Parameters

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A,

• control parameterε = (R − Rc)/Rc
• system specific constantsτ0, ξ0, g0

� τ0, ξ0 fixed by matching to linear growth rate

A = a eik·x⊥eσqt gives pattern atq = qcx̂ + k)

σq = τ0−1[ε − ξ02(q − qc)2]

� g0 by calculating nonlinear state at smallε andq = qc.
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Scaling

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc
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Scaling

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc

Introduce scaled variables

x = ε−1/2ξ0 X

t = ε−1τ0 T

A = (ε/g0)
1/2 Ā
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Scaling

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc

Introduce scaled variables

x = ε−1/2ξ0 X

t = ε−1τ0 T

A = (ε/g0)
1/2 Ā

This reduces the amplitude equation to auniversalform

∂T Ā = Ā+ ∂2
XĀ−

∣∣Ā∣∣2 Ā
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Scaling

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc

Introduce scaled variables

x = ε−1/2ξ0 X

t = ε−1τ0 T

A = (ε/g0)
1/2 Ā

This reduces the amplitude equation to auniversalform

∂T Ā = Ā+ ∂2
XĀ−

∣∣Ā∣∣2 Ā
Since solutions to this equation will develop on scalesX, Y, T , Ā = O(1)
this gives us scaling results for the physical length scales.
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Derivation

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc
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Derivation

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc

• Symmetry arguments: equation invariant under:

� A(x⊥)→ A(x⊥)ei1 with 1 a constant, corresponding to a

physical translation;

� A(x⊥)→ A∗(−x⊥), corresponding to inversion of the

horizontal coordinates (parity symmetry);
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xA− g0 |A|2A, ε = R − Rc

Rc

• Symmetry arguments: equation invariant under:

� A(x⊥)→ A(x⊥)ei1 with 1 a constant, corresponding to a

physical translation;

� A(x⊥)→ A∗(−x⊥), corresponding to inversion of the

horizontal coordinates (parity symmetry);

• Multiple scales perturbation theory (Newell and Whitehead, Segel

1969)
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Derivation

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A, ε = R − Rc

Rc

• Symmetry arguments: equation invariant under:

� A(x⊥)→ A(x⊥)ei1 with 1 a constant, corresponding to a

physical translation;

� A(x⊥)→ A∗(−x⊥), corresponding to inversion of the

horizontal coordinates (parity symmetry);

• Multiple scales perturbation theory (Newell and Whitehead, Segel

1969)

• Mode projection (MCC 1980)
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Amplitude Equation = Ginzburg Landau equation

τ0∂tA = εA+ ξ2
0∂

2
xA− g0 |A|2A,

Familiar from other branches of physics:

• Good: take intuition from there

• Bad: noreally new effects

e.g. equation is relaxational (potential, Lyapunov)

τ0∂tA = − δV
δA∗

, V =
∫
dx
[−ε |A|2+ 1

2g0 |A|4+ ξ2
0 |∂xA|2

]
This leads to

dV

dt
= −τ−1

0

∫
dx |∂tA|2 ≤ 0

and dynamics runs “down hill” to a minimum ofV— no chaos!
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Example: one dimensional geometry with boundaries that suppress the pattern (e.g.
rigid walls in a convection system)

First consider a single wall

∂T Ā = Ā+ ∂2
XĀ−

∣∣Ā∣∣2 Ā Ā(0) = 0

x

|A|
ξ

Ā = eiθ tanh(X/
√

2)

A = eiθ (ε/g0)
1/2 tanh(x/ξ) with ξ = √2ε−1/2ξ0
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A = eiθ (ε/g0)
1/2 tanh(x/ξ)

• arbitrary position of rolls

• asymptotic wave number isk = 0, givingq = qc: no band of

existence
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A = eiθ (ε/g0)
1/2 tanh(x/ξ)

• arbitrary position of rolls

• asymptotic wave number isk = 0, givingq = qc: no band of

existence

Extended amplitude equation to next order inε (MCC, Daniels,

Hohenberg, and Siggia 1980) shows

• discrete set of roll positions

• solutions restricted to a narrowO(ε1) wave number band with

wave number far from the wall

α−ε < q − qc < α+ε
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qN

q-qc

ε

E

Existence
band
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V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)
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From Morris et al. (1991) and Mao et al. (1996)
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Mao et al. (1996)
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Two sidewalls

1 2 3 4 5 6

|A|
ReA

0 x

ξ ∼ ε−1/2
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6

0

4

2

x

ReA

ImA



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 1 47

Conclusions

In today’s lectures I introduced some of the basic ideas of pattern

formation:

• linear instability at nonzero wave number;

• nonlinear saturation;

• stability balloons.

I then introduced the amplitude equation which is the simplest theoretical

approach that captures the key effects in pattern formation (growth,

saturation, and dispersion).

I focussed on the equation in one dimension, and on a phenomenological

derivation. You can find more technical aspects in the supplementary

notes.

Next lecture: the role of continuous symmetries — rotation and translation


