Chapter 7

Lyapunov Exponents

Lyapunov exponents tell us the rate of divergence of nearby trajectories—a key
component of chaotic dynamics. For one dimensional maps the exponentis simply
the average< log|df/dx| > over the dynamicschapter 4. In this chapter the
concept is generalized to higher dimensional maps and flows. There are now a
number of exponents equal to the dimension of the phase gpake. .. where

we choose to order them in decreasing value. The exponents can be intuitively
understood geometrically: line lengths separating trajectories gret¥'asvhere

t is the continuous time in flows and the iteration index for maps); areas grow as
e*122)1- yolumes ag*1+t72+23) etc. However, areas and volumes will become
strongly distorted over long times, since the dimension correspondinggmws

more rapidly than that correspondingig etc., and so this is not immediately a
practical way to calculate the exponents.

7.1 Maps

Consider the map
Un+1 = F(Uy,). (7-1)

with U the phase space vector. We want to know what happens to a small change
in Up. This is given by the iteration of the “tangent space” given by the Jacobean
matrix

oF;

Kij(Un) = m Ut .

(7.2)
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Then if the change W, is ¢,

ent+1 = KUy)en, (7.3)
or
U,
s = M} = [K(Up-DK(Up—2) ... K(Uo)]ij. (7.4)
7.2 Flows
For continuous time systems
dU
—=fU 7.5
=1 (7.5)
a change(t) in U(t) evolves as
de _ K(U)e with K@ = i . (7.6)
Then
A0 = M;;(t, to) (7.7)
aUD(rg) 0 '
with M satisfying
dM
= KU @)M. (7.8)

7.3 Oseledec’s Multiplicative Ergodic Theorem

Roughly, the eigenvalues ™ for larget aree*” or *=%) for maps and flows
respectively. The existence of the appropriate limits is known as Oseledec’s mul-
tiplicative ergodic theoremil]. The result is stated here in the language of flows,
but the version for maps should then be obvious.
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For almost any initial poinU (7o) there exists an orthonormal set
of vectorsv; (t9) , 1 < i < n with n the dimension of the phase space
such that

1
Ai = lim ——1log|IM (¢, to)v; (to) |l (7.9)
=00t — [

exists. For ergodic systems tfig } do not depend on the initial point,
and so are global properties of the dynamical system.x}meay be
calculated as the log of the eigenvalues of

[MT (@, oMz, ro)]ﬁ : (7.10)

with T the transpose. The1g) are the eigenvectors b7 (¢, t10)M (¢, to)
and are independent ofor large:.

Some insight into this theorem can be obtained by considering the “singular
valued decomposition” (SVD) QW = M (¢, tp) (figure7.1a). Any real matrix can
be decomposed

M =wbDvT (7.11)

whereD is a diagonal matrix with diagonal valuésthe square root of the eigen-
values oMM andV, W are orthogonal matrices, with the columnf V the
orthonormal eigenvectors di#” M and the columnsy; of W the orthonormal
eigenvectors oM M7 . Pictorially, this shows us that a unit circle of initial condi-
tions is mapped by into an ellipse: the principal axes of the ellipse areidhe
and the lengths of the semi axes dre Furthermore the preimage of the are

v; i.e. thew; are the particular choice of orthonormal axes for the unit circle that
are mapped into the ellipse axes. The multiplicative ergodic theorem says that the
vectorsy; areindependenof ¢ for larger, and thed; yield the Lyapunov exponents

in this limit. The vector; defines a direction such that an initial displacement in
this direction is asymptotically amplified at a rate givenXpy For a fixedfinal
point U (t) one would similarly expect the; to be independent af for mostzg

and large — ro. Either thev; or thew; may be called Lyapunov eigenvectors.

7.4 Practical Calculation

The difficulty of the calculation is that for any initial displacement veet@which
may be an attempt to approximate one of theany component along; will
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(a)

Figure 7.1: Calculating Lyapunov exponents. (a) Oseledec’s theorem (SVD pic-
ture): orthonormal vectorg, v2 can be found at initial time) that M (¢, tp) maps

to orthonormal vectora1, wy along axes of ellipse. For large— to thev; are
independent of and the lengths of the ellipse axes grow according to Lyapunov
eigenvalues. (b) Gramm-Schmidt procedure: arbitrary orthonormal veotors

02 map toP1, P, that are then orthogonalized by the Gramm-Schmidt procedure
preserving the growing area of the parallelepiped.

be enormously amplified relative to the other components, so that the iterated
displacement becomes almost parallel to the iteratiog,afith all the information
of the other Lyapunov exponents contained in the tiny correction to this. Various
numerical techniques have been implemen&dd maintain control of the small
correction, of which the most intuitive, although not necessarily the most accurate,
is the method using Gramm-Schmidt orthogonalization after a number of 8leps [
(figure7.1b).

Orthogonal unit displacement vectogs?, 0@, ... are iterated according
to the Jacobean to give, after some number of iteratian$or a map) or some
time Aty (for a flow), PO = MO® andP@ = M0O®@ etc. We will use0™® to
calculaten; andO @ to calculate., etc. The vector® ) will all tend to align along
a single direction. We keep track of the orthogonal components using Gramm-
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Schmidt orthogonalization. Write™® = N PD with ND the magnitude and
P the unit vector giving the direction. Defin'® as the component af @
normal toP®

p@_ p@ _ <P(z> ) ,3<1)> PO (7.12)

and then writeP’@ = N®@ p'@ _Notice that the are®® x P@ = p® x p'@

is preserved by this transformation, and so we can R/$8 (in fact its norm

N®) to calculater,. For dimensions larger than 2 the further vectBt® are
successively orthogonalized to all previous vectors. This process is then repeated
and the eigenvalues are given by (quoting the case of maps)

" = NO@HONDmy) ...

e"2 = N@n)N®ny)... (7.13)

etc. with n=n1+no+....
Comparing with the singular valued decomposition we can describe the Gramm-
Schmidt method as following the growth of the area of parallelepipeds, whereas
the SVD description follows the growth of ellipses.

Example 1: the Lorenz Model

The Lorenz equationslapter ) are

X = —0(X-Y)
Y = rX-Y—-XZ. (7.14)
7 = XY —-bZ

A perturbatiore,, = (§X, 8Y, 8Z) evolves according to “tangent space” equations
given by linearizing {.14)

§X = —o(8X —8Y)
8Y = réX—08Y —(6XZ+ X82) (7.15)
82 = 8XY+X8Y —bsZ
or
— 0
d o o
ooz -1 —x |e (7.16)
dt

Y X —b
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defining the Jacobean matikx

To calculate the Lyapunov exponents start with three orthogonal unit vectors
1D =(1,0,0), @ = (0, 1,0) andr® = (0, 0, 1) and evolve the components of
each vector according to the tangent equati@risj. (Since the Jacobean depends
onX, Y, Z thismeans we evolug, Y, Z) and the ®) as atwelve dimensional cou-
pled system.) After a number of iteration steps (chosen for numerical convenience)
calculate the magnification of the vectd? and renormalize to unit magnitude.
Then project® normal tor ™, calculate the magnification of the resulting vector,
and renormalize to unit magnitude. Finally proje® normal to the preceding
two orthogonal vectors and renormalize to unit magnitude. The product of each
magnification factor over a large number iterations of this procedure evolving the
equations a time leads toe*!’.

Note that in the case of the Lorenz model (and some other simple exam-
ples) the trace oK is independent of the position on the attractor [in this case
— (14 o + b)], so that we immediately have the result for the sum of the eigen-
valuesi; + A2+ A3, a useful check of the algorithm. (The corresponding result for
a map would be for aonstant determinardf the Jacobeany | 1; = Indet|K|.)

Example 2: the Bakers’ Map

For the Bakers’ map, the Lyapunov exponents can be calculated analytically. For
the map in the form

X - { AaXn if v <a
{ yn/o( if Yn <« .
Yn+1 (yp—a)/B f y, >«
with 8 = 1 — o the exponents are
A = —aloga—Blogs > 0 (7.18)

A2 = alni,+Blogr, < O

This easily follows since the stretching in thelirection ise 1 or 5~1 depending
on whethel is greater or less than and the measure is uniform in thelirection
so the probability of an iteration falling in these regions is juahdp respectively.
Similarly the contraction in the direction isA, or A; for these two cases.



CHAPTER 7. LYAPUNOV EXPONENTS 7

Numerical examples

Numerical examples on 2D maps are given indkenonstrations

7.5 Other Methods

7.5.1 Householder transformation

The Gramm-Schmidt orthogonalization is actually a method of implementing “QR
decomposition”. Any matriM can be written

M = QR (7.19)
with Q an orthogonal matrix
Q=[ w1 w2 --- W, ]

andR an upper triangular matrix

N *
0 vy «x *

R=|. . . . 1 (7.20)
0 0 - v,

where x denotes a nonzero (in general) element. In particular for the tangent
iteration matrixM we can write

M=Mpy_1My_z...Mg (7.21)
for the successive stegs; or n; for flows or maps. Then writing
Mo = Q1Ro, M1Q1 = Q2R1, etc. (7.22)
we get

M =QnyRy_1RNy_2...Rgo (7.23)
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so thatQ = Qy andR = Ry_1Ry_2...Rg. Furthermore the exponents are

A= lim
=0t — [

InR;;. (7.24)

The correspondence with the Gramm-Schmidt orthogonalization is th&; tiiee

the set of unit vector®;, P, ... etc. and the; are the normgv;. However an
alternative procedure, known as the Householder transformation, may give better
numerical convergencél],[4].

7.5.2 Evolution of the singular valued decomposition

The trick of this method is to find a way to evolve the matris®gsD in the
singular valued decompositioi.(L1) directly. This appears to be only possible for
continuous time systems, and has been implemented by Kim and Gegene |

7.6 Significance of Lyapunov Exponents

A positive Lyapunov exponent may be taken as the defining signature of chaos.
For attractors of maps or flows, the Lyapunov exponents also sharply discriminate
between the different dynamics: a fixed point will have all negative exponents;
a limit cycle will have one zero exponent, with all the rest negative; angd a
frequency quasiperiodic orbit (motion omatorus) will havem zero eigenvalues,

with all the rest negative. (Note, of course, that a fixed point on a map that is a
Poincag section of a flow corresponds to a periodic orbit of the flow.) For a flow
there is in fact always one zero exponent, except for fixed point attractors. This is
shown by noting that the phase space velocity satisfies the tangent equations:

dU® oF ...
=—_pv (7.25)
dt oU )
so that for this direction
o1 .
A= lim =log|U (1) (7.26)
t—oo t

which tends to zero except for the approach to a fixed point.
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7.7 Lyapunov Eigenvectors

This section is included because | became curious about the vectors defined in the
Oseledec theorem, and found little discussion of them in the literature. It can well
be skipped on a first reading (and probably subsequent ones, as well!).

The vectore;—the direction of the initial vectors giving exponential growth—
seem not immediately accessible from the numerical methods for the exponents
(except the SVD method for continuous time systefjs [However thew; are
naturally produced by the Gramm-Schmidt orthogonalization. The relationship of
these orthogonal vectors to the natural stretching and contraction directions seems
quite subtle however.

0 \\Aeu+

Figure 7.2: Stretching directio#t* and contracting directio&® at pointsUg and
Uy = FN(Up). The vector* at Uy is mapped to a vector alorij at Uy by the
tangent map " etc. The adjoint vector&*, ¢+ are defined perpendicular
ande" respectively. An orthogonal pair of directions closestpe”™ is mapped
by M¥ to an orthogonal pair close &, 7.

The relationship can be illustrated in the case of a map with one stretching
directione” and one contracting directiaii in the tangent space. These are unit
vectors at each point on the attractor conveniently defined so that separations along
¢* asymptotically contract exponentially at the rate per iteration forforward
iteration, and separations alogijasymptotically contract exponentially at the rate
e+ for backwarditeration. Here. ., A_ are the positive and negative Lyapunov
exponents. The vectoe$ ande” are tangent to the stable and unstable manifolds
to be discussed iohapter 22and have an easily interpreted physical significance.
How are the orthogonal “Lyapunov eigenvectors” related to these directions? Since
¢* ande” are not orthogonal, it is useful to define the adjoint unit veciétsand
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¢’ as in Fig.7.2) so that
et ="t =0. (7.27)

Then under some fixed large number of iteratidhi is easy to convince oneself
that orthogonal vectorzéo) e asymptotically close to the orthogonal pélire*+
at the pointUp on the attractor are mapped by the tangent Mdpto directions
&M, &N asymptotically close to the orthogonal pér &+ at the iterated point
Uy = FN (Up), with expansion factors given asymptotically by the Lyapunov
exponents (see Fid.(2)). For example® is mapped teV*-¢*. However a small
deviation frome* will be amplified by the amourd¥*+. This means that we can
find ané\” given by a carefully chosen deviation of oraer¥*+~*-) from ¢* that
will be mapped ta**. Similarly almost all initial directions will be mapped very
close toe" because of the strong expansion in this direction. Deviations in the
direction will be of ordere="?*+=*-) " In particular am(o) chosen orthogonal to
e&o), i.e. very close t@“™, will be mapped very close t&. Thus vectors very
close toe*, ¢t at the pointUy satisfy the requirements for the of Oseledec’s
theorem and*, ¢** at the iterated poinf™ (Uy) are thew; of the SVD and the
vectors of the Gramm-Schmidt procedure It should be noted thaiMae2ations
rather thanV (for example) the vectoi& e; ) mapping ta*, &°* at the iterated
pointU,y, must be chosen as a very slighdijfferentperturbation fron#*, ¢#+—
equivalently the vectorg!"’, &)\ at Uy will not be mapped under a furthes
iterations toe”, e** at the |terated point/zy .

It is apparent that even for this very simple two dimensional case neither the
v; hor thew; separately give us the directions of bethande®. The significance
of the orthogonal Lyapunov eigenvectors in higher dimensional systems remains
unclear.

January 26, 2000
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