
Chapter 21

Ruelle-Takens Theorem

An immensely influential paper in the history of the study of chaos was the work
of Ruelle and Takens [1], later extended with Newhouse [2] on the robustness
of quasiperiodic dynamics with 3 or more incommensurate frequencies. This
addressed the question of whether complexity in dynamics was likely to occur
through the accumulation of Hopf-like bifurcations adding additional frequencies
(and presumably spatial “modes”), or instead through the onset of low dimensional
chaos. The statement of the theorem was quite mathematical, which led initially
to a misunderstanding of the strength of the result in the physics community, but
nevertheless it remains a powerful result.

21.1 The Theorem

“Let v be a constant vector field on the torusT n = Rn/Zn. If n ≥ 3
everyC2 neighborhood ofv contains a vector fieldv′ with a strange
Axiom Aattractor. Ifn ≥ 4 we may takeC∞ instead ofC2.”

21.1.1 Remarks

1. For the set of ODEs

d Ex
dt
= Ev (Ex) (21.1)

Ev(Ex) is the vector field and generates the flowEx(t).
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2. A constant vector field on ann-torus corresponds to a quasiperiodic flow of
n incommensurate frequencies reduced to uniform rotation in each direction
by a smooth transformation of the coordinates.

3. C2 means twice differentiable;C∞ means all derivatives can be found i.e.
smooth. So the nearby functions are guaranteed to satisfy this smoothness
constraint, i.e. are not unreasonably singular.

4. An Axiom A attractor is an attractor with particularly nice properties. One
property is robustness under small changes of parameters.

Thus the content of the theorem is that it is possible to make arbitrarily small (but
perhaps very carefully chosen) perturbations to the equations defining the motion
to change the motion fromn-period quasiperiodic to chaotic forn ≥ 3. The chaotic
motion remainson then-torus. Furthermore the chaotic motion set up in this way
cannot be destroyed by further arbitrarily small perturbations, i.e. has robustness.
In a common mathematical usage, this means that a typical perturbation would lead
to chaos. This led to the (mistaken) interpretation that a Hopf-like bifurcation from
two frequency motion would “typically” (in a physical sense) immediately lead
to chaos, since any 3-frequency torus one might anticipate being formed would
suffer the fate suggested by Ruelle and Takens. The flaw in this interpretation is
that the “typicality” of the required perturbations is defined in a set theoretic way
(i.e. existing in every neighborhood no matter how small, which is often used as
the notion of typical or generic in the math community), rather than a measure
theoretic way, which is more likely to correspond to the notion of typical in a
physical context.

This distinction can be understood from the analogous behavior in the phe-
nomenon of frequency locking in the circle map. There, a quasiperiodic motion
can be converted to periodic motion at a nearby rational frequency by an arbitrarily
small, but carefully chosen perturbation to the parameter�. This periodic motion
persists over a range of the parameter, and so is not destroyed by a further arbitrarily
small perturbation. However forK small, the measure of quasiperiodic solutions
(in �) is much larger than the measure of periodic solutions, so that an arbitrary
small perturbation in� is more likelyto lead to a (different) quasiperiodic motion
than to a locked solution.
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21.2 Numerical investigation

The physical likelihood of finding chaos near quasiperiodic motion on a 3-torus
was investigated quantitatively in a simple example by Grebogi, Ott, and Yorke
[3]. They studied a two dimensional map (corresponding to the Poincar´e section
of a three dimensional flow) of the form

θn+1 = θn + ω1+ εP1 (θn, φn) mod 1
φn+1 = φn + ω2+ εP2 (θn, φn) mod 1

, (21.2)

whereP1, P2 are nonlinear functions periodic in bothθ andφ with period 2π . The
explicit forms used were sums of sinusoidal functionsArs sin[2π (rθ + sφ + Brs)]
withArs andBrs chosen randomly for(r, s) taking the values(0,1), (1,0), (1,1),
(1,−1). Equation (21.2) takes the form of two, nonlinearly coupled circle maps.

The range ofω1 andω2 leading to different types of motion was then investi-
gated numerically for increasing values ofε corresponding to increasing nonlinear-
ity. As well as three frequency quasiperiodic (QP) motion, there is the possibility
of frequency locking to two frequency quasiperiodic motion or to periodic motion
(P), as well as chaos. The types of motion were identified through the values of
the two Lyapunov exponents (together with the third value 0 for the corresponding
flow):

Map exponents Flow Exponents Dynamics

0,0 0,0,0 3-frequency QP
0,− 0,0,− 2-frequency QP
−,− 0,−,− 1-frequency (P)
+,? +,0,? Chaotic

.

They found the percentage of the values of leading to each type of motion

Attractor ε/εc = 0.375 ε/εc = 0.75 ε/εc = 1.125

3-frequency QP 82% 44% 0%
2-frequency QP 16% 38% 32%
Periodic 2% 11% 31%
Chaotic 0% 7% 36%

whereεc is the value ofε for which the map becomes noninvertible. (When the map
is noninvertible it can be shown that there is no 3-frequency periodic motion, c.f. the
1d circle map atK > 1.) Thus in this example at least, 3-frequency quasiperiodic



CHAPTER 21. RUELLE-TAKENS THEOREM 4

motion typically survives quite strong nonlinearity, and the fate when this dynamics
breaks down, even for large nonlinearity, is as likely to be locked (quasiperiodic
or periodic) motion as chaotic motion. You can investigate these results in the
demonstration.

21.3 Experiment

Experimentally 3-frequency quasiperiodic motion has been documented by Gollub
and Benson [4], and 4-frequency and 5-frequency quasiperiodic motion by Walden
et al.[5], both in fluid convection.
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