
Chapter 10

Singular Measures andf (α)

10.1 Definition

Another approach to characterizing the complexity of chaotic attractors is through
the singularities of the measure.Demonstration 1illustrates the occurrence of
singularities in the measure of the quadratic map. In fact fora = 4 we can
calculate the measure analytically

ρ(x) = 1

π
√
x (1− x) (10.1)

and we see that the measure showsx−1/2 singularities at the endpoints. For other
values ofa, or other chaotic attractors, the distribution of singularities is more
complicated. The measure can in fact be characterized in terms of intertwined
fractals with different measure singularities.

Consider a covering of the attractor withm-box sizel. Different regions of the
attractor may lead to different singularities in the measure so for somei we have
the measure associated with the box

pi ∼ lαi (10.2)

whereαi is the exponent given the singularity. In terms of the ideas of the
previous chapterαi is the pointwise dimension at the point on the attractor on
which the boxes are centered. Points with the scalingαi may occur on a fractal set,
i.e. on a set of nonintegral dimension which we will callf (αi) so that the number
of boxes with the measurelαi will vary as

N (αi) ∼ l−f (αi). (10.3)
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The functionf (α) is used to characterize the attractor:f (α) is the dimension of
the set of points with pointwise dimensionα.

For the quadratic map witha = 4 we have the two endpoints (dimension 0)
where the measure associated with a boxl is

∫ l
0 x
−1/2dx ∼ l1/2 and the interval

0 < x < 1 (dimension 1) where the measure associated with a boxl is∼ l1. In
this case we have

f
(1

2

) = 0
f (1) = 1

. (10.4)

10.2 Relationship toDq

In the box counting definition of the generalized dimensionDq (seechapter 9)
the boxes are weighted with the factorpq with p the measure associated with
the box. The scaling of the measure with decreasing box size at each point is
given by the pointwise dimension. Thus largepositiveq tends to weight those
points with large pointwise dimension (often visited, sometimes known as the “hot
spots” of the attractor), and largenegativeq weights the points with low pointwise
dimension (rarely visited, or “cold spots”). Sincef (α) is the dimension of points
with pointwise dimensionα, for attractors with smoothDq andf (α) an approach
called the “thermodynamic formalism” allows us to relate these two functions: the
two functions contain the same information about the attractor.

We will assume, more typically than the special case of the quadratic map at
a = 4, that there is a continuous range of exponentsα with a weightw(α) so that
for a box sizel we can estimate∑

i

p
q

i ∼
∫
dαw(α) l−f (α) lqα =

∫
dαw(α)elog l[qα−f (α)] . (10.5)

where in the first integrallα gives the scaling of the measure with the box size at
some point on the attractor,l−f (α) gives the dimension of the set of points scaling
in this way andw(α) is a smooth weight function. Now we use the method of
steepest descents to evaluate the integral: asl→ 0, logl→−∞, and for smooth
w(α) the integral will be dominated by the value ofα maximizing the exponent,
i.e.

q = f ′(a) (10.6)
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(together withf ′′(α) < 0). This tells us that each value ofq for the generalized
dimension picks out a particular measure singularityα given by this relationship.
Using this maximum value now gives the estimate∑

i

p
q

i ∼ elog l[qα−f (α)], (10.7)

where we use the value ofq given by equation10.6, so that the dimension is given
by

Dq = 1

q − 1
[qα(q)− f (α(q))] (10.8)

whereα(q) is the solution to (10.6).
These relationships can be inverted to givef (α) knowingDq : differentiating

we find

α = d

dq

[
(q − 1)Dq

]
(10.9)

and then

f (α) = − (q − 1)Dq + qα. (10.10)

A typical f (α) curve has the following properties:

• Convex:f ′′ < 0;

• A maximum given byf ′(α) = 0 corresponding toq = 0 andf (α) = D0;

• The valueq = 1 givesf (α) = α andf ′(α) = 1, corresponding to the result
that the set of points on the attractor that make up most of the measure have
dimensionD1 and the pointwise dimension at these points is alsoD1;

• |q| → ∞ picks out the regions where the measure is most concentrated
(q > 0) or least concentrated (q < 0). Here

∣∣f ′(α)∣∣ → ∞, Dq = α and
usuallyf (α)→ 0 corresponding to a single point, i.e. the intersections of
thef (α) curve with thef = 0 axis givesD±∞.

This leads to the expectation for typicalf (α) shown in figure10.1.
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Figure 10.1: A typicalf (α)

There are formal analogies between the transformationDq → f (α) and the
Legendre transformation between thermodynamic potentials e.g.S(E)→ F(T ),

hence the description “thermodynamic formalism”. For example we have

Dq = − lim
l→0

1

q − 1

1

log(1/l)
log

∑
i

(
e−α log(1/l)

)q
,

∑
i

→
∫
dα ef (α) log(1/l)

(10.11)

c.f. for the free energy as a function of inverse temperature in statistical physics

Fβ = − lim
N→∞

1

β

1

N
log

∑
i

(
e−Ei

)β
,
∑
i

→
∫
dE eS(E) (10.12)

displaying the analogy through the translationsF(β)↔ Dq ,E/N ↔ α,S (E) /N ↔
f (α), β ↔ q,N ↔ log(q/ l).

10.3 A simple multifractal

A simple example of a multifractal is given by the “two scale factor Cantor set”,
a generalization of the construction of the one-third Cantor set [1]. At first sight



CHAPTER 10. SINGULAR MEASURES AND F(α) 5

this seems an artificial construction. However sets generated by chaotic dynam-
ics appear to show similar features, and looking at this set, although involving
rather tedious algebra, provides useful insights into the significance of generalized
dimensions andf (α). In addition the attractor for the bakers’ map, which incor-
porates in a very simple way the “stretching and folding” that underlies chaotic
dynamics, has exactly this structure. Thus studying the simple construction gives
us many insights into what types of structure might occur in chaotic attractors.

Consider again successive divisions of the unit line, but now into unequal
fractionsl1 andl2. Also suppose a dynamics in which each segment is visited with
the probability weightsp1 andp2 (figure10.2).
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Figure 10.2: Construction of a multifractal

At the nth division level there areCnm =
n!

m!(n−m)! copies of themth size

lm1 l
n−m
2 weighted with probabilitypm1 p

n−m
2 .

One feature of this set is that a chosen property is often completely dominated
by a particular region of the set, identified by some fixed value ofm/n asn→∞,
and this is exploited in the analysis below. For example the measure associated
with a particular length elementlmn = lm1 ln−m2 is

Wmn = Cnmpm1 pn−m2 . (10.13)
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Now take logs and use Stirling’s formula for factorials logx! ' x logx− x giving

logCnm ' −n
[(

1− m
n

)
log

(
1− m

n

)
+ m
n

log
m

n

]
(10.14)

so that

logWmn ' n
[
−
(
1− m

n

)
log

(
1− m

n

)
− m
n

log
m

n
+ m
n

logp1+
(
1− m

n

)
logp2

]
.

(10.15)

Expanding about the maximum atm/n = p1 keeping terms to quadratic order
gives

Wmn ∼ exp

[
−n (m/n− p1)

2

2p1p2

]
. (10.16)

ThusWmn becomes a sharply peaked Gaussian function ofm/n centered aroundp1

with a width that goes to zero asn→∞, i.e. the measure is completely dominated
by a narrow region of the set. (To get the correct normalization prefactor to the
Gaussian we would need to take Stirling’s formula to higher order.)

Calculation of f (α)

At the nth level an interval of sizel = lm1 ln−m2 is weighted by a probabilityp =
pm1 p

n−m
2 . The quantityα is defined by the singular dependence of the probability

on interval sizep ∼ lα, so that taking logs

α = logp1+ ( nm − 1) logp2

log l1+ ( nm − 1) log l2
(10.17)

The parameterα gives us the singularity in the measure asl → 0. There is
a spectrum of such singularities. The quantityf gives the dimension of the set
experiencing the singularityα. Then the number of intervals with the singularity
grows asl−f :

Cnm ∼
(
lm1 l

n−m
2

)−f
(10.18)

to yield

f = ( n
m
− 1) log( n

m
− 1)− ( n

m
) log( n

m
)

log l1+ ( nm − 1) log l2
(10.19)
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Equations (10.17) and (10.19) give an implicit relationshipf (α) (eliminatem
n

).
Notice again that a particular value ofα characterizing the singularity of the mea-
sure picks out a region of the set labelled bym/n, and this region has a fractal
dimensionf given by (10.19).

Calculation of Dq

The calculation ofDq is a little more complicated, since we must use the partition
function formalism. Form the “partition function” at thenth level

0(n) = 0(q, τ, ln) =
∑

intervals

p
q

i

lτi
=
∑
m

{
Cnmp

mq
1 p

(n−m)q
2 l−mτ1 l

−(n−m)τ
2

}
(10.20)

wherel is the larger ofl1 andl2 so thatln is the largest interval at thenth level.
Notice that from the binomial expansion0(n) is just

[
0(1)

]n
so that the condition that

0(q, τ, ln)neither diverge nor go to zero asln→ 0 is simply0(1) = 0(q, τ, l) = 1.
For largen we expect the largest term in the sum of (10.20) to dominate the

sum. This can be calculated throughd log{}/dm = 0 where{} is one of the terms
in the sum, and again using Stirling’s formula to evaluateCnm, to give an implicit
equation form/n for each(τ, q), which we write as

τ = log( n
m
− 1)+ q log(p1

p2
)

log( l1
l2
)

(10.21)

We then evaluate0(n) as its largest term, andτ = τ(q) is given by requiring
0(n) = (0(1))n = 1, i.e. log{} = 0. This gives an expression that can be simplified
to

q = log( n
m
) log( l1

l2
)− log( n

m
− 1) log l1

logp1 log l2− logp2 log l1
(10.22)

Equations (10.21) and (10.22) give an implicit equation forτ(q) (again by elimi-
nating n

m
) and henceDq = τ(q)/(q−1). This calculation ofDq shows again how

a particular value ofm/n is singled out by the choice ofq.
It is now straightforward to usen/m as an implicit parameter to plotf (α) and

Dq . This is done for the example ofp1 = 3/5, p2 = 2/5, l1 = 1/4, l2 = 2/5 in
figure (10.3). For interest the values ofm/n contributing to eachq andα is shown
in figure (10.4).
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A direct expression forDq is simply to use the result0(q, τ, l) = 1, i.e.

p
q
1l
(1−q)Dq
1 + pq2l(1−q)Dq2 = 1. (10.23)

However this must be solved numerically.

10.3.1 Other dimensions

The casel1 = l2 = l is particularly simple, since then at each level of construction
all the line elements have the same length, and simple box counting arguments are
easy to apply. This lets us easily study some of the other dimensions introduced in
chapter 9. In particular using the expression (10.16) for the total measure associ-
ated with theCnm elements at leveln of the construction labelled by the indexm and
each containing measurepm1 p

n−m
2 we see that for largen essentiallyall measure

is associated with values ofm/n veryclose top1. Then the following results are
easily proven:

1. The information density given by box-counting with boxes of sizeln is

D1 = lim
n→∞

∑
m

Wnm ln(pm1 p
n−m
2 )/ ln ln (10.24)

and since the width ofWnm is so narrow aboutm/n = p1 we can take
the second factor evaluated at this value out of the sum to give directly
D1 = ln(pp1

1 p
p2
2 )/ log l = (p1 lnp1+ p2 lnp2)/ ln l.

2. The pointwise dimension at an element characterized by the indexm/n is

DP (m/n) = lim
n→∞ lnpm1 p

n−m
2 / ln ln. (10.25)

Again, because almost all the measure is form/n = p1 this givesDP = D1

for almost all points in the set.

3. The number of boxes with indexm/n isCnm given by (10.14). To make up a
measure fractionθ 6= 1 we need some small spread ofm/n aboutp1, but the
spread goes to zero for largen, and this leads to terms that do not contribute
to the capacity. Thus using (10.14)

DC(θ 6= 1) = n
[(

1− m
n

)
log

(
1− m

n

)
+ m
n

log
m

n

]
/ ln ln

∣∣∣
m/n=p1

(10.26)
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which is again justD1. (Note that nearits maximumCnm can be written in
Gaussian form analogous to (10.16) for Wnm

Cnm ∼ exp

[
−2n

(
m

n
− 1

2

)2
]

(10.27)

but for (10.26) we need to evaluateCnm in the tails far away from its maximum
where the Gaussian expression is not valid.)

10.4 The Bakers’ Map

From the construction (chapter 5) it is apparent that the bakers’ map yields a set
that is the full interval in they direction and exactly given by the two scale factor
Cantor set in thex direction, withp1 = α,p2 = 1−α, l1 = λa andl2 = λb. Since
the attractor is uniform in they direction, the dimensions are given byDq = 1+D̂q
with D̂q the dimensions of the intersection of the set with a horizontal line. Using
(10.23) gives the transcendental equation for the generalized dimensions

αqλ
(1−q)D̂q
a + βqλ(1−q)D̂qb = 1. (10.28)

This equation can be arrived at directly by considering the covering of the two
portions of the set (a ≡ 0< x < λa andb ≡ 1− λb < x < 1) separately and the
scaling given by iterating the map. Consider a covering of the intersection of the
set with thex axis by line elements at scaleε, and the mapping of this coverage
after one iteration. The mapping will give a covering of portiona with scaleλaε
with the measurespi associated with each box multiplied byα, and portionb with
scaleλbε with measures multiplied byβ. DefineS =∑p

q

i . Then

S(ε) = αqSa(λaε)+ βqSb(λbε). (10.29)

But S scales as

S(ε) ∼ ε(q−1)D̂q (10.30)

and substituting this into (10.29) then reproduces (10.28).
The capacity of the setD0 = 1+ D̂0 is given by

λD̂0
a + λD̂0

b = 1. (10.31)
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and by expanding in smallq − 1 the information density is

D1 = 1+ α ln(1/α)+ β ln(1/β)

α ln(1/λa)+ β ln(1/λb)
. (10.32)

For generalλa andλb (10.28) has to be solved numerically. Forλa = λb the
dimension is simply

Dq = 1+ 1

q − 1

log(αq + βq)
logλa

. (10.33)

The iteration of the bakers’ map is performed indemonstration 2.
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Figure 10.3: Plot off (α) andDq for p1 = 3/5, p2 = 2/5, l1 = 1/4, l2 = 2/5.
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Figure 10.4: Value ofm/n contributing for eachq or α for p1 = 3/5, p2 = 2/5,
l1 = 1/4, l2 = 2/5.
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