
Notes on Linear Response Theory Michael Cross —April 13, 2006

Useful references are Callen and Greene [1], and Chandler [2], chapter 16.

Task

To calculate the change in a measurement〈B (t)〉 due to the application of a small “field”F (t) that gives
a perturbation to the Hamiltonian1H = −F (t) A. Here bothA and B are determined by the phase
space coordinates denotedEr N (t) , EpN (t) (e.g. B might be the electric current

∑N
i=1 (e/m) Epi ). The time

dependence is given by the evolution ofEr N (t) , EpN (t) according to Hamilton’s equations. In statistical
mechanics we deal with an ensemble of systems given for example by a known distributionρ

(Er N, EpN
)

at
t = 0. The expectation value at a later timet is then

〈B (t)〉 =
∫

dEr Nd EpNρ
(Er N , EpN

)
B

(Er N (t)← Er N , EpN (t)← EpN
)

(1)

where the cumbersome notationEr N (t)← Er N means we must evaluateB at the phase space coordinate that
evolves from the valueEr N at t = 0. For shorthand this will be denotedB (t). We could equivalently follow
the time evolution ofρ through Liouville’s equation and instead evaluate

〈B (t)〉 =
∫

dEr Nd EpNρ
(Er N , EpN, t

)
B

(Er N, EpN
)

(2)

but the first form is more convenient.

Onsager regression

F(t)

t

H = H 0+∆H H = H 0

equi l ibr ium
under  H0+∆H
ρ=ρH(r N,p N)

First consider the special case of a forceF (t) switched on to the valueF in the distant past, and then
switched off att = 0. We are interested in measurements in the system fort > 0 as it relaxes to equilibrium.

For t ≤ 0 the distribution is the equilibrium one for theperturbedHamiltonianH
(Er N , EpN

) = H0+1H ,
with H0 the unperturbed Hamiltonian, i.e. (for a canonical distribution)

ρ
(Er N , EpN

) = e−β(H0+1H)∫
dEr Nd EpNe−β(H0+1H)

(3)

so that introducing a convenient notation for the integral over phase spaceTr ≡ ∫
dEr Nd EpN

〈B (0)〉 = Tre−β(H0+1H)B
(Er N, EpN

)
Tre−β(H0+1H)

. (4)
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For t ≥ 0 we letEr N (t) , EpN (t) for each member of the ensemble evolve under the Hamiltonian, nowH0

from its valueEr N , EpN at t = 0,so that

〈B (t)〉 = Tre−β(H0+1H)B
(Er N (t)← Er N , EpN (t)← EpN

)
Tre−β(H0+1H)

. (5)

Note that the integral is overEr N , EpN which we can denoteEr N (0) , EpN (0), and1H = 1H
(Er N , EpN

)
etc.

It is now a simple matter to expand the exponentials to first order in1H (F small!) to give

〈B (t)〉 = 〈B〉0− β
[〈1H B (t)〉0− 〈B〉0 〈1H 〉0

]+ O (1H )2 (6)

where<>0denotes the average over the ensemble for a system for which no perturbation was applied i.e.
ρ0 = e−βH0/Tre−βH0. Note in this unperturbed system the Hamiltonian remainsH0 for all time, so that
one-time averages such as〈B (t)〉0 are in fact time independent. Finally putting in the form of1H, writing
δB (t) = B (t)− 〈B〉0 etc., and noticing thatA(Er N , EpN) is equivalent toA(0),

1H = −F A
(Er N , EpN

) = −F A
(Er N (0)← Er N , EpN (0)← EpN

) = −F A (0) , (7)

gives for the change in the measurement1 〈B (t)〉 = 〈B (t)〉 − 〈B〉0
1 〈B (t)〉 = βF 〈δA (0) δB (t)〉0 , (8)

where we have written the result in terms ofδA = A− 〈A〉0.
This result which equates the time dependence of the decay of a prepared perturbation to the time

dependence of a correlation function in the unperturbed system proves theOnsager regression hypothesis.

Kubo formula

For a generalF (t) we write the linear response as

1 〈B (t)〉 =
∫ ∞
−∞

χAB

(
t, t ′

)
F

(
t ′
)

dt′ (9)

with χAB the susceptibility or response function with the properties

χAB

(
t, t ′

) = χAB

(
t − t ′

)
stationarity of unperturbed system

χAB

(
t − t ′

) = 0 for t < t ′ causality
χ̃AB (− f ) = χ̃∗AB ( f ) χAB

(
t, t ′

)
real

. (10)

The causality condition leads to interesting properties in the complexf plane (̃χ ( f ) must be analytic (no
poles) in the upper half plane), but we will not need this here.

For the step function force turned off att = 0

1 〈B (t)〉 = F
∫ 0

−∞
χAB

(
t − t ′

)
dt′ (11a)

= F
∫ ∞

t
χAB (τ ) dτ . (11b)

Differentiating then gives theclassical Kubo expression

χAB (t) =
{ −β d

dt 〈δA (0) δB (t)〉0 t ≥ 0
0 t < 0

. (12)
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Connection with energy absorption: fluctuation-dissipation

Consider a sinusoidal forceF (t) = ReFf e2π i f t = 1
2(Ff e2π i f t +c.c.). The rate of doing work on the system

is “force× velocity” W = F Ȧ i.e.

W = F (t)
d

dt

∫ ∞
−∞

χ
(
t, t ′

)
F

(
t ′
)

dt′ (13)

writing simplyχ for χAA. Substituting in the sinusoidal form for the force we recognize the integral as giving
us the Fourier transform ofχ so that the average rate of working is

W ( f ) = 1
42π i f

∣∣Ff

∣∣2 [
χ̃ ( f )− χ̃ (− f )

]
(14a)

= π f
∣∣Ff

∣∣2 (−χ̃ ′′ ( f )
)

(14b)

whereχ̃ ′′ is Im χ̃ and terms varying ase±4π i f t which average to zero have been ignored. Thus the imaginary
part of χ̃ tells us about the energy absorption or dissipation.

But from the definition of the Fourier transform

χ̃ ′′ ( f ) =
∫ ∞
−∞

χ (t) sin(2π f t) dt (15a)

= −β

∫ ∞
0

d

dt
〈δA (0) δA (t)〉0 sin(2π f t) dt (15b)

= β (2π f )
∫ ∞

0
〈δA (0) δA (t)〉0 cos(2π f t) dt (15c)

where we have used the fluctuation-dissipation expression forχ = χAA and then integrated by parts. Finally
we recognize the integral as giving the spectral density ofA fluctuations, so that (including necessary factors)

GA ( f ) = 4kT
−χ̃ ′′ ( f )

2π f
(16)

relating the spectral density of fluctuations to the susceptibility component giving energy absorption, i.e. the
classical fluctuation-dissipation theorem.

Langevin Force

If we suppose the fluctuations inA derive from a fluctuating Langevin contributionF ′ to the forceF we can
write

δA (t) =
∫ ∞
−∞

χ
(
t, t ′

)
F ′

(
t ′
)

dt′ . (17)

Since the Fourier transform of a convolution is just the product of the Fourier transforms the spectral density
of A is given by

GA ( f ) = |χ̃ ( f )|2 GF ( f ) , (18)

and using the expression forGA derived above leads to

GF ( f ) = 4kT
1

2π f
Im

[
1

χ̃ ( f )

]
. (19)

Instead of the susceptibility we can introduce theimpedanceZ = F/ Ȧ so that

Z̃ ( f ) = 1

2π i f

1

χ̃ ( f )
. (20)
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Then defining the “resistance”̃R( f ) = ReZ̃ ( f ) we can write the spectral density of the fluctuating force
as

GF ( f ) = 4kT R̃ ( f ) . (21)

The analogy with the Johnson noise expression should be apparent.
Note that the derivations have been classical, so we arrive at the classical version of the fluctuation-

dissipation theorem, the force expression etc. In a quantum treatmentA andB, as well asH areoperators
that may not commute, so that we have to be more careful in the expansion of the exponentials. Thus Eq.(12)
will involve commutators of operators. The sismplest form of the expression is to define a slightly different
susceptibilityχ ′′(t) = (2i )−1[χ(t)−χ(−t)] (the Fourier inverse of the dissipative partχ ′′(ω)) which is then
related to the commutator-correlation function

χ ′′AB(t) = 1

2h̄
〈[ A(0), B(t)]〉0 , (22)

whereA, B are Heisenberg (time dependent) operators. The change to Eq.(16) is quite simple: make the
replacement

kT→ h f

2
coth

(
h f

2kT

)
(23)

which can be interpreted as taking into account the Bose occupation factor of the modes. The quantum
approach was pioneered by Kubo [3], and the set of ideas are often called the Kubo formalism.
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