BNU Class Notes

Motivation for Fundamentd Postulate (Classical)
Hamiltonian formulation of the dynamics

For N particles there are coordinatesy, ¢z . . . gay and 3V conjugate momentgay, p,. .. psy. Usually
these would be the Cartesian coordinates, z of each particle and the corresponding momentap,, p..
But sometimes other choices are convenient, e.g. for diatomic molecules we could use center of mass
coordinates and separation and angular coordinates, together with the appropriate momenta (see a text book
on mechanics for how you decide on the momentum conjugate to each coordinate).

The equations of motion afast order differential equations
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(dot denotes the time derivative), whei€q1, g» . . . gan, p1, p2 - .. pan, t) is theHamiltonian For a system
with time independent conditions (no explicittependence if) the Hamiltonian is just the total energy
expressed in terms of coordinates and momenta. The Lagrangian-Hamiltonian formulation replacing New-
ton’s laws of motion applies for velocity independent forces. This is usually all we need to set up a statistical
mechanics problem. The one case of velocity dependent forces we commonly come across is the Lorentz
force in electromagnetism: in this case the Lagrangian-Hamiltonian formulation continues to hold—we will
discuss this case later on.

The GV coordinates and momenta define gie®se spacespecifying the coordinate in this phase space
completely specifies the system now and in the future (via integrating ByisThis is the key advantage of
using a description leading to evolution equations thafiestorder differential equations.
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p v The simple harmonic oscillator illustrates these ideas. For a

e \Fih particle of mass: tethered to a fixed point by a spring of spring

constantk the Hamiltonian for one dimensional displacement
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AN A The Hamiltonian equations give us thbase space velocity
RSO I -7 Vpn = (X, p) = (p/m, —Kx). Check that this gives the usual
simple harmonic oscillator equatiani + Kx = 0. Itis easy
v to see that the dynamics traces ouedipsein the phase space.

Phase space distribution

A single point in phase spacg, g . .. p1, p2...) — which we will also write agg;, p;) or schematically

as(q, p) — completely defines the state of the physical system i.e. definagithiestate of the classical

particle system. For smaN we could explicitly follow the time evolution ofg, p) in phase space tracing

out a trajectory and defining a geometrical structure in phase space. This is the subject of dynamical systems
theory. ForNV large we can only hope to keep track of the dynamics statistically. Thus we defiasaspace

density p(g1,92... p1, p2 ..., t) that tells us the probability of finding a system néaf, g2 ... p1, p2...)

at timer. Precisely:



0(q1,q2...p1, p2..., 1) d*Nq 43" p is proportional to the fraction of the members of the en-
semble with phase space point with coordinates betweandg; + dq1, g» andg, + dg- etc.,
and momenta betweenandp; + dpi, p2 andp, + dp- etc.

Hered®Ngd®N p is written for the 8V dimensional volume element of sidég,, dg, ...dp1,dps. . ..
We do not normalize so that it is a probability density—we will talk about the choice of proportionality
constant, motivated by quantum considerations, later.

Any property of the system is given by a function of the phase space coorditgatess . .. p1, p2...).
For example for noninteracting particles the energy is given by the function
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Theensemble averagef such a quantity at timeis
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where the denominator is needed because we did not normalize the distribution to unit probability.
An ensemble is said to Istationaryif for all time andat each (fixed) g and fhe phase space density is
time independent, i.e.
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with the partial implying fixed;, p. Since the ensemble averag® of any quantityf is time independent
with such a distribution, we suppose that an equilibrium system is represented by such a distribution.

Liouville’s Theorem

Liouville’s theorem will tell us a second property of the phase space density, hamely that if we move
with a phase space point as it evolves under the Hamiltonian, the phase space density of the surrounding
neighborhood is constant.

First notice that Hamiltonian dynamics preserves “volumes in phase space”.
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Consider a small area with corndrs, p), (x + Ax, p), (x, p + Ap), (x + Ax, p + Ap). (These would
correspond to 4lifferentsystems of 1 particle moving in 1 dimension.) Under a small time intdiviie

four points evolve under the Hamiltonian dynamics, and they now defining a new area. The length of the
side of lengthAx changes because the endpoints have differemlocities, and becomes

Ax + ;()'C)Ax& + 0(51%). (5)
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(The different values op will slightly rotate the side from horizontal, but only changes the length at order
8t2.) Similarly the length of the side of original lengtkp becomes

Ap + %(ﬁ)ApSt + 0(81%). (6)

Thus the volume element in phase space (area in this exampl@) = AxAp) evolves to

AV (t +81) = AV (1) [1+ (i(x) + i(p)) 8t + 0(512)] , (7)
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where the “divergence of the phase space velocity” is
Vo Vo = () + () ©)
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This is zero for Hamiltonian dynamics.
The argument easily generalizes to theé 8imensional volume element for thevédimensional phase
space ofV particles: Eq.§) still applies with now,, = (41, ¢>... p1, p2...) and
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which is again zero for Hamiltonian dynamics.

Since the volume associated with a collection of phase space points remains constant under the dynamics,
the phase space density is constant as we follow a phase space paitg, (cg. p(¢)) = p(g(t = 0), p(t =
0)) = po, Whereg(z), p(t) evolve according to the phase space dynamics. We write this as

dp
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whered /dt is thetotal derivativefollowing a phase space point. Thisli®uville’s theorem.

Equal Probabilities

Together, Eqs.4) and (L1) show that for an equilibrium Hamiltonian system the phase space density is the
same at every point visited by a trajectory in the phase space. In a complicated, many particle system we
might expect the phase space trajectory to visit every region of phase space that is not forbidden by the known
macroscopic conservation laws (i.e. conserved energy, particle number, and maybe other quantities such as
momentum, spin etc., depending on the details of the system)—this is the no@ggodicity. In this case

o(gq, p) = po over all accessible phase space. (12)

This is the fundamental postulate. The ensemble described by the distributiohZEgs known as the
microcanonical ensemble



Formal Derivation

The conservation of probability is

% dV 0= /dS PV i (13)

with S the volume bounding some volum’eln phase space (the number of members of the ensemble within
V changes only because of the flux of phase-space points through the bounding surface). The divergence
theorem (Gauss’s theorem) reduces this to
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Since this applies for any volumié this implies
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For Hamiltonian dynamic¥,, - v,, = 0, and so we have
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This is Liouville’s theorem.
For equilibriumdp/d¢r = 0 and then
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usingv,, = (0H/dp, —dH /dq). The summed quantity is known as theisson brackefp, H}.
We havederivedthe result Eq.17). Now we have to “guess” what is consistent with this.
A sufficient condition orp is

p(q, p) = p(H(q, p),Ci(q, p), C2(q. p) .. .), (18)

whereH andC,, are the conserved quantities (constant of the motion). For then

HY = Z Z <8H dCn  IH IC, ) (19)
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(the sunmwm runs over the conserved quantities with = H). But the time dependence 6f, (zero for a
conserved guantity) is given by
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hence showing such@asatisfies Eq.17).

The assumption of ergodicity is that the phase space trajectories visit every region of the phase space
consistent with the conserved quantities, e.g. there are no other “hidden” variables that con&rpiation
(18) is the general result (and applies to other “ensembles” we will introduce a little later). For an isolated
system the quantitie€’,, are rigorously constant, independentgfp. Hence, with the assumption of
ergodicity, the fundamental postulate results. Since the conditions for ergodicity in a precisely defined
physical system are not understood rigorously, the fundamental postulate provides a more secure foundation
for building the theory, and is usually the preferred starting point. The final justification is the excellent
agreement of the predictions based on this theory with observations.



	Physics 127a: Class Notes
	Lecture 3: Motivation for Fundamental Postulate (Classical)
	Hamiltonian formulation of the dynamics
	Phase space distribution
	Liouville's Theorem
	Equal Probabilities
	Formal Derivation



