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Today’s Lecture: Symmetry Aspects of Patterns

Outline

• Broken symmetry, phase variable and Goldstone modes

• Phase equation near stationary instabilities

• Phase equations far from onset

• Topological defects

• Amplitude and phase equations for oscillatory instabilities
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Phase Dynamics

• The local structure of a stripe pattern is∝ cos(q · x + θ) + harmonics.

• A constant phase change is just a spatial shift of the pattern.

• A phase change that varies slowly in space (over a lengthη−1, say,

with η small) will evolve slowly in time.

• For small enoughη the phase variation is slow compared with the

relaxation of other degrees of freedom such as the magnitude or the

internal structure, and a particularly simple description is obtained.

• The phase variable describes the symmetry properties of the system:

the connection between symmetry and slow dynamics is known as

Goldstone’s theorem.

• Near onsetθ is simply the phase of the complex amplitude, and an

equation for the phase dynamics can be derived from the amplitude

equation forη � ε (Pomeau and Manneville, 1979)
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 0
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 1
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 0
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = Q · x, Q = (1/8, 0)
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 0
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = Q · x, Q = (0, 1/8)
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), 8 = 0
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = cos(Q · x), Q = (1/8, 0)
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 0
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = cos(Q · x), Q = (0, 1/8)
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Effect of a Phase Change

cos(q · x + θ); q = (1, 0), θ = 0
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Phase Dynamics Near Onset

• Near threshold the phase reduces to the phase of the complex

amplitude, and the phase equation can be derived byadiabatically

eliminatingthe relatively fast dynamics of the magnitude.

• Basic assumption: we are looking at the dynamics driven by gradual

spatial variations of the phase, i.e. derivatives ofθ are small.

• For simplicity also assume that we are looking at small deviations

from a straight stripe pattern, so that the phase perturbations may also

be considered small.

• This leads to thelinear phase diffusion equationfirst derived by

Pomeau and Manneville (1979). We will consider the full nonlinear

phase equation in the more general context away from threshold.
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Derivation of Phase Equation from Amplitude Equation I

Consider the (scaled) amplitude equation

∂T Ā = Ā +
(

∂X − i

2
∂2

Y

)2

Ā − ∣∣Ā∣∣2 Ā

Look at small perturbations about the stateĀ = aK ei K X with
a2

K = 1 − K 2,
Ā = aei K X ei θ , a = aK + δa

Expand in

• small phase perturbationsθ and amplitude perturbationsδa

• low order derivatives ofθ (up to second order)

Then using
e−i K X e−i θ∂T A = ∂Ta + ia∂Tθ,

the real part of the equation gives the dynamical equation fora, and the
imaginary part of the equation gives the dynamical equation forθ .

8



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:June 9, 2006 17

Derivation of Phase Equation from Amplitude Equation II

Real part

∂Tδa = −2a2
K δa − 2KaK ∂Xθ + ∂2

Xδa

For time variations on aT -scale much longer than unity, the term on the left hand side is

negligible, andδa is said to adiabatically follow the phase perturbations. The term in

∂2
Xδa will lead to phase derivatives that are higher than second order, and so can be

ignored. Hence

aK δa ' −K∂Xθ.

Imaginary part

aK ∂Tθ ' 2K∂Xδa + aK ∂2
Xθ + aK K∂2

Yθ.

Eliminatingδa and usinga2
K = 1 − K 2 gives

∂Tθ =
[

1 − 3K 2

1 − K 2

]
∂2

Xθ + K∂2
Yθ.

the phasediffusion equationin scaled units.
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Derivation of Phase Equation from Amplitude Equation III

Returning to the unscaled units we get the phase diffusion equation for a phase variation

θ = kx + δθ

∂tθ = D‖∂2
xθ + D⊥∂2

yθ

with diffusion constants for the state with wave numberq = qc + k (with k related toK

by k = ξ−1
0 ε1/2K )

D‖ = (ξ2
0τ−1

0 )
ε − 3ξ2

0k2

ε − ξ2
0k2

D⊥ = (ξ2
0τ−1

0 )
k

qc
.

A negative diffusion constant leads to exponentially growing solutions, i.e. the state with

wave numberqc + k is unstableto long wavelength phase perturbations for

|ξ0k| > ε1/2/
√

3 D‖ < 0: longitudinal (Eckhaus)

k < 0 D⊥ < 0: transverse (ZigZag)
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Stability Balloon Near Threshold

existence band

stable band

qN

q-qc

ε

EZZE

1.0

0.58
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Experimental Test of Phase Diffusion

Wesfried and Croquette (1980)
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Experimental Test of Phase Diffusion

Solution to phase equation with periodic driving at frequencyω

θ(x, t) = θ0e−m1|x| cos(m2|x| − ωt) with m1 = m2 = √
ω/2D‖

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:June 9, 2006 22

Phase Dynamics Away From Threshold(MCC and Newell, 1984)

Away from threshold the other degrees of freedom relax even more

quickly, and so idea of a slow phase equation remains.

θ=0 θ=2π θ=4π θ=8π θ=10π
θ=12π

q

q

• pattern is given by the lines of constant phaseθ of a local stripe

solution;

• wave vectorq is the gradient of this phaseq = ∇θ .
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A nonlinear saturated straight-stripe solution with wave vectorq = qx̂ is

u = uq(θ, z, t) θ = qx

For slow spatial variations of the wave vector over a length scaleη−1 this

leads to the ansatz for a pattern of slowly varying stripes

u ≈ uq(θ, z, t) + O(η), q = ∇θ(x)

whereq = q(ηx) so that∇q = O(η).

We can develop an equation for the phase variation by expanding inη

τ(q)∂tθ = −∇ · [qB(q)]
The form of the equation derives from symmetry and smoothness

arguments, and expanding up to second order derivatives of the phase.

The parametersτ (q), B(q) are system dependent functions depending on

the equations of motion,uq, etc.
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Small Deviations from Stripes

τ (q)∂tθ = −∇ · [qB(q)]
For θ = qx + δθ this reduces to

∂tδθ = D‖(q)∂2
xδθ + D⊥(q)∂2

yδθ

with

D⊥(q) = − B(q)

τ (q)

D‖(q) = − 1

τ (q)

d(q B(q))

dq

A negative diffusion constant signals instability:

• [q B(q)]′ < 0: Eckhaus instability

• B(q) < 0: zigzag instability
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Phase Parameters for the Swift-Hohenberg Equation

1.1 1.20.90.8 q

0.05

-0.05

qB(q)
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Application: Wave Number Selection by a Focus

δθ

rδθ

B

A

q

∇ · (qB(q)) = 0 ⇒
∮

B(q)q · n̂ dl= 0

q B(q) = C

r
→

r →∞ 0

i.e. q → q f with B(qf ) = 0, the wave number of the zigzag instability!
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Defects
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Defects and Broken Symmetries

There aretwobroken symmetries: rotational and translational.

Correspondingly there are two types of topological defects:

• Rotational (associated with direction of wavevectorq)

� Focus, disclination (point defect)

� Grain boundary (line defect)

• Translational (associated with phaseθ )

� Dislocation (point defect)

Unfortunately the rotational defects cannot be considered independently

of the broken translational symmetry, and this complicates the discussion.
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Focus/target defect

Wavevector winding number = 1
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Disclinations

(a) (b) (c)

Winding numbers: (a)12; (b) 1; (c) -1
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Grain Boundaries

(b)(a)
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Dislocation

C

Phase winding number= 1

2π

∮
∇θ · dl = 1
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Dislocation Climb

Climb motion is through symmetry related states and is smooth

Climb velocity

vd ≈ β(q − qd)

What isqd? Easy in equilibrium systems, not in ones far from equilibrium.
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Convection experiments (from website of Eberhard Bodenschatz)
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Dislocation Glide

Glide motion involves stripe pinch off, and is pinned to the periodic

structure

Dislocation motion is important in the relaxation of patterns.
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Oscillatory Instabilities

The same set of ideas can be applied to oscillatory instabilities

Im σ(q = qc) 6= 0

• Now the amplitude equation is the Complex Ginzburg-Landau (CGL)

equation (complex coefficients)

• Phase equation can be used to understand shocks

I will briefly discuss the case of an instability to spatially uniform

oscillations (qc = 0)
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Linear Instability

x
u

Exponential growth:  exp[σqt]

λ=2π/q

δuq(x⊥, z, t) = uq(z) ei q·x⊥ eσqt

If ωc = − Im σqc 6= 0 we have an instability to

• for qc = 0: a nonlinear oscillator which also supports travelling waves

• for qc 6= 0: a wave pattern (standing or travelling)

Important new concept: absolute v. convective instability
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Absolute and Convective Instability

x x

A
m

pl
itu

de

A
m

pl
itu
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s
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Conditions for Convective and Absolute Instability

• Convective instability: same as condition for instability to Fourier

mode

Maxq Reσ(q) = 0

• Absolute instability: for a growth rate spectrumσq, the system is

absolutely unstable if

Reσ(qs) = 0

whereqs is acomplexwave vector given by the solution of the

stationary phase condition

dσq

dq
= 0
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Derivation of Condition for Absolute Instability

In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as

up(x, t) =
∫ ∞

−∞
dq eiqx+σqt

∫ ∞

−∞
dx′ up(x

′, 0)e−iqx′

Rewrite the integral as

up(x, t) =
∫ ∞

−∞
dx′up(x

′, 0)

∫ ∞

−∞
dq eiq(x−x′)+σqt

For large time and at fixed distance the integral can be estimated using the stationary

phase method: the integral is dominated by the region around the complex wave number

q = qs given by the solution of
dσq

dq
= 0

Estimating the integral from the value of the integrand at the stationary phase point gives

up(x = 0, t) ∼ eσqst

Thus the system will be absolutely unstable for Reσqs > 0.
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Oscillatory Intability: Complex Ginzburg-Landau

Re σq

q

qc=0

nonl inear
wave states

Im σq≠0

1d: ∂T Ā = (1 + ic0)Ā + (1 + ic1)∂
2
X Ā − (1 − ic3)

∣∣Ā∣∣2 Ā

2d: ∂T Ā = (1 + ic0)Ā + (1 + ic1)∇2⊥ Ā − (1 − ic3)
∣∣Ā∣∣2 Ā
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Simulations of the CGL Equation

General equation (2d)

∂T Ā = (1 + ic0)Ā + (1 + ic1)∇2⊥ Ā − (1 − ic3)
∣∣Ā∣∣2 Ā

Case simulated:

• c0 = −c3 (no loss of generality) for simplicity of plots

• c1 = 0 (choice of parameters)

∂T Ā = (1 − ic3)Ā + ∇2⊥ Ā − (1 − ic3)
∣∣Ā∣∣2 Ā

Simulations…
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Nonlinear Wave Patterns

As well as uniform oscillations, CGL equation supports travelling wave

solutions, but with properties that are strange to those of us brought up on

linear waves:

• Waves annihilate at shocks rather than superimpose

• Waves disappear at boundaries rather than reflect (not shown)

• Defects: importance as persistent sources

• Spiral defects play a conspicuous role, because they are topologically

defined persistent sources

• Shocks between spiral defects lead to exponential decay of

interaction (not 1/r as in real amplitude equation)

• Instabilities can lead to spatiotemporal chaos
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Wave Solutions

∂T Ā = (1 + ic0)Ā + (1 + ic1)∇2⊥ Ā − (1 − ic3)
∣∣Ā∣∣2 Ā

Travelling wave solutions

ĀK (X, T) = aK ei (K ·X−�K T)

a2
K = 1 − K 2 �K = −(c0 + c3) + (c1 + c3)K 2

Group speed

S= d�K /d K = 2(c1 + c3)K

Standing waves, based on the addition of waves atK and−K can be

constructed, but they are unstable towards travelling waves
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Stability Analysis

ĀK (X, T) = (aK + δa)ei (K ·X−�K T+δθ)

Forsmall, slowly varyingphase perturbations

∂Tδθ + S∂Xδθ = D‖(K )∂2
Xδθ + D⊥(K )∂2

Yδθ

with longitudinal and transverse diffusion with constants

D‖(K ) = (1 − c1c3)
1 − νK 2

1 − K 2
D⊥(K ) = (1 − c1c3)

with

ν = 3 − c1c3 + 2c2
3

1 − c1c3

• D‖ = 0 ⇒ Benjamin-Feir instability (longitudinal sideband instability analogous to
Eckhaus) for

|K | ≥ 3B = ν−1

leaving a stable band of wave numbers with width a fractionν−1 of the existence
band.

• For 1− c1c3 < 0 all wave states are unstable (Newell)
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Stability Balloon
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Nonlinear Phase Equation

For slow phase variations about spatially uniform oscillations (now

keeping all terms up to second order in derivatives)

∂Tθ = � + α∇2⊥θ − β( E∇⊥θ)2

with

α = 1 − c1c3

β = c1 + c3

� = c0 + c3

Can be used to understand shocks
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Cole-Hopf Transformation

The Cole-Hopf transformation

χ(X, Y, T) = exp[−βθ(X, Y, T)/α]
transforms the nonlinear phase equation into thelinear equation forχ

∂Tχ = α∇2
Xχ

Plane wave solutions

χ = exp
[
(∓βK X + β2K 2T)/α

]

correspond to the phase variations

θ = ±K X − βK 2T
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Cole-Hopf Transformation (cont)

Since theχ equation islinear, we can superimpose a pair of these

solutions

χ = exp
[
(−βK X + β2K 2T)/α

]
+ exp

[
(+βK X + β2K 2T)/α

]

The phase is

θ = −βK 2T − α

β
ln[2 cosh(βK X/α)].

For large|X| the phase is given by (assumingβK positive)

θ → −K X − βK 2T − α
β

exp(−2βK X/α) for X → +∞
i.e. left moving waves plus exponentially decaying right moving waves

with the decay lengthα/2βK . Similarly for X → −∞ get left moving

waves with exponentially small right moving waves.
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Shocks

shock

(a)

(b)

• Shocks are sinks, not sources

• For positive group speed shocks between waves of different frequency

move so that the higher frequency region expands
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Spiral Defects

m-armed spiral:
∮

∇θ · dl = m × 2π

Ā = a(R)ei (K (R)R+mθ−�sT)

with for R → ∞
a(R) → aK K (R) → Ks with �K (Ks) = �s
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Uniqueness

A key question is whether there is a family of spirals giving a continuous

range of possible frequencies�s, or there is a unique spiral structure with

a prescribed frequency that selects a particular wave number (or possibly

a discrete set of possible spirals).

A perturbative treatments of the CGLE for smallc1 + c3 about the real

amplitude equation predicts a unique stable spiral structure, with a wave

numberKs that varies as (Hagan, 1982)

Ks → 1.018

|c1 + c3| exp[− π

2 |c1 + c3| ].
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Stability Revisited

• Wave number of nonlinear waves determined by spirals

• Only BF stability of waves atKs relevant to stability of periodic state

• Convective instability may not lead to breakdown

• Core instabilities may intervene
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Stability lines of the CGLE (unstable states are towards larger positivec1c3)

-2

0

2

4

0 1 2 3c3

c1
Unstable

Stable

solid line: Newell criterionc1c3 = 1
dotted line: convective Benjamin-Feir instability of spiral-selected wavenumber
dashed line: absolute instability of spiral selected wavenumber
dashed-dotted line: absolute instability of whole wavenumber band
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Waves in Excitable Media

Waves in reaction-diffusion systems such as chemicals or heart tissue

show similar properties to waves in the CGL

[From Winfree and Strogatz (1983) and the website of G. Bub, McGill]
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