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Abstract

Measuring dispersions in S( �Q, ω) with time-of-flight spectrometers re-
quires both Q resolution and E resolution. The Q resolution is espe-
cially important for elastic scattering and for dispersive excitations of
high E and small q. Optimizing detector placement for minimum blur-
ring in Q leads to very different instrument configurations than does
optimization E resolution.

1 Introduction

Energy resolution is an important figure-of-merit for the design of direct geometry
chopper spectrometers, and can be the most important figure-of-merit for incoher-
ent scattering. The primary flight paths at SNS are quite long, and the moderator
pulses short on flight paths 17 and 18, promoting good energy resolution. In eval-
uating instrument configurations, the secondary flight path is the parameter for
adjusting energy resolution. When selecting a distribution of detector positions
around the specimen, a spherical locus of detector positions provides energy reso-
lution that is uniform at all angles around the sample.

Optimization is quite different for Q resolution, however. This has been less of
a focus of the ARCS instrument design, however, because historical trends have
emphasized the design of instruments for work with polycrystalline samples. Mea-
suring dispersive excitations in single crystals forces the consideration of Q resolu-
tion. Specifically, it is suggested that the instrument be optimized for fractional Q
resolution. The figure-of-merit, ∆Q/Q, is analogous to the figure-of-merit, ∆E/E
for E resolution.

2 Optimization for ∆Q/Q

The parameter space for optimization is broad, since various types of excitations
must be considered. The extreme cases are treated below as: 1) elastic scattering,
2) highly dispersive inelastic scattering and 3) dispersionless inelastic scattering.
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3 Optimization for ∆Q/Q in Elastic Scattering

It is easiest to first analyze the Q resolution for elastic scattering, and some of the
issues for elastic scattering pertain directly to inelastic scattering.

3.1 Incident Divergence

The finite size of the moderator provides an angular divergence of incident neu-
trons on the sample. This is approximately 10 cm over 1350 cm, or about 0.4◦.
This incident divergence may or may not contribute to the divergence in scattered
beams, depending on the process involved. For elastic Bragg scattering, for ex-
ample, the incident divergence will allow intense Bragg peaks from all parts of a
sample misoriented to within about 0.4◦. Although incident divergence is a poten-
tially serious problem, a perfect crystal will still provide sharp Bragg diffractions.
This incident divergence can be the dominant effect on Q-resolution for some types
of inelastic scattering, however.

3.2 Mosaic Spread

It is important to consider the limit to Q resolution caused by the sample itself
– the instrument should need not be much better than the intrinsic resolution of
the sample. One issue is that a finite sample subtends a non-zero angle over the
secondary flight path, l3. This can be ignored for a typical 1 cm sample, which is
much smaller than the expected size of detector pixels.

The “mosaic spread,” denoting the mean mutual misorientations of the different
subvolumes of a crystal, is an important figure-of-merit for single crystal samples. A
good single crystal sample may have a mosaic spread of 0.2 ◦, for which the angular
blurring of an elastic beam at a detector located 10 m away from the sample is
3.4 cm. This is only slightly larger than typical detector pixel resolutions. Better
instrument resolution would be a reasonable request, except for the fact that a
10 m sphere of detectors around the sample is prohibited by constraints of cost and
space. Nevertheless, we note that a long secondary flight path, l3 = 10 m, could be
justified for single crystals of high quality in cases where the incident divergence
does not dominate the Q resolution.

3.3 Locus of Constant ∆Q/Q

We seek the locus of detectors that provides a constant ∆Q/Q, defined as the
resolution, RQ:

RQ ≡
∆Q

Q
. (1)
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Figure 1: Detector locus for constant ∆Q/Q. Crosses are spaced at 2 ◦ increments
of 2θ . Labels indicate specific 2θ angles. Sample would be located at (0,0).
Distance units are arbitrary, but they are equal for the two axes.

By definition

Q ≡ 4π
sin(θ)

λ
, so (2)

∆Q = 4π
cos(θ)

λ
∆θ , (3)

giving

RQ = cot(θ)∆θ . (4)

When RQ is plotted in polar coordinates, the detector locus is defined. This
is shown in Fig. 1. This shape is quite incompatible with the spherical solution
for constant ∆E/E. At low angles, the detector placements required for constant
∆E/E and constant ∆Q/Q are exactly orthogonal.

The resolution RQ diverges at small angles, because at small angles Q→ 0, so
very small ∆Q is needed to maintain a constant ∆Q/Q. A small angular spread
for ∆Q is achieved only when the detector pixels are very small or are placed at
very large l3. At the other extreme, the detector distance for constant ∆Q/Q is
infinitesimal when the scattering angle, 2θ, is 180 ◦, since small variations in angle
have no effect on Q for direct backscattering.

3.4 Coupling of Q Resolution to E Resolution

One obvious incompatibility of the ∆Q/Q optimization and the ∆E/E optimiza-
tion is that the secondary flight path, l3, becomes vanishingly small at θ = 90◦.
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(This is strictly true only for the elastic scattering. For a fixed energy transfer,
however, there will be a particular angle of inelastic scattering for which ∆Q = 0
in Eq. (4).)

Poor energy resolution will cause a smearing in Q, increasing RQ. For elastic
scattering:

Q = kf − ki =

√
2mE

�
2 sin θ , (5)

dQ

dE
=

√
2m

�
√
E

sin θ , (6)

dQ

dE
=

Q

2E
sin θ , (7)

dQ

Q
=

dE

E

sin θ

2
, (8)

so ∆Q/Q and ∆E/E are comparable for modest angles.
The obvious solution is to use a spherical detector locus for high scattering

angles. For purposes of comparison with the “Model D” instrument considered
in [1], we pick this distance as 3.0 m, which gives energy resolutions as small as
∆E/E = 1 %. At 2θ = 40◦ the contribution to ∆Q/Q is less than 0.2 %, and this
is even smaller at lower angles.

4 Optimization of ∆Q/Q for Inelastic Scattering

4.1 Ewald Spheres and Incident Divergence

Three important cases are depicted in Fig. 2. Case 1, elastic scattering, was the
topic of the previous Sect. 3. Case 2, dispersive inelastic scattering, is considered
first. This problem is presented in two parts, the case for the first Brillouin zone,
and the case for higher Brillouin zones. Case 3 of Fig. 2 is presented last, since it
is more straightforward.

For a fixed energy loss, the value of
∣
∣�kf

∣
∣ is constant, although �kf may take

different orientations. The kinematics of this scattering are understood most con-
veniently by use of the Ewald sphere construction, which is shown for elastic scat-
tering in Fig. 3a. The Ewald sphere construction is useful for analysis of diffraction
conditions because it identifies the relationship between the wavevector transfer,
Q, and the reciprocal lattice vector, τ , showing when the Laue condition, �Q = �τ ,
is satisfied for diffraction. In inelastic scattering the momentum of the excitation,
�q, plays a similar role to �τ , especially in the first Brillouin zone where τ is zero.

For the inelastic scattering process shown in Fig. 3b, all {�kf} have the same
length (as for the elastic case of Fig. 3a), since the energy Ef is identical for all

orientations of �kf . In both Figs. 3a and 3b, the allowed �kf make a sphere, which

when placed at the tail of �ki, provide the allowed { �Q} as shown in the figure (where

as usual �Q ≡ �kf − �ki).
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Figure 2: Three types of scattering processes (1) is elastic scattering, (2) is disper-
sive inelastic scattering, and (3) is non-dispersive inelastic scattering.

Figure 3: (a) Ewald sphere construction for elastic scattering, showing allowed
�Q for Bragg diffraction. (b) Ewald sphere construction for inelastic scattering,

showing allowed { �Q}.
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Figure 4: Ewald sphere construction for elastic scattering (a) before, and (b) after

tilt of �ki. Notice that �Q no longer touches the reciprocal lattice vector �τ after tilt.

The advantage of the Ewald sphere constructions of Fig. 3 is in analyzing tilts
of the incident beam, as occurs for incident divergence, for example. The cases of
Fig. 4 show conditions for elastic scattering before and after tilt. It is evident that
the condition for momentum conservation (the Laue condition)

�Q− �τ = 0 (9)

is generally violated by tilting, because tilts of �ki by the angle φ cause �Q to tilt by
this same angle φ. The consequence of this violation of momentum conservation is
that coherent elastic scattering is altered, and Bragg diffractions may be eliminated,
for example. Those neutron trajectories with improper �ki will not contribute to
the Bragg diffraction.

4.2 First Brillouin Zone – Soft Dispersions

One case for inelastic scattering is shown in Fig 5a. This case is a scattering from
the first Brillouin zone, where the reciprocal lattice vector, �τ = 0. The diameters
of the two circles are set by the energy and momentum transfer to the excitation.
In Fig. [?]a,

∣
∣�kf

∣
∣ �
√

2
∣
∣�ki

∣
∣, indicating that the neutron has lost half its energy to

the solid. For the present case where the excitation is of energy Ei/2, we further
assume a relatively soft dispersion where the momentum of the excitation q is
assumed the same as the momentum of the neutron, kf . A circle is used for the
locus of acceptable �q (a circle is not expected for anisotropic crystals, of course).
This circle has a large radius, as may be expected if a dispersive excitation has a
soft dispersion relation.

The effect of tilt on the scattering condition is shown in Fig. 5b. It is evident
by geometry that the tilt of �ki and �q are by the same angle for this case of �q
lying in the first Brillouin zone. This could affect the ability of the neutron to
excite the dispersive mode, at least if the dispersive mode is as sharp in �q as a
Bragg diffraction. Conditions where highly anisotropic dispersions have a delicate
contact with the locus of �Q can also be envisioned.
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Figure 5: Ewald sphere construction for inelastic scattering (a) before, and (b) after

tilt of �ki. Notice that although �Q has the same magnitude, it changes orientation
by the same tilt angle, φ, as the incident beam.

4.3 Higher Brillouin Zones – Stiff Dispersions

The case of a high energy excitation is shown in Fig. 6. In this case the dispersion
is very steep, and the energy is so high that the energy of the excitation is large,
even when q is small. In this particular case, there are no excitations in the first
Brillouin zone because q < Qmin.

1 The excitation can occur in a higher Brillouin
zone with the help of a reciprocal lattice vector, �τ so that

�Q− �q − �τ = 0 . (10)

This case of a high-energy excitation is a higher Brillouin zone is interesting because
a tilt of �ki does not induce a tilt of �Q by the same angle. Figure 6 shows that small
tilts have big effects on the orientation of �q. In essence, the reciprocal lattice vector
can amplify the tilt of the incident beam on the rotation of �q. In this case it seems
plausible that for sharp, stiff excitations, only a �ki of the correct orientation can
generate the excitation. The mosaic spread of the sample will be able to pick these
acceptable �ki from the incident beam, and the Q resolution of the experiment will
originate with the mosaic spread of the sample and not the incident divergence.

1Experimentally, it might be prudent to use a larger Ei and kf so that excitations in the first
zone are allowed. In this case the result of Sect. 4.2 is recovered, that is the tilt angle of �ki equals
the tilt angle of �q. The present results from higher Brillouin zones remain valid, however.
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Figure 6: Ewald sphere construction for inelastic scattering (a) before, and (b)

after tilt of �ki. In this case the excitation has a large E for a small q. Notice that
although �Q has the same magnitude, it changes orientation strongly after tilt of
the incident beam.

4.4 Non-Dispersive Excitations

The case of non-dispersive excitations in Fig. 2 is straightforward to analyze with
Figs. 5 and 6. The point is that the circle of q can be of arbitrary radius, since the
energy of the excitation does not depend on q. For this reason, at a fixed energy
transfer equal to that of the excitation, there will always be an excitation with
an appropriate q to satisfy momentum conservation. All orientations of �ki will be
useful for generating the excitation, and the incident divergence will dominate over
the crystal mosaic spread in setting the Q resolution.

A similar result pertains to inelastic incoherent scattering.

5 Consequences for Spectrometer Design

5.1 Assumptions

We assume that high quality crystals will be available for at least some experiments,
and these crystals will be of highest quality for experiments where Q resolution
is most important. It behooves the ARCS team to build an instrument that pro-
vides the best resolution for these samples. Assuming that the mosaic spread of
the sample is not a limitation, the question is now whether the incident diver-
gence dominates the Q resolution. If the scattering process does not select from
the divergence of incident {�ki}, there is no point in building an instrument with
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long secondary flight path for optimizing the ∆Q/Q. For stiff dispersions in higher

Brillouin zones, the excitation can itself select the incident �ki, reducing the depen-
dence of Q resolution on incident divergence. This is the same situation for elastic
scattering, where Ef − Ei is precisely zero, hence �q = 0 or τ .

An important question is how precisely resolved in Q are the stiff dispersions.
If their spread in k-space is intrinsically large (i.e., they are not highly delocalized
so that �q is not precisely defined), it would be unreasonable to invest in an instru-
ment with a good ∆Q/Q. An instrument with a 3 m secondary flight path would
probably be a best buy. On the other hand, if further discussion shows that the
excitations are able to select among the different angles of incident {�ki}, a long
secondary flight path is justified on scientific grounds. The next Sect. 5.2 assumes
this to be the case, and offers suggestions for the instrument configurations.

5.2 Suggested Instrument Configurations

Here we ignore contributions of ∆Q/Q that originate with incident divergence and
mosaic spread, and for purposes of argument we choose a dimensional scale for Fig.
1 by selecting a 2.54 cm PSD. We seek a Q resolution, RQ, of 1 %. For a scattering
angle of 2θ = 10◦, this RQ = 1 % resolution occurs at a distance l3 = 14.5 m. This
distance is a disappointing 30 m for 2θ = 5◦. These are unrealistically long lengths,
and the mosaic spread of the crystal is likely to dominate beyond 10 m anyhow.
Somewhat arbitrarily, the l3 distance was set at 10 m in a forwared detector bank
of ±10◦. With l3 = 10 m, the Q resolution at 2θ = 3◦, 6◦, 9◦ is RQ = 5, 2.5, 1.6
%. The resolution of 5 % is somewhat disappointing, but this could be halved by
placing smaller detectors at angles below 5◦. Nevertheless, for a detector bank at
l3 = 10 m the energy resolution should be superb, perhaps around 0.5 %. This
may enable precise measurements of lineshapes of crystal field levels and neutron
Brillouin scattering.

Suggested shapes for Q-optimized instrument configurations are shown in Figs.
7a,b. Figure 7a is a modification to the Model “D” spectrometer of [1]. This config-
uration has a uniform spacing of detectors at three radii. The configuration of Fig.
7b includes two banks of detectors at constant radii (3 m and 10 m), but also places
a bank of detectors along the locus of constant RQ. Detectors in this intermediate
bank would not be spaced adjacently. They would be placed approximately so
they did not overlap along individual neutron trajectories. (The optimization for
constant RQ was the distance calculated for scattering angles perpendicular to the
neutron trajectory from the sample.) There would therefore be approximately the
same total number of detectors for the instrument configurations of Figs. 7a and
b. Unfortunately, it seems that a 10 m flight path will interfere with the wall of
the target building, so it may need to be shortened or altered in shape.

We note that the optimization in the present section is equivalent to that for a
small-angle neutron scattering instrument. It might be interesting to consider the
measurement of stiff dispersions on a SANS instrument with a Fermi chopper and
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Figure 7: (a) Suggested alteration to the “Model D” spectrometer of [1]. The actual
detector positions are along arcs of 3.0, 5.5, and 10.0 m from the sample. The Q
resolution is constant along the line of crosses. With these distances and 2.54 cm
PSD’s, along the line of crosses the resolution ∆Q/Q is RQ = 1.0 %. Detectors
outside this line provide better Q resolution, those inside provide worse resolution.
(b) An alteration to Model “D” differing from that in (a) in the intermediate angle
bank, for which the detectors are placed for constant resolution in Q.

energy resolution.

6 Summary of Q Broadening

Four sources of Q broadening were considered:

• The finite size of the moderator, even over a long primary flight path, provides
a significant angular divergence of neutrons on the specimen. This divergence
is about 0.4◦ without a guide, and will be larger for thermal neutrons that
have been reflected along the guide. If the excitations in the specimen do
not select among these incident �ki, the resolution of the experiment will be
dominated by incident divergence.

• A 0.2◦ mosaic spread of a good crystal will cause an angular spread of 3.5 cm
at 10 m. This is comparable to detector pixelation along a diagonal direction,
which is approximately 2.5

√
2 = 3.5 cm.

• The energy resolution leads to a coupled smearing in Q. Since the energy
resolution is quite good for all flight paths, this source ofQ smearing is not the
biggest problem for single crystal work, especially in the forward direction.

• The sin θ-dependence of Q conspires with finite detector pixel size to give a
divergent l3 in the the forward direction. A RQ of 1.0 % is not possible for
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scattering angles, 2θ, smaller than 14◦ if a 10 m secondary flight path is used
with 2.54 cm detectors. The problem is proportionately worse for shorter
flight paths.

7 Summary

Several independent phenomena degrade the Q resolution of an inelastic scattering
experiment. Although the primary flight path is longer than needed for optimiz-
ing energy resolution, it is not too long for optimizing Q resolution owing to the
finite size of the moderator. The incident divergence can in fact dominate the
Q resolution of inelastic scattering measurements. This is less of a problem for
experiments in which coherent inelastic scattering have highly precise E(�q) rela-
tionships, or when the scattering occurs by excitations in a higher Brillouin zone.
It is important to assess whether these cases will comprise a significant portion
of the science program of the ARCS spectrometer. If so, optimizing Q resolution
requires departing from the spherical detector locus that is expected for E opti-
mization. Suggestions are made for instrument configurations with three detector
banks (Figs. 7a,b).

8 Acknowledgements

The author appreciates the viewpoints of Drs. S. E. Nagler, R. J. McQueeney and
D. Abernathy, and enjoys his conversations with them.

References

[1] D. Abernathy, “Possibilities for High-Energy Chopper Spectometers at the SNS,”
23 April 2001, unpublished.

11


