DOS Inversions with Coherent Scattering

Brent Fultz California Institute of Technology

This morning you saw how inversions of incoherent inelastic scattering from 57 Fe overcame the neutron-weighting problem.

More information is available through the Q- or \vec{Q} dependence of coherent scattering.

Polycrystalline Average of Dynamical Structure Factor

- Polycrystalline Ni₃Al at HFIR with 4 values of Q. (We were looking at order-disorder phenomena...)
- Lattice dynamics on single crystal ordered Ni₃Al were done by C-K. Loong, et al.
 - Typo in a table of force constants.
 - O. G. Randl gave us some help getting 1nn, 2nn radial force constants of fair quality.
- Calculated incoherent scattering with Born–von Kármán code.
- Calculated coherent scattering from all orientations of crystallites w.r.t. \vec{Q} .

(Coherent scattering was considered a nuisance to be overcome.)

The Q-dependence gives us more information about dynamics.

- Interpretable with powders and typical statistics.
- \vec{Q} -dependence is even better, but requires single crystals.

Possible Experiments

- Force constant softening in B2 NiTi, using polycrystalline samples.
- Temperature-dependence of lattice dynamics in bcc transition metals.
 - Ti phonons harden with increasing temperature(!)
 - Fe ?
 - Mo ?