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Abstract—We consider q-deformations of Witt rings, based on geometric operations on zeta
functions of motives over finite fields, and we use these deformations to construct q-analogs of the
Bost-Connes quantum statistical mechanical system. We show that the q-deformations obtained
in this way can be related to Habiro ring constructions of analytic functions over F1 and to
categorifications of Bost-Connes systems.
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1. INTRODUCTION

In the present paper, we study q-deformations of the Bost-Connes system, their relation to classical
q-analog constructions, and the properties of the resulting quantum statistical mechanical systems, in
relation to motives over finite fields. In this introductory section we review briefly the main terminology
and notation, with reference to the appropriate literature, about the Bost-Connes system, and about
some relevant notions of q-deformation.

In the rest of the paper, we first consider the q-deformations of the Witt ring W (A) introduced
in [20–23] and we show that, under these deformations W q(A) of the Witt ring, the Bost-Connes
algebra remains undeformed. We then introduce some natural modifications of these q-deformations,
which are motivated by natural geometric operations on zeta functions of schemes of finite type over
Fq. We show that these modified q-deformations give rise to q-deformed Bost-Connes algebras. The
first geometric deformation we consider corresponds, at the level of zeta functions, to a geometric
tower obtained by taking products of a given scheme X with sets of q�-points. This deformation is
similar to the one considered in [20–23], but it deforms W0(A) leaving the product in the Witt ring
W (A) and Λ(A) undeformed. The resulting q-deformation of the Bost-Connes algebra, in this case,
consists of only a mild change that replaces the original integral Bost-Connes algebra AZ of [7] with the
product AZ ⊗Z Z[q]. We then show that a more interesting q-deformation is obtained if, instead of taking
products of schemes X with zero-dimensional spaces consisting of q�-points, one takes products with
affine spaces A

�. Since #A
�(Fq) = q�, this deformation generalizes the previous one, in the sense that

the previous one occurs as first order term. We then show that, using these deformations one obtains
interesting q-deformed Bost-Connes algebras that can be related to the constructions of [15, 17], and
of [14], and also to the categorifications of Bost-Connes systems of [18]. We also discuss the role of
q-analogs and a q-deformation of the Riemann zeta function in this context. Finally, we propose the
categorification of Weil numbers and its associated quantum statistical mechanical system constructed
in [18] as another possible q-deformation of the Bost-Connes algebra that fits into the general framework
discussed in this paper.

∗The text was submitted by the authors in English.
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1.1. The Bost-Connes Quantum Statistical Mechanical System

In [2], Bost and Connes introduced a quantum statistical mechanical system whose partition function
is the Riemann zeta function and whose equilibrium states are related to cyclotomic fields with the Galois
action. The algebra of observables of the system is a semigroup crossed product algebra C∗(Q/Z)�N,
where C∗(Q/Z) = C(Ẑ) is generated by abstract roots of unity e(r), r ∈ Q/Z, and the elements n
in the multiplicative semigroup are realized by isometries μn. The semigroup N acts on C∗(Q/Z) by
endomorphisms

ρn(e(r)) = μne(r)μ
∗
n =

1

n

∑

s:ns=r

e(s).

The time evolution of the system is given by σt(e(r)) = e(r) and σt(μn) = nit μn, with generator the
Hamiltonian Hεk = log(k)εk , in a representation on �2(N). The partition function is the Riemann zeta
function,

Z(β) = Tr(e−βH) =
∑

k≥1

k−β .

The extremal low temperature KMS states are polylogarithm functions evaluated at roots of unity,
normalized by the Riemann zeta function, while at zero temperature the KMS states and the symmetry
action are related to cyclotomic fields with the Galois action of Gal(Qab/Q). We refer the reader to [2]
and Chapter 3 of [8] for a detailed discussion of these properties.

The Bost-Connes system was reinterpreted in [6] as a particular example of an “endomotive”, a
projective system of zero-dimensional varieties with semigroup actions. The analytical properties of
the quantum statistical mechanical system and its relation to L-functions were also generalized to this
context. Moreover, in [7], the Bost-Connes endomotive was related to the geometry of the “field with one
element" F1 and its system of extensions (given by roots of unity) as defined by Kapranov-Smirnov [11].
In [5], the integral Bost-Connes system considered in [7] was related to Witt rings and the Frobenius
and Verschiebung operators. In [18], generalizations and categorifications of the Bost-Connes system
were constructed, which include Weil numbers and motives over finite fields.

Further aspects of the relation between the Bost-Connes system and F1-geometry were considered
in [15] and [17]. Manin proposed in [15] to use the Habiro ring of q-functions, [9], as a good notion of
analytic geometry and analytic functions over F1, and analogs of the Bost-Connes system based on the
Habiro ring were constructed in [17]. Relations between the Habiro ring and motives were discussed in
[14].

1.2. The Integral Bost-Connes Algebra

An integral model of the Bost-Connes algebra was introduced in [7], in relation to F1-geometry.
The integral Bost-Connes algebra AZ is the algebra generated by the group ring Z[Q/Z] and by

elements μ̃n and μ∗
n satisfying the relations

μ̃nxμ
∗
n = ρ̃n(x)

μ∗
nx = σn(x)μ

∗
n

xμ̃n = μ̃nσn(x),

for all x ∈ Z[Q/Z] and all n ∈ N, where σn(x) is an endomorphism of Z[Q/Z] given by σn(e(r)) = e(nr),
while ρ̃n(e(r)) =

∑
nr′=r e(r

′). The elements μ̃n and μ∗
n also satisfy the relations

μ̃nm = μ̃nμ̃m, m, n ∈ N, μ∗
nm = μ∗

nμ
∗
m, m, n ∈ N,

μ∗
nμ̃n = n, n ∈ N, μ̃nμ

∗
n = μ∗

nμ̃n, (n,m) = 1.

In [5], the integral BC algebra is related to the universal Witt ring W0(F̄p), where F̄p is the algebraic
closure of Fp. Moreover, it is shown that that there is a p-adic representation of the integral BC algebra
into the Big Witt Ring W (F̄p), determined by the embedding of W0(F̄p) into W (F̄p).
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1.3. q-Deformations

There is a vast literature on the subject of q-deformations and q-analogs. The basic form of q-analog
consists of the q-integers

[n]q :=
1− qn

1− q
= 1 + q + · · ·+ qn−1.

Generalizations of the Riemann zeta function based on q-integers have been considered, for instance, in
[4, 10, 12], and in a different form, suitable for an Euler product expansion, in [26, 27], while q-Bernoulli
numbers were considered in [3]. A q-deformed analog of the polylogarithm function, the q-polylogarithm,
was considered in [29]. The Witt ring also has a natural q-deformation, which was studied in [20–22].
These and other q-deformations of Witt rings will be crucial to our analysis of possible q-deformations
of the Bost-Connes system. We discuss these q-deformations in the next section, and other forms of
“geometric” q-deformations in the following sections.

2. WITT RINGS AND THEIR q-DEFORMATIONS

2.1. Witt Rings and Operations

We first recall some basic definitions regarding Witt rings. For A an associative commutative ring,
let EndA be the category of endomorphisms of projective A-modules of finite rank. The objects of this
category are pairs (E, f), where f ∈ EndA(E). With the direct sum and the tensor product defined
componentwise on the objects, the Grothendieck group K0(EndA) also acquires a commutative ring
structure. Let K0(A) be the ideal generated by the pairs of the form (E, f = 0). Then one defines

W0(A) = K0(EndA)/K0(A). (2.1)

There are several operators defined on W0(A), including the Frobenius, the Verschiebung, and the
Teichmüller and ghost maps, [1]. These play an important role in the relation between Witt rings and
the integral Bost-Connes system, as shown in [5].

The ghost ring functor gh : Rings → Rings associates to each object A the ring whose underlying
set is

A∞ := {(xn)n∈N |xn ∈ A}
and to each morphism f : A → B the morphism

gh(f) : (xn)n∈N �→ (f(xn))n∈N.

Given an associative and commutative ring A, the Big Witt Ring W (A) is characterized by the three
properties:

1. As a set, W (A) equals A∞.

2. For any ring homomorphism f : A → B, the map W (f) : W (A) → W (B) given by

(xn)n∈N �→ (f(xn))n∈N

is a ring homomorphism.

3. The map Φ : W (A) → gh(A), given by

(xn)n∈N �→ (
∑

d|n
dx

n
d
d )n∈N,

is a ring homomorphism, where gh(A) is the image of A under the ghost ring functor described
above.
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The Frobenius, Verschiebung, Teichmüller, and ghost map operators are also defined on the ring
W (A), satisfying the same set of relations as on W0(A), see [1].

We also recall briefly the relation between W0(A) and W (A), and the Grothendieck λ-ring Λ(A), see
[1, 24].

Given an element (E, f) in W0(A), let M(f) denote the matrix representation of f : E → E, as in
[1, 5]. The following properties determine a natural embedding of W0(A) into W (A), see [1].

• The map L : W0(A) → Λ(A) given by L(E, f) �→ det(1− tM(f))−1 is a homomorphic injection
into the additive group of the Λ ring, with image given by the subgroup

Range(L) =

{
1 + a1t+ ...+ ant

n

1 + b1t+ ...+ bmtm
, ai, bj ∈ A

}
. (2.2)

• The Artin-Hasse exponential map ε : W (A) → Λ(A) given by

ε : (xn) �→
∏

n∈N

1

1− xntn

is an isomorphism.

2.2. q-Deformations of Witt Rings
q-Deformations of the Witt Ring, considered as a q-deformed functor from the category of rings

to itself, and of the ghost map were introduced in [20–22]. We recall the basic properties of these
deformations.

For q a positive integer and A an associative commutative ring, the q-deformed Big Witt Ring W q(A)
is characterized in [22] by the following three conditions:

1. As a set, W q(A) equals A∞

2. For any ring homomorphism f : A → B, the map W q(f) : W q(A) → W q(B)

(xn)n∈N �→ (f(xn))n∈N

is a ring homomorphism.

3. The map Φq : W (A) → gh(A)

(xn)n∈N �→ (
∑

d|n
dq

n
d
−1x

n
d
d )n∈N (2.3)

is a ring homomorphism.

Moreover, the Grothendieck λ-ring also admits a q-deformation Λq(A), as in [21]. As a set, Λq(A) =
1 + tA[t] = {1 +

∑∞
n=1 ant

n, an ∈ A,n ≥ 1}, where the addition is defined as the usual multiplication
of power series raised to the q-th power, and the multiplication is defined by requiring that

(1− at)−q 	q (1− bt)−q = (1− abt)−q. (2.4)

It is proved in [20] that, for every commutative ring in which q is invertible, the map η : Λ(A) →
Λq(A), given by η(f) = f(t)q, is an isomorphism. Thus, in this case, one can identify the underlying set
of Λq(A) with the q-th powers of the power series in t with coefficients in A having constant term equal
to 1.

Note that the product (2.4) under 	q in Λq(A) differs from the usual product (1− at)−q 	 (1− bt)−q =

(1− abt)−q2 as elements of Λ(A). In particular, for A = k, while the product of (1− at)−q and (1− bt)−q

in Λ(k) can be interpreted as L((E⊕q
1 , f⊕q

1 )⊗ (E⊕q
2 , f⊕q

2 )) = (1− abt)−q2 for (E1, f1) = (k, a) and
(E2, f2) = (k, b), the corresponding identity

Lq(k, a) 	q L
q(k, b) = Lq(k, ab)

that matches (2.4) does not correspond to just identifying Lq(E, f) with L(E⊕q, f⊕q).
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Proposition 2.1. Let A be a commutative ring in which q is invertible. The q-deformed character-
istic polynomial

Lq : W0(A) → Λq(A), Lq(E, f) = det(1− tM(f))−q (2.5)

determines a homomorphic injection whose image is

Range(Lq) = { (1 + a1t+ ...+ ant
n)q

(1 + b1t+ ...+ bmtm)q
, ai, bj ∈ A}.

Proof. The result of [20] mentioned above, showing that the map η(f) = f(t)q is an isomorphism,
combined with the homomorphic injection L(E, f) �→ det(1− tM(f))−1 to (2.2), implies that the
following diagram commutes

Λ(A)
η−−−−→ Λq(A)

�⏐⏐L

�⏐⏐Lq

W0(A)
id←−−−− W0(A) .

The result then follows.

Corollary 2.2. The q-deformed Witt ring W q(A) contains an isomorphic copy of W0(A).

Proof. The q-deformed Witt ring W q(A) is isomorphic to Λq(A) through a q-analog of the Artin-Hasse
map, see [23]. It is then easy to see that W0(A) can be embedded inside W q(A), with the map given by
the composition of the q-deformed characteristic polynomial (2.5) with the q-analog of the Artin-Hasse
map.

Later, we will describe an explicit canonical embedding of W0(A) into W q(A), in the special case
where A = k is an algebraically closed field.

3. UNDEFORMED BOST-CONNES ALGEBRAS IN q-DEFORMED WITT RINGS

The integral form of the Bost-Connes algebra introduced in [7] is directly related to the Witt ring
W0(A), as shown in [5]. The operations σn and ρ̃n of the integral Bost-Connes algebra are induced
by the Frobenius and Verschiebung and their extensions to the Witt ring W (A). In this section, we
consider the q-embedding of W0(A) into W q(A) of Corollary 2.2, and the natural operations in W q(A),
and we show that the same construction of [5] goes over with minor modifications to this case and realize
the same (undeformed) integral Bost-Connes algebra in terms of Frobenius and Verschiebung on the
q-deformed Witt ring W q(A). We will see in the following section how this suggests then a natural
deformation of the integral Bost-Connes algebra, based on a modification of the q-deformation W q(A)
of the Witt ring, which differs from the one introduced in [20–23].

3.1. Operations on q-Deformed Witt Rings

We begin by checking that operations and relations on W0(A) extend compatibly to W q(A) through
the q-embedding.

As mentioned in §2.1, the ghost map, the Frobenius, and the Verschiebung are operators defined
on W0(A), and W (A). It is shown in [1] that the operators defined on them are, in the appropriate
sense, compatible. We now prove that the operators defined on W0(A), when the latter is q-embedded in
W q(A), are also compatible with the operators defined on W q(A).

Definition 3.1. Let Aq[t] be the ring whose underlying set is A[t], with the addition defined by the
usual addition of power series, and the multiplication defined by

∑
ant

n
∑

bnt
n =

∑ 1

q
(anbn)t

n. (3.1)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 3 2017



q-DEFORMATIONS 209

In the following we focus on the case where A = k is an algebraically closed field. We obtain the
following compatibilities between W0(k) and W q(k) under the q-embedding.

Proposition 3.2. Let A = k be an algebraically closed field. The following compatibilities hold
between operations on W0(k) and W q(k) under the q-embedding of Corollary 2.2.

1. the ghost map ghn defined on W0(k) by

ghn : W0(k) → gh′(k), (E, f) �→ (tr(fn))n∈N

is compatible with the ghost map defined on W q(k) by Φq of (2.3), in the sense that the
following diagram commutes:

W0(k)
Lq

−−−−→ Λq(k) W q(k)
⏐⏐	ghn

⏐⏐	 d
dt
log

⏐⏐	Φq

gh′(k)
ιq−−−−→ kq[t] gh(k)

where the q-identification ιq is given by

ιq : (xn) �→
∑

n

qxnt
n−1. (3.2)

2. The Frobenius map Fn defined on W0(k) by (E, f) → (E, fn) is compatible with the Frobe-
nius map F ′

n on W q(k) in the sense that the following diagram is commutative:

W0(k)
Lq

−−−−→ Λq(k) W q(k)
⏐⏐	Fn

⏐⏐	F ′′
n

⏐⏐	F ′
n

W0(k)
Lq

−−−−→ Λq(k) W q(k) .

3. The Verschiebung operator Vn defined on W0(k) by

(E, f) →

⎛

⎜⎜⎜⎜⎜⎜⎝
E

⊕
n,

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ... ... f

1 0 0 ... 0

. . . . . . . . . . . . .

0 0 0 ...1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
(3.3)

is compatible with the Verschiebung operator V ′
n on W q(k) in the sense that the following

diagram is commutative:

W0(k)
Lq

−−−−→ Λq(k) W q(k)
⏐⏐	Vn

⏐⏐	V ′
n

W0(k)
Lq

−−−−→ Λq(k) W q(k) .

Proof. We work under the assumption that A = k is an algebraically closed field.

1. It is clear from [1] and [23] that the right half of the diagram is commutative. The isomorphism
between Λq(k) and W q(k) is given by the q-deformed Artin-Hasse exponential map. The
isomorphism between gh(k) and kq[t] is given by the q-identification (3.2). In an algebraically
closed field, the matrix associated with the endomorphism f can be triangulated. Therefore, the
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n-th component of the ghost map is given by
∑

i α
n
i , where αi are the eigenvalues associated with

the endomorphism f . Note that, given these eigenvalues,

Lq(E, f) = det(1− tf)−q =
∏

i

(1− αi)
−q.

Taking the log-derivative of this, we then obtain

d

dt
log(

∏

i

(1− αi)
−q) = q

d

dt

∑

i

log(1− αi)
−1 = q

∞∑

j

(
∑

i

αj
i )t

j−1,

where the second identify follows from the identity

d

dt
log(

1

1− at
) =

∑

i

aiti−1,

which is obtained from the Taylor expansion of the log function. Given the i-th ghost component
of W0(k), which is xi =

∑
i α

j
i , we obtain through the q-identification,

ιq((xn)) = q

∞∑

j

(
∑

i

αj
i )t

j−1.

2. As in [1], using the identification between W q(k) and the ring Λq(k), we see that the Frobenius
map on W q(k) is the same as the map

F ′′
n : (1− at)−1 �→ (1− ant)−1

Then, suppose given (E, f) ∈ W0(k), where f has eigenvalues αi. The Frobenius map sends
(E, f) to (E, fn), where the eigenvalues of fn ware αn

i . Then we obtain

F ′′
n (L

q(E, f)) = F ′′
n (

∏

i

(1− αi)
−q) =

∏

i

(1− αn
i )

−q = Lq(E, fn) = Lq(Fn(E, f)).

3. Again, the equivalence of the right half of the diagram is shown in [23]. Note that the Verschiebung
operator Vn acting on Λq(k) is defined by

Vn : (1− at)−1 �→ (1− atn)−1,

for (1− at)−1 ∈ Λq(k). A direct calculation then shows that

det

⎛

⎜⎜⎜⎜⎜⎜⎝
1−

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ... ... f

1 0 0 ... 0

. . . . . . . . . . . . .

0 0 0 ...1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
t

⎞

⎟⎟⎟⎟⎟⎟⎠

−1

= (1−M(f) tn)−1.

Thus, the commutativity of the left half of the diagram also follows.

3.2. Divisor Map and Undeformed Bost-Connes Algebra

When A is an algebraically closed field k, the determinant function factors completely into linear
forms in terms of the eigenvalues of the endomorphisms. Associating to each pair (E, f) the divisor δ(f)
of non-zero eigenvalues of f determines a ring isomorphism between W0(k) and the group ring Z[k∗]. If
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in particular k = F̄p is the algebraic closure of a finite field Fp, it is shown in [5] that one obtains a natural
isomorphism

σ : W0(F̄p) → Z[(Q/Z)(p)], (3.4)

where (Q/Z)(p) is the group of fractions with denominator prime to p.

The map σ of (3.4) is induced by the divisor map. Given an element (E, f) in W0(k) with α the
eigenvalues of f and n(α) their multiplicities, the divisor map is given by

δ(f) := δ(L(E, f)) = δ(
∏

(1− αt)−n(α)) =
∑

n(α)[α], (3.5)

As shown in Proposition 2.3 of [5], it defines an element in Z[k∗], and one obtains a ring isomorphism

δ : W0(k) → Z[k∗]. (3.6)

When we consider W0(k) as embedded in the q-deformed Witt ring W q(k), or equivalently we use the
q-deformed characteristic polynomialLq : W0(k) → Λq(k), the divisor map (3.5) is no longer compatible
with the multiplication 	q in Λq(k). Indeed, we have

δ(Lq(E, f)) = δ(
∏

(1− αt)−qn(α)) =
∑

q n(α) [α].

Using (k, a)⊗ (k, b) = (k, ab), we have Lq(k, a) = (1− at)−q and Lq(k, b) = (1− bt)−q in Λq(k) with
Lq((k, a) ⊗ (k, b)) = Lq(k, a) 	q L

q(k, b) = (1− abt)−q = Lq(k, ab), by the definition of the induced
product 	q on Λq(k), while the multiplication of the divisors as elements in the group ring gives
δ(Lq(k, a))δ(Lq(k, b)) = (

∑
q n(α) [α])(

∑
q n(β)[β]) = q · δ(Lq(k, ab)).

Thus, the only way to restore the multiplicative property is to compute δq(Lq(E, f)) = q−1δ(Lq(E, f))
= δ(L(E, f)). This restores the original map (3.5) on the undeformed Λ(k), hence the same undeformed
Bost-Connes algebra as constructed in [5].

While the q-deformations of Witt rings considered in [20–23] do not directly lead to a q-deformed
Bost-Connes algebra through the same construction of [5], this suggests a modification of the con-
struction of q-deformed Witt rings, with a different motivation in mind than the q-Möbius functions and
q-deformed necklace rings that motivated the construction of [20–23].

4. GEOMETRIC q-DEFORMATIONS OF WITT RINGS

In this section we discuss a different approach to q-deforming the Witt rings, and we show that, unlike
the case discussed in the previous section, this leads to q-deformations of the Bost-Connes algebra. The
crucial difference here is that, instead of q-deforming the Witt ring W (A) to W q(A), or equivalently
deforming Λ(A) to Λq(A) as in [20–23], we consider a deformation of W0(A) to a q-deformed W

q
0(A),

while we maintain the product in W (A) and Λ(A) undeformed.

Geometrically, if we consider elements of Λ(k) that arise from zeta functions of schemes (see [24]),
the two kinds of deformations that we introduce in this section have a very simple geometric meaning.
The first arises by replacing a scheme X with a tower where Xq� = X 	 · · · 	X, a disjoint union of

q� copies of X (or equivalently the product of X with a q� points). The second deformation consists of
replacing X with the tower of the products X × A

�. Since, when q is a prime power q = pr, the number
of points #A�(Fq) = q�, the second construction will be an extension of the first, where the case of q�-
points appears as the first term, but all the additional contributions of the field extensions A

�(Fqn) are
also counted. Thus, we refer to them, respectively, as the q�-points deformation and the A�-deformation.
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4.1. The q�-Points Deformation

Let Ωq denote the map Ωq : W0(A) → W0(A) that maps Ωq : (E, f) �→ (E⊕q, f⊕q). Consider the
restriction of the characteristic polynomial map L : W0(A) → Λ(A) to the range Ωq(W0(A)). Notice
that, unlike the q-deformations considered in the previous sections, here we do not deform the product
in Λ(A). We work with the undeformed product determined by

(1− at)−1 	 (1− bt)−1 = (1− abt)−1.

We define Sq(E, f) = L(Ωq(E, f)). Note that this is the same characteristic polynomial (1− tM(f))−q,
as in the case of the q-deformed characteristic polynomial Lq(E, f) considered above, except that now
we regard it as an element of the undeformed ring Λ(A) rather than as an element of Λq(A).

Definition 4.1. The q�-points deformation of the Witt ring W0(A) is the graded ring W
q
0(A)

defined as a set by

W
q
0(A) = ⊕�≥0Ωq�(W0(A)), (4.1)

with addition and multiplication induced uniquely by addition and multiplication in W0(A).

Lemma 4.2. The multiplication operation on W
q
0(A) obtained as above satisfies

	 : Ωq�(W0(A))× Ωq�′ (W0(A)) → Ωq�+�′ (W0(A))). (4.2)

Proof. We have Ωq�(E1, f1) = (E⊗q�

1 , f⊗q�

1 ) and Ωq�′ (E2, f2) = (E⊗q�
′

2 , f⊗q�
′

2 ), hence their product in

W0(A) is given by ((E1 ⊗ E2)
⊕q�+�′

, (f1 ⊗ f2)
⊕q�+�′

) and we obtain

Ωq�(E1, f1)⊗ Ωq�′ (E2, f2) = Ωq�+�′ (E1 ⊗ E2, f1 ⊗ f2). (4.3)

At the level of characteristic polynomials this corresponds to the product relation

Sq�(E1, f1) 	 S
q�

′
(E2, f2) = Sq�+�′

(E1 ⊗ E2, f1 ⊗ f2)), (4.4)

since we have

L(Ωq�(E1, f1)) 	 L(Ωq�′ (E2, f2))) = L(Ωq�(E1, f1)⊗ Ωq�′ (E2, f2))

= L(Ωq�+�′ (E1 ⊗ E2, f1 ⊗ f2)).

Lemma 4.3. The Frobenius Fn and Verschiebung Vn on W0(A) extend to a Frobenius Fn and
Verschiebung Vn on W

q
0(A), satisfying Ωq� ◦ Fn = Fn ◦ Ωq� and Ωq� ◦ Vn = Ṽn ◦ Ωq�, where Ṽn is

Vn up to a a change of basis given by a permutation.

Proof. We have Fn(E, f) = (E, fn), hence Fn(E
⊕q� , f⊕q�) = (E⊕q� , (fn)⊕q�) = Ωq�(E, fn). We index

the entries of the matrix

Vn(f) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ... ... f

1 0 0 ... 0

. . . . . . . . . . . . .

0 0 0 ...1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
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as (Vn(f))ij with i = (a, b) and j = (a′, b′) where a, a′ = 1, . . . , k where k× k is the dimension of M(f),
and b, b′ = 1, . . . , n. The second indices (b, b′) specify which square block of size k we are considering
and the first index (a, a′) locates the position in that square block. Then the entries of Vn(f) are

(Vn(f))ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

faa′ b = 1, b′ = q

1 a = a′, b′ = b− 1

0 otherwise.

Thus, Vn(f
⊕q�) can be indexed by (Vn(f

⊕q�))ij with i = (a, b, r) and j = (a′, b′, r′) with a, a′, b, b′ as
above and r, r′ = 1, . . . q� with entries as above for r = r′ and zero otherwise. Clearly, this also indexes
the entries of (Vn(f))

⊕q� .

We use the same notation Fn and Vn for the Frobenius and Verschiebung on W
q
0(A).

Proposition 4.4. Let k be an algebraically closed field. The divisor map (3.5) extends to a ring
isomorphism δq : W

q
0(k) → Z[q][k∗] given by

δq(Ωq�(E, f)) = q�δ(L(E, f)) = q�
∑

n(α)[α]. (4.5)

Proof. We have

δq(Ωq�(A, f)) = δ(Sq�(A, f)) = δ(
∏

(1− αt)−q�n(α))

= q�
∑

n(α)[α].

It is clear that δq is compatible with addition, and by (4.3) it is also compatible with multiplication

δq(Ωq�+�′ (E1 ⊗ E2, f1 ⊗ f2)) = δq(Ωq�(E1, f1)⊗ Ωq�′ (E2, f2))

= δ(Sq�(E1, f1) 	 S
q�

′
(E2, f2)) = δ(Sq�+�′

(E1 ⊗ E2, f1 ⊗ f2)))

= q�+�′
∑

n(α)n(β)[α][β] = (q�
∑

n(α)[α])(q�
′ ∑

n(β)[β]) ∈ Z[q][k∗].

The fact that the original δ is a bijection also implies that δq is a bijection.

Using as in [5] an isomorphism σ : F̄∗
p → (Q/Z)(p) together with the divisor map δq of (4.5) we obtain

an isomorphism

σ̃q : W
q
0(F̄p) → Z[q][(Q/Z)(p)], σ̃q = σ ◦ δq. (4.6)

Note that the construction of the deformation W
q
0(F̄p) and the divisor map (4.6) make sense for an

arbitrary integer q, which is not necessarily a power of p.

4.2. The q�-Points Deformation of the Bost-Connes Algebra

Let σ̃q : W
q
0(F̄p) → Z[q][(Q/Z)(p)] ⊂ Z[q][Q/Z] be as in (4.6). We consider endomorphisms σn,q of

Z[q][Q/Z] that satisfy

σn,q ◦ σ̃q = σ̃q ◦ Fn, (4.7)

with Fn the Frobenius on W
q
0(F̄p).

Lemma 4.5. Let E(r, k) := qke(r) in Z[q][Q/Z], where e(r) are the generators of Z[Q/Z]. The
endomorphisms σn,q : Z[q][Q/Z] → Z[q][Q/Z] satisfying (4.7) are given by

σn,q(E(r, k)) = qke(nr) = E(nr, k). (4.8)
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Proof. Given Ωqk(E, f) ∈ W
q
0(A), with L(E, f) =

∏
(1− αt)−n(α) we have

δq(Ωqk(E, f)) = qk
∑

n(α)[α], while δq(Fn(Ωqk(E, f)) = qk
∑

n(α)[αn].

Thus, we see that, with this choice of q�-points deformation W
q
0(F̄p) the resulting q-deformation

of the Bost-Connes algebra is essentially trivial, consisting only of replacing the coefficient ring Z of
Z[Q/Z] by the polynomial ring Z[q], but the operations σn,q (hence also the corresponding operations
ρ̃n,q) remain the same unperturbed operation of the original Bost-Connes algebra and are the identity
on the polynomial ring Z[q].

Corollary 4.6. The deformation of the Bost-Connes algebra AZ induced by the q�-points defor-
mation W

q
0(F̄p) of the Witt ring W0(F̄p) is simply given by the product AZ ⊗Z Z[q].

4.3. The A�-Deformation

We improve on the construction described above by replacing the q�-points deformation with another
geometrically motivated deformation, which arises from thinking of the q� points as the Fq points of
an affine space A

� and constructing the deformation determined geometrically by taking products with
affine spaces.

Recall that, if X is a scheme of finite type over k = Fq with q = pr a prime power, then the associated
zeta function is given by

Z(X, t) = exp(
∑

m≥1

Nm(X)
tm

m
) =

∏

x

(1− tdeg(x))−1,

with Nm(X) = #X(Fqm) and deg(x) the degree of the extension [k(x) : Fq], with k(x) the residue field
at the point x. Writing Nm(X) =

∑
r|m r · ar, where

ar = #{x : [k(x) : Fq] = r},
we obtain

Z(X, t) =
∏

r≥1

(1− tr)−ar . (4.9)

In the case of an affine space A
� we have

Z(A�, t) = exp(
∑

m

q�m
tm

m
) = (1− qnt)−1.

In terms of (4.9) this is

Z(A�, t) = (1− qnt)−1 =
∏

r≥1

(1− tn)−M(qn,r), (4.10)

where

M(qn, r) =
1

r

∑

d|r
μ(d) q

nr
d , (4.11)

with μ(x) the Möbius function.

Given a scheme X with zeta function Z(X, t), taking the product X ×A
� gives

Z(X ×A
�, t) = Z(X, q�t). (4.12)

More generally, as discussed in [24], one should regard zeta functions Z(X, t) as elements in the Witt
ring W (Z) satisfying

Z(X × Y, t) = Z(X.t) 	 Z(Y, t), (4.13)
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where 	 is the Witt ring product determined by (1− at)−1 	 (1− bt)−1 = (1− abt)−1. For a disjoint
union X 	 Y , the zeta functions multiply, where multiplication of series corresponds to the addition
operation +w in the Witt ring,

Z(X 	 Y, t) = Z(X, t) · Z(Y, t) = Z(X, t) +w Z(Y, t). (4.14)

Indeed, a more general inclusion-exclusion formula holds, see [24].

Remark 4.7. Since M(q, 1) = q, we have

(1− qt)−1 = (1− t)−q ·
∏

r>1

(1− tr)−M(q,r).

The first term (1− t)−q is the kind of q-deformation of (1− t)−1 that we considered in the previous
sections. In this sense, we can regard (1− qt)−1 as a generalization of the q-deformation (1− t)−q

discussed before, where the previous deformation appears as the order one term.

Modeled on the behavior of these geometric zeta functions, we consider a different construction of a
q-deformation of the Witt ring W0(A). For (E, f) ∈ W0(A) with L(E, f) =

∏
(1− αt)−n(α), let

Ω̃q�(L(E, f)) :=
∏

(1− α q� t)−n(α). (4.15)

Definition 4.8. The A
�-perturbation of the Witt ring W0(A) is the graded ring W̃

q
0(A) defined as a

set by

W̃
q
0(A) = ⊕�≥0Ω̃q�(L(W0(A))), (4.16)

with L : W0(A) → Λ(A) is the characteristic polynomial map to the undeformed Λ(A), with the
operations induced from W0(A).

Lemma 4.9. Let A = k be an algebraically closed field. The multiplication in W̃
q
0(A) obtained as

above satisfies

	 : Ω̃q�(L(W0(A))) × Ω̃q�′ (L(W0(A))) → Ω̃q�+�′ (L(W0(A))). (4.17)

Proof. It suffices to check the property on elements of the form L(E, f) =
∏
(1− αt)−n(α). With the

undeformed product in Λ(A) we have
∏

(1− α q� t)−n(α) 	
∏

(1− β q�
′
t)−n(β) =

∏
(1− αβ q�+�′t)−n(α)n(β).

Proposition 4.10. Let k be an algebraically closed field. The divisor map (3.5) extends to a ring
isomorphism δ̃ : W̃q

0(k) → Z[q][k∗] given by

δ̃(Ω̃q�(L(E, f))) = δ(
∏

(1− α q� t)−n(α)) = q�
∑

n(α)[α]. (4.18)

Combining this with an isomorphism σ : F̄∗
p → (Q/Z)(p) as in [5] gives an isomorphism

σ̂q = σ ◦ δ̃ : W̃q
0(F̄

∗
p) → Z[q][(Q/Z)(p)]. (4.19)

Proof. The argument is exactly as in the previous case and in Proposition 2.3 of [5]. The compatibility
with multiplication follows from the previous Lemma.
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4.4. A�-Deformed Bost-Connes Endomorphisms

Let σ̂q : W̃
q
0(F̄

∗
p) → Z[q][(Q/Z)(p)] be as in (4.19), with Z[q][(Q/Z)(p)] ⊂ Z[q][Q/Z]. We construct

endomorphisms σ̂n,q of the ring Z[q][(Q/Z)(p)] that satisfy

σ̂n,q ◦ σ̂q = σ̂q ◦ Fn, (4.20)

with Fn the Frobenius on W̃
q
0(F̄

∗
p).

Lemma 4.11. Let E(r, k) = qk e(r) ∈ Z[q][Q/Z], with e(r) the generators of Z[Q/Z]. The endomor-
phisms

σ̂n,q(E(r, k)) = qnke(nr) = E(nr, nk) (4.21)

satisfy the compatibility condition of (4.20).

Proof. It suffices to check that the Frobenius action on W̃
q
0(k) is given by

Fn Ωq�(L(E, f)) = Ωqn� FnL(E, f), (4.22)

since we have

Fn

∏
(1− αq�t)−n(α) =

∏
(1− αnqn�t)−n(α) = Ωqn� L(E, fn).

The divisor map then gives δ̃(Fn Ωq�(L(E, f))) = qn�
∑

n(α)[αn]. For k = F̄
∗
p, this is the image of

δ̃(Ωq�(L(E, f))) = q�
∑

n(α)[α] under an endomorphism σ̂n,q that induces (4.21) on Z[Q/Z].

The compatibility with the Verschiebung Vn is more subtle.
In geometric terms, that is, for elements of the Witt ring that are zeta function of a scheme of

finite type over k, the Verschiebung corresponds to the Weil restriction of scalars. Namely, if X is a
scheme of finite type over an extension k′ = Fpnr of k = Fpr , the Verschiebung acts on the zeta function
Vn Z(X, t) = Z(RnX, t), where RnX = Resk′/kX is the scheme over k obtained by restriction of scalars
from k′ to k, see [24] for more details.

In our setting, we have the following compatibility condition between Verschiebung and the defor-
mations Ω̃q� .

Lemma 4.12. Let A = k be an algebraically closed field. The Verschiebung Vn on W0(A) satisfies

Vn ◦ Ω̃qn� = Ωq� ◦ Vn. (4.23)

Proof. For (E, f) ∈ W0(A) with L(E, f) =
∏
(1− αt)−n(α) we have

Vn(L(E, f)) = L(Vn(E, f)) = L((E⊕n, Vn(f))

with

Vn(f) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ... ... f

1 0 0 ... 0

. . . . . . . . . . . . .

0 0 0 ...1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

hence L(Vn(E, f)) =
∏
(1− ωi,nt)

−n(α), where ωn
i,n = α for i = 1, . . . , n. Thus, we have

Ωq� Vn(L(E, f)) =
∏

(1− ωi,n q
� t)−n(α) = Vn(

∏
(1− α qn� t)−n(α)) = VnΩqn�(L(E, f)),

hence Vn satisfies (4.23).
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This shows that, in order to extend the Verschiebung Vn to the entire W̃
q
0(A), compatibly with its

action on W0(A) and with the relation (4.23), one needs to extend the deformation

Ω̃q� :
∏

(1− αt)−n(α) �→
∏

(1− α q�t)−n(α)

to include rational powers of q, so that Vn ◦ Ω̃q� can be defined, compatibly with (4.23), when n does not
divide �. In terms of our geometric interpretation, these q-deformations arise from products with affine
spaces. Equivalently, in motivic terms, they are given by products with powers of the Lefschetz motive
L. Thus, we can frame an appropriate extension of the action of the Verschiebung in terms of the roots
of Tate motives discussed in [14].

4.5. Roots of Tate Motives

In the geometric setting, the zeta functions Z(X, t) of schemes of finite type over k = Fpr determine
a ring homomorphism from the Grothendieck ring K0(VFpr

) of varieties over Fpr to the Witt ring W (Z),
see Theorem 2.1 of [24]. The Grothendieck ring K0(Vk) is generated by isomorphism classes [X] of
schemes of finite type over k with relations [X] = [Y ] + [X � Y ] for a closed subscheme Y of X and
[X] · [Y ] = [X × Y ]. Classes in K0(Vk) are sometimes referred to as “virtual motives". The Lefschetz
motive L is the class of the affine line L = [A1] in K0(Vk). The Tate subring Z[L] of K0(Vk) maps to the
subring of the Witt ring generated by the zeta functions Z(A�, t) = (1− q�t)−1.

The idea of introducing roots of Tate motives was first suggested in [16]. A geometric construction of a
square root Q(1/2) of the Tate motive Q(1) in terms of supersingular elliptic curves was given in [25]. A
categorical construction of a square root of the Tate motive was given in §3.4 of [13] and generalized
to arbitrary roots Q(r), for r ∈ Q+, in [14]. We recall here briefly this formal categorical definition.
Let T = NumQ(k) be the Tannakian category of numerical pure motives over k with motivic Galois
group G = G(T). Consider the homomorphisms σn : Gm → Gm given by σn : λ �→ λn, and consider
the fibered product of G and Gm

G(n) = {(g, λ) ∈ G×Gm : t(g) = σn(λ)},
where t : G → Gm is the group homomorphism that corresponds to the inclusion of the Tate motives
(with Galois group Gm) inside NumQ(k). The group G(n) is in turn the Galois group of a Tannakian
category T(Q( 1n)) which extends the category T by an n-th root Q(1/n) of the Tate motive Q(1). A more
precise description of these categories and their properties is given in §4 of [14], where the construction
of the roots Q(1/n) is explained in terms of the primary decomposition of n ∈ N. Let T̃ be the Tannakian
category that corresponds to the projective limit G̃ of the groups G(n), as in [14], that is, the Tannakian
category obtained from NumQ(k) by adjoining roots of Tate motives of arbitrary order, Q(r) with r ∈ Q+.

At the level of the Grothendieck ring K0(Vk)[L
−1] with L

−1 the class of the Tate motive Q(1), the
roots Q(1/n) correspond to additing new generatots L

1/n and their inverses. The Tate part of the re-
sulting Grothendieck ring K0(T̃) would then consist of the ring Z[Lr : r ∈ Q+], since K0(T(Q( 1n ))) =
K0(T)[s]/(s

n − L).

Lemma 4.13. The ring homomorphism Z : K0(Vk) → W (Z) given by the zeta functions Z(X, t)

extends uniquely to a ring homomorphism Z : K0(T̃) → W (K), obtained by setting Z(Lr, t) :=
(1− qr t)−1 for r ∈ Q+. Here K is a field that contains Z and all the non-negative real roots qr, for
r ∈ Q+.

Proof. By the description above of the Grothendieck ring K0(T(Q( 1n ))) = K0(T)[s]/(s
n − L), in order

to extend the zeta function homomorphism we need to assign to the additional generator s an element
Z(s) in the Witt ring with the property that the n-fold product Z(s)�n = [1]w, where the unit [1]w in the
Witt ring is [1]w := (1− t)−1. Assigning Z(s, t) = (1− q1/n t)−1 ∈ W (K) satisfies this requirement.
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4.6. Deformed Bost-Connes Algebra

We then extend the A
�-deformation described above, by including roots L

r, r ∈ Q+ of the Lefschetz
motive L

r, as explained above. This will have the effect of rendering the endomorphisms σn,q invertible
in their action on the q variable, while the action on the generators e(r) of Q/Z remains unchanged. The
following elementary fact explains the main idea.

Lemma 4.14. Consider the endomorphisms σn : Z[q] → Z[q] determined by σn : q �→ qn. The direct
limit is given by

R = lim−→
n

(σn : Z[q] → Z[q]) = Z[qr : r ∈ Q+], (4.24)

the polynomial ring in the fractional powers qr. The induced endomorphism σn on the limit
Z[qr : r ∈ Q+] has inverse ρn : qr �→ qr/n.

We consider the following modification of the deformed Witt ring W̃
q
0(A).

Definition 4.15. For r ∈ Q+. For A = k an algebraically closed field and (E, f) ∈ W0(A) with
L(E, f) =

∏
(1− αt)−n(α), let

Ω̃qr(L(A, f)) =
∏

(1− α qr t)−n(α), (4.25)

where we treat q and qr as formal variables. We set

Ŵ
q
0(A) = ⊕r∈Q+Ωqr(L(W0(A)), (4.26)

with the operations induced from W0(A).

As in Lemma 4.9, we have

	 : Ω̃qr(L(W0(A)))× Ω̃qr′ (L(W0(A))) → Ω̃q�+r′ (L(W0(A))). (4.27)

Lemma 4.16. The Frobenius and Verschiebung on W0(A) extend to Ŵ
q
0(A) by

Fn ◦ Ω̃qr = Ω̃qnr ◦ Fn and Vn ◦ Ω̃qr = Ω̃qr/n ◦ Vn. (4.28)

Proof. The case of Frobenius is as in (4.22) and the argument for the Verschiebung is analogous to
Lemma 4.12.

Lemma 4.17. The divisor map (3.5) induces a ring isomorphism δ̂ : Ŵq
0(k) → R[k∗], with the

ring R as in (4.24). Combining this with an isomorphism σ : F̄∗
p → (Q/Z)(p) as in [5] gives an

isomorphism

σ̂q = σ ◦ δ̂ : Ŵq
0(F̄

∗
p) → R[(Q/Z)(p)]. (4.29)

Proof. The argument is exactly as in Proposition 4.10.

Proposition 4.18. Let k = F̄p. The q-deformed integral Bost-Connes algebra AZ,q determined by
the deformation (4.26) of the Witt ring W0(k) is generated by the group ring R[Q/Z], with R as in
(4.24) together with elements μ̃n and μ∗

n satisfying the relations

μ̃nE(r, r′)μ∗
n = ρ̂n,q(E(r, r′)),

μ∗
nE(r, r′) = σ̂n,q(E(r, r′))μ∗

n

E(r, r′)μ̃n = μ̃nσ̂n,q(E(r, r′)),

(4.30)
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where E(r, r′) = qr e(r′) are the generators of R[Q/Z] and σ̂n,q : R[Q/Z] → R[Q/Z] are the endo-
morphisms

σ̂n,q(E(r, r′)) = E(nr, nr′).

The ρ̂n,q are defined by

ρ̂n,q(E(r, r′)) =
∑

ns=r′

E(
r

n
, s). (4.31)

These satisfy the relations

μ̃nm = μ̃nμ̃m, m, n ∈ N, μ∗
nm = μ∗

nμ
∗
m, m, n ∈ N,

μ∗
nμ̃n = n, n ∈ N, μ̃nμ

∗
n = μ∗

nμ̃n, (n,m) = 1,

(4.32)

as in the original integral Bost-Connes algebra.

Proof. The endomorphisms σ̂n,q are constructed so as to satisfy the compatibility with the Frobenius

map Fn acting on Ŵ
q
0(k),

σ̂n,q ◦ σ̂q = σ̂q ◦ Fn,

with σ̂q as in (4.29). This determines σ̂n,q to be of the form

σ̂n,q(E(r, r′)) = qnr e(nr′) = E(nr, nr′).

In turn the ρ̂n,q are constructed so as to be compatible with the Verschiebung Vn on Ŵ
q
0(k),

ρ̂n,q ◦ σ̂q = σ̂q ◦ Vn.

This determines the ρ̂n,q to be given by

ρ̂n,q(E(r, r′)) = qr/n
∑

ns=r′

e(r′) =
∑

ns=r′

E(
r

n
, s).

Lemma 4.19. Let RQ = R⊗Z Q = Q[qr : r ∈ Q+]. The rational q-deformed Bost-Connes algebra
AQ,q is the semigroup crossed product RQ[Q/Z]�ρ N with generators E(r, r′) = qre(r′) and μn, μ∗

n

and with the semigroup crossed product action given by

μnE(r, r′)μ∗
n =

1

n

∑

ns=r′

E(
r

n
, s) = ρn,q(E(r, r′)), (4.33)

and the relations E(r, r′)E(s, s′) = E(r + s, r′ + s′) and

μ∗
nμn = 1, ∀n, μnm = μnμm, ∀n,m,

μ∗
nμ

∗
m = μ∗

mμ∗
n, ∀n,m, μnμ

∗
m = μ∗

mμn, for (n,m) = 1.

(4.34)

Proof. This follows directly from the integral algebra AZ,q by taking ρn = 1
n ρ̃n. The relation between

the rational and the integral algebra is as in the original case, see [7].
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4.7. The Role of the q-Integers
Intuitively, one would expect the q-deformation of the Bost-Connes algebra to replace the integers

n ∈ N with the q-integers [n]q = 1 + q + · · ·+ qn−1. However, it is clear that this cannot be done just
directly, since the q-integers [n]q do not behave well with respect to the semigroup property that is crucial
to the structure of the Bost-Connes algebra.

However, one can see a geometric form of the q-integers in the deformed Witt rings W̃
q
0(A) and

Ŵ
q
0(A), by comparing it again with the case of the zeta functions of schemes over finite fields. We have

seen that mapping L(E, f) =
∏
(1− αt)−n(α) to Ω̃q�(L(E, f)) =

∏
(1− αq�t)−n(α) corresponds, in the

case of zeta functions, to mapping Z(X, t) to Z(X × A
�, t). Similarly, we can consider, for a scheme X

of finite type over k, the transformation that maps Z(X, t) to

Z(X × P
n, t) = Z(X, t) 	 Z(Pn, t).

The zeta function of Pn is given by

Z(Pn, t) =

n∏

i=0

(1− qi t)−1 = [1]w +w [q]w +w [q]�2w +w · · ·+w [q]�nw ,

where we denote by [a]w := (1− at)−1 in the Witt ring. Thus Z(Pn, t) corresponds to the q-integer [n+
1]q where sum and multiplication are replaced by the corresponding sum an multiplication in the Witt
ring. This simply reflects the decomposition P

n = A
0 	 A

1 	 · · · 	A
n and the corresponding counting

of points #P
n(Fq) = [n+ 1]q. The lack of semigroup structure of the q-analogs [n]q corresponds

geometrically to the fact that a product of projective spaces P
n × P

m embeds in a projective space
P
(n+1)(m+1)−1 via the Segre embedding, but is not itself a projective space. If the zeta function is given

by Z(X, t) =
∏

r≥1(1− tr)−ar , then the map above is given by

Z(X, t) 	 [n]q =
∏

i=0,...,n−1
r≥1

(1− qitr)−ar .

In a similar way, we have an operation in W̃
q
0(A) and Ŵ

q
0(A): for L(E, f) =

∏
(1− αt)−n(α) we have

Ωqr(L(E, f)) �→ Ωqr(L(E, f)) 	 [n]q =
∏

i=0,...,n−1
α

(1− αqr+it)−n(α).

4.8. Orbit Categories and the Habiro Ring

Let C be an additive category and F a self-equivalence. The orbit category C/F has objects
Obj(C/F ) = Obj(C) and morphisms

HomC/F (X,Y ) := ⊕k∈ZHomC(X,F k(Y )). (4.35)

If C is symmetric monoidal and F = −⊗ O is given by tensoring with an ⊗-invertible object O in C, the
orbit category C/−⊗O is also symmetric monoidal, see §7 of [28].

Let T = NumQ(k) be the category of numerical motives, as above and let K0(T) be the corresponding
Grothendieck ring. Then the Grothendieck ring of the orbit category Tn := T/−⊗Q(n) can be identified
with K0(Tn) = K0(T)/(L

n − 1), Proposition 3.6 of [14]. While the Grothendieck ring of varieties
K0(Vk) is not the same as the Grothendieck ring of numerical motives, this observation gives an
interpretation for the meaning of the quotient rings K0(Vk)/(L

n − 1). When introducing formal roots of
Tate motives, one can similarly consider orbit categories T(Q(1/n))/−⊗Q(m/n) and Grothendieck rings

K0(T(Q(1/n)))/(Lm/n − 1). When one restricts to considering only Tate motives with Grothendieck
ring Z[L], introducing roots of Tate motives and taking orbit categories leads, respectively, to the rings
Z[Lr : r ∈ Q+] and the ring

Ẑ[L]∞ := lim←−
N

Z[Lr : r ∈ Q+]/JN ,
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where JN is the ideal generated by the elements (Lr)N := (LrN − 1) · · · (Lr − 1), see [14]. Equivalently
written at the level of counting functions of Fq-points

Ẑ[q]∞ := lim←−
N

Z[qr : r ∈ Q+]/JN . (4.36)

As shown in [14] and [17], the ring (4.36) is the same as the direct limit

Ẑ[q]∞ = lim−→
n

(σn : Ẑ[q] → Ẑ[q])

of the morphisms σn : Ẑ[q] → Ẑ[q] determined by σn : q �→ qn, where Ẑ[q] is the Habiro ring

Ẑ[q] = lim←−
n

Z[q]/((q)n), (4.37)

where (q)n = (1− q)(1− q2) · · · (1− qn).
In terms of the construction of the q-deformed Bost-Connes algebra described in Proposition 4.18

and Lemma 4.19, this would correspond to a version of the q-deformed algebra where the coefficient ring

R of (4.24) is replaced by R̂ := Ẑ[q]∞.

Proposition 4.20. The Habiro q-deformed integral Bost-Connes algebra is generated by the
group ring R̂[Q/Z] together with elements μ̃n and μ∗

n satisfying the relations (4.30), (4.31), (4.32).
The associated rational algebra is given by the semigroup crossed product ÂQ,q = R̂[Q/Z]�ρ N

with the semigroup action determined by (4.33).

Proof. The compatibility of the operations σ̂n,q and ρ̃n,q with passing to the projective limit R̂ =
lim←−N

R/JN can be shown as in Proposition 2.1 and Lemma 2.3 of [17]. The crossed product action
in this case remains a semigroup crossed product by N, unlike in the case of the algebra considered in
[17] where it becomes a group crossed product by Q

∗
+. Indeed, while the action of σ̂n,q on the coefficient

ring R̂ is invertible (like it is on R itself), the action on R̂[Q/Z] still acts like the original Bost-Connes
endomorphisms on the generators e(r) of Z[Q/Z], with the partial inverses are given by ρn,q.

4.9. Relation to F1-Geometry

The Habiro ring Ẑ[q] was proposed in [15] as a model of analytic functions over F1. The integral Bost-
Connes algebra, on the other hand was related to F1-geometry (in the sense of Kapranov-Smirnov [11])
in [7]. In [17] it was shown that a version of the Bost-Connes algebra can be constructed based on the
Habiro ring, and in [14] this was related to the orbit categories T(Q(1/n))/−⊗Q(m/n) .

The q-deformed Bost-Connes algebra of Proposition 4.18 and its variant considered in §4.4.8 above
combine in a natural way the integral Bost-Connes algebra of [7] with the version based on the Habiro
ring of [17]. This enriches the algebraic form of F1 and its extensions F1m based on roots of unity as in
[11], encoded in the integral Bost-Connes algebra, by combining it with the analytic version developed
in [15].

4.10. Quantum Statistical Mechanics

Consider first the case where the Bost-Connes algebra itself remains undeformed, as in §3. Even
on the undeformed Bost-Connes algebra one can consider interesting q-deformed time evolutions,
that relate the resulting quantum statistical mechanical system to some known q-deformations of the
Riemann zeta function and polylog functions. The simplest such construction is based on the q-analog
of the Riemann zeta function constructed in [26, 27], in the context of a probabilistic approach based
on Bernoulli trials with variable probability. In this context, one assumes that the variable q is real
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with 0 ≤ q < 1, as it represents a probability. With this assumption, the q-analog of the Riemann zeta
function is constructed as follows. For n ∈ N with primary decomposition n =

∏
paii , let

v(n) =
∑

i

ai(pi − 1). (4.38)

Notice that the function v(n) defined in this way satisfies

v(nm) = v(n) + v(m).

Also, for n ∈ N with primary decomposition n =
∏

paii we define

{n}q =
∏

i

[pi]
ai
q , (4.39)

where [p]q = 1 + p+ · · · + pn−1 is the usual q-analog. In other words the {n}q are the elements of the
multiplicative semigroup Nq generated by the q-analogs of the primes. Then one sets

ζq(s) =

∞∑

n=1

qsν(n)

{n}sq
, with q < 1. (4.40)

As shown in [27], this series is convergent for s > 1 and reduces to the Riemann zeta function when
q → 1. It is also shown in [27] that (4.40) has an Euler product expansion

ζq(s) =
∏

p

(1− qs(p−1)

[p]sq
)−1. (4.41)

In our setting, we regard q as a positive integer, hence q > 1. The above expression then needs to be
modified accordingly. We have

qp−1

[p]q
=

qp−1

1 + q + q2 + · · ·+ qp−1
=

1

1 + q−1 + q−2 + · · ·+ q−(p−1)
=

1

[p]q−1

.

Thus, by mapping q �→ q−1, the expression qp−1/[p]q is mapped to 1/[p]q and the version of the zeta
function of (4.40) for q > 1 becomes simply

ζq(s) =
∑

n≥1

{n}−s
q =

∏

p

(1− [p]−s
q )−1, with q > 1. (4.42)

We proceed by defining the time evolution σt,q on the original Bost-Connes algebra AC = AQ ⊗Q C

and on its C∗-algebra completion ABC is obtained as follows.

Lemma 4.21. Setting σt,q(e(r)) = e(r) on the generators e(r) of C[Q/Z] and

σt,q(μn) = {n}itq μn (4.43)

defines a time evolution σ : R → Aut(AC). In the Bost-Connes representations

πα : ABC → B(�2(N)), with α ∈ Ẑ
∗, (4.44)

the time evolution σt,q is generated by the Hamiltonian

Hqεn = log{n}qεn (4.45)

and has partition function

Zq(β) =

∞∑

n=1

{n}−β
q , (4.46)

which is the q-analog zeta function of (4.42).
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Proof. The assignment (4.43) defines a time evolution since
σt,q(μnμm) = {nm}itq μnm = {n}itq {m}itq μnμm and, together with σt,q(e(r)) = e(r), is compatible with
the relations in the algebra, and clearly σt+s(a) = σtσs(a). In the Bost-Connes representation associ-
ated to the choice of an element α ∈ Ẑ

∗, we have

μnεm = εnm

πα(e(r))εm = ζmr εm

(4.47)

where ζr = α∗(e(r)), identifying α with a choice of embedding of the roots of unity Q/Z in C, with ζr the
image of e(r) under this embedding. The Hamiltonian Hq satisfies

eitHqπα(a)e
−itHq = πα(σt,q(a)).

It suffices to check this condition on a = μn acting on basis elements εm, eitHqμne
−itHqεm =

{m}−it
q {nm}itq εnm = σt,q(μn)εm. The partition function is then given by

Zq(β) = Tr(e−βHq ) =
∑

n

〈εn, e−βHqεn〉 =
∞∑

n=1

{n}−β
q .

A more interesting case is the construction of quantum statistical mechanical systems associated to
the q-deformed Bost-Connes algebra of Proposition 4.18 and Lemma 4.19.

Lemma 4.22. The Bost-Connes representations (4.44), (4.47) extend to representations of the
deformed algebra AC,q = AQ,q ⊗Q C of Lemma 4.19 on the Hilbert space H = �2(N)⊗ �2(Λ) with
Λ = qQ+ , given by

μn εm,λ = εnm,λ1/n

πα(E(r, r′)) εm,λ = ζmr′ εm,λ·qr

μ∗
n εm,λ =

⎧
⎪⎨

⎪⎩

εm/n,λn n|m

0 n � |m.

(4.48)

with E(r, r′) = qr e(r′) and ζr = α(e(r)) for a givenα ∈ Ẑ
∗, and where {εm,λ}with m ∈ N andλ ∈ Λ

is the standard orthonormal basis of H.

Proof. These are the same kinds of representations considered in [18], in the special case where
elements λ ∈ Λ always have an n-th root in Λ, so that μ∗

nμn is the identity and not a projector (see
Remark 4.10 and Proposition 4.15 of [18]). First observe that, if we let the generators qr = E(r, 0) act on
εm,λ by E(r, 0) : εm,λ �→ εm,λ·qr , then we need the isometries μn to act as μn : εm,λ �→ εmn,λ1/n (which
in turn determines the action of μ∗

n as in (4.48)) in order to satisfy the relations

μnE(r, 0)μ∗
n =

1

n

∑

ns=0

E(
r

n
, s) (4.49)

in AC,q. Indeed we have, if n|m

μnE(r, 0)μ∗
nεm,λ = μnE(r, 0)εm/n,λn = μnεm/n,λn·qr = εm,λ·qr/n = E(

r

n
, 0) εm,λ,
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or zero if n does not divide m, which agrees with (4.49). One similarly checks compatibility with the
other relations:

μnE(r, r′)μ∗
n = n−1

∑

ns=r′

E(
r

n
, s) = ρn(E(r, r′))

and μ∗
nE(r, r′)μn = σn(E(r, r′)) = E(nr, nr′), as well as E(r, r′)E(s, s′) = E(r + r′, s+ s′) and the

relations (4.34).

In order to construct time evolutions that have a convergent partition function Tr(e−βH) for suffi-
ciently large β, it is convenient to enlarge the algebra by additional “weight operators", as in [18]. We
define the resulting algebra as follows.

Definition 4.23. The extended q-Bost-Connes algebra Aw
Q,q is generated by R[Q/Z] and gener-

ators μn and μ∗
n satisfying the relations (4.33), (4.34), and additional generators given by the

weight operators ωz(λ) for λ ∈ Λ = qQ+ and z ∈ U(1) satisfying the relations

ωz(λ1λ2) = ωz(λ1)ωz(λ2), ωz(λ
−1) = ωz(λ)

−1

ωz(λ)E(r, r′) = E(r, r′)ωz(λ), ωz(λ)μn = μn ωz(λ)
n, μ∗

n ωz(λ) = ωz(λ)
n μ∗

n.

(4.50)

Lemma 4.24. Suppose given a group homomorphism h : Λ → R
∗
+ and an element α ∈ Ẑ

∗. The
representation of Lemma 4.22 mapping πα : AC,q → B(�2(N× Λ)), for α ∈ Ẑ

∗, extends to a repre-
sentation of Aw

C,q = Aw
Q,q ⊗Q C by setting

ωz(λ)εm,η = h(λ)mz εm,η, (4.51)

independently of α ∈ Ẑ
∗, and letting the other generators E(r, r′), μn and μ∗

n act as in (4.48).

Proof. The argument is exactly as in Proposition 4.15 and Proposition 4.27 of [18], with the only
difference that in our case we have μ∗

nμn = 1 since elements λ ∈ Λ always have an n-th root λ1/n in
Λ.

We can then define a time evolution as in [18] in the following way.

Lemma 4.25. Setting

σt(E(r, r′)) = ω−it(q
r)E(r, r′), σt(μn) = nitμn, σt(ωz(λ)) = ωz(λ) (4.52)

defines a time evolution on Aw
C,q. In the representations of Lemma 4.24 this time evolution is

generated by the Hamiltonian

H εm,λ = (log(m)−m log(h(λ))) εm,n. (4.53)

Proof. We check that (4.52) determines a time evolution σ : R → Aut(Aw
C,q) as in Lemma 4.23 of [18].

We have

eitHπα(E(r, r′))e−itH εm,λ = eitHπα(E(r, r′))m−ith(λ)mitεm,λ

= eitHm−ith(λ)mitζmr′ εm,λqr = mith(λqr)−mitm−ith(λ)mitζmr′ εm,λqr

= h(qr)−mitζmr′ εm,λqr = ω−it(h(q
r))E(r, r′)εm,λ = σt(E(r, r′))εm,λ;

eitHμne
−itHεm,λ = eitHμnm

−ith(λ)mitεm,λ = eitHm−ith(λ)mitεmn,λ1/n

= (mn)ith(λ1/n)−mnitm−ith(λ)mitεmn,λ1/n = nitμnεm,λ;

eitHμ∗
ne

−itHεm,λ = eitHμ∗
nm

−ith(λ)mitεm,λ = eitHm−ith(λ)mitεm/n,λn

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 3 2017



q-DEFORMATIONS 225

= (m/n)ith(λn)itm/nm−ith(λ)mitεm/n,λn = n−itμ∗
nεm,λ;

eitHωz(η)e
−itH εm,λ = mith(λ)−mith(η)zmm−ith(λ)mitεm,λ = ωz(η)εm,λ.

This shows that the operator H of (4.53) generates the time evolution (4.52) in the representation of
Lemma 4.24.

The choice of the homomorphism h : Λ → R
∗
+ in the construction of the time evolution (4.52) can

then be used to determine the convergence properties of the partition function of the quantum statistical
mechanical system (Aw

C,q, σt), as in [18]. We adapt the representations described above as in §4.4 of [18],
by decomposing Λ into a countable union of geometric progressions and acting on a Hilbert space that
is a tensor product of the �2-spaces of these countable subsets.

Proposition 4.26. Let Λ = qQ+ and let λk = q1/k ∈ Λ. Consider the homomorphism h : Λ → R
∗
+

determined by h(1) = 1 and h(λk) = [pk]q where pk is the k-th prime number. Consider a repre-
sentation πα of Aw

C,q on the Hilbert space

H = �2(N)⊗
⊗

k

�2(λ
Z+

k )

satisfying (4.48) and (4.51). Then the time evolution (4.52) is implemented in this representation
by the Hamiltonian

Hεm,λ�
k
= (log(m)−m� log([pk]q))εm,λ�

k
.

The partition function is given by

Zq(β) =
∑

n≥1

ζq(nβ)n
−β, (4.54)

where ζq(s) is the q-analog zeta function of (4.42). The series (4.54) converges for β > 3/2.

Proof. As in Lemma 4.25 we have

Hεm,λ�
k
= (log(m)−m� log(h(λk)))εm,λ�

k
= (log(m)−m� log([pk]q))εm,λ�

k
.

Thus, the partition function gives

Zq(β) = Tr(e−βH) =
∑

n≥1

∏

k

∑

�≥0

[pk]
−�nβn−β

=
∑

n

n−β
∏

p

(1− [p]−nβ)−1 =
∑

n

n−βζq(nβ).

Since q > 1, we have [p]q = 1 + q + · · ·+ qp−1 ≥ p and {n}q ≥ n, hence ζq(nβ) ≤ ζ(nβ), with ζ(s)
the Riemann zeta function, so that the convergence of Zq(β) is controlled by the convergence of∑

n n
−βζ(nβ). The convergence of this series for β > 3/2 was shown in Theorem 4.30 of [18].

4.11. Weil Numbers as a q-Deformed Bost-Connes System

Finally, we want to mention another related way of constructing a q-deformed Bost-Connes system,
which is closely related to the one discussed above. In the approach developed in [18], the data of the
Bost-Connes system, consisting of the group ring Q[Q/Z] with the endomorphisms σn and partial
inverses ρn, and the associated algebra AQ = Q[Q/Z]�ρ N, can be generalized to other systems
based on data (Σ, σn) endowed with a Galois action, such that the σn and partial inverses ρn arise
from Frobenius and Verschiebung functors on a categorification Vectk̄Σ(k) of pairs (V,⊕s∈ΣV̄ s) of a
finite dimensional k-vector space V and a Σ-grading of V̄ = V ⊗ k̄. The category Vectk̄Σ(k) is neutral
Tannakian with Galois group given by the affine k-scheme Spec(k̄[Σ]G), with the group operation
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induced from the Hopf structure on k̄[Σ]G. Associated to such data, endowed with a suitable set of
G-equivariant embeddings of Σ to Q̄

∗, it is possible to construct an algebra A(Σ,σn) together with a time
evolution σt, so that the properties of the resulting quantum statistical mechanical system generalize the
original properties of the Bost-Connes system. In particular, as shown in Example 4 of §5 of [18], one
such generalization of the Bost-Connes algebra can be constructed for the data (Σ, σn) where Σ = W(q)
is the set of Weil numbers, namely the subgroup of Q̄∗ given by algebraic numbers π such that,

• for every embedding ρ : Q[π] → C one has |ρ(π)| = qm/2 for some m ∈ Z, the weight m = w(π);

• there is some integer s for which qsπ is an algebraic integer.

Under the identification W(q) � W0(q)× Z by π �→ ( π
|ρ(π)| , w(π)) he surjective group homomorphisms

σn : W(q) → W(q) are given by (π,m) �→ (πn, nm). Since roots of unity Q/Z are contained inside W(q)
as the subgroup Q/Z×{0} ⊂ W0(q)×Z, one can regard the resulting Bost-Connes algebra A(W(q),σn)

associated to the datum (W(q), σn), as constructed in [18] as another form of q-deformation of the
original Bost-Connes algebra AQ = A(Q/Z,σn). In terms of zeta functions, Weil numbers correspond
to Frobenius eigenvalues of motives over finite fields, [19], hence this can be regarded as another way of
using zeta functions as a model for q-deforming the Bost-Connes algebra. We refer the readers to [18]
for more details.
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