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Abstract. In this paper we show that the Breitenlohner-Maison prescription for treating the pres-
ence of chiral symmetry in Dimensional Regularization fits remarkably well with the framework of
noncommutative geometry. In fact, it corresponds to taking the cup product of spectral triples,
with a specific spectral triple Xz whose dimension spectrum is a single complex number z. We give
a realization of Xz using the space of Q-lattices. We introduce a formalism of “evanescent gauge
potentials” and relate the computation of anomalous graphs in dimension 2 and 4 to local index co-
cycles. We draw a dictionary of analogies between evanescent gauge potentials and vanishing cycles
in algebraic geometry.
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1. Introduction

This is an unfinished and unpolished draft, written during a stay of the authors at the Kavli Institute
for Theoretical Physics in Santa Barbara, as guests of the program “Mathematical Structures in String
Theory” in the fall semester of 2005.

Dimensional regularization (Dim-Reg) is the most efficient of the regularization methods used in
quantum field theory to start dealing with the divergences. It has so far been used at a purely
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“formal” level in which the basic formula

(1.1)

∫

e−λ k
2

ddk = πd/2 λ−d/2 ,

is used to “define” the meaning of the integral in d-dimensions.
The main advantage of this procedure is that it is so “canonical” that it respects all the symmetries such
as space-time or gauge symmetries. This advantage breaks down in the presence of a chiral symmetry
where the γ5 matrix cannot be handled naively but requires the more sophisticated prescription of
t’Hooft-Veltman and Breitenlohner-Maison (cf. [26], [5]).
We shall show in this paper that this prescription actually fits remarkably well with the framework of
noncommutative geometry. A noncommutative geometry is given by a spectral triple

(1.2) (A,H, D)

where besides the algebra A concretely represented in the Hilbert space H the essential ingredient is
the self-adjoint operator D in H which encodes the “metric” on the spectrum of A. The dimension of
a spectral triple is governed by a subset Σ ⊂ C called the dimension spectrum (cf. [18], [12]), which
is specified as the set of singularities of analytic continuations of zeta functions of the form

(1.3) ζP (s) = Tr(P |D|−s)
where P varies in a suitable algebra of operators of pseudodifferential type generated by A and D
([18]). Typically (say for an ordinary manifold M) this dimension spectrum is a set of integers

(1.4) {n ∈ N | 0 ≤ n ≤ dim(M)}
Additional structures such as the Z/2 grading γ of the Hilbert space H arise when dealing with even
spectral triples. By construction the Z/2 grading γ anticommutes with the operator D and makes it
possible to define the product with any other spectral triple (A′,H′, D′) as follows

(1.5) A′′ = A⊗A′ , H′′ = H⊗H′ , D′′ = D ⊗ 1 + γ ⊗D′ .

We shall show that the prescription of t’Hooft-Veltman and Breitenlohner-Maison corresponds to
taking the product in the above sense of the standard geometry of (Euclidean) space-time by a very
specific spectral triple Xz of dimension z ∈ C with ℜ(z) > 0, i.e. whose dimension spectrum is
reduced to the complex number z. The effect of taking the product by Xz is to shift by z the
dimension spectrum of the original geometric space thus removing the singularities at the integral
points.
A first adjustment of the general theory of spectral triples will be used to simplify the computations
(but it is not essential). It consists in allowing for “type II” situations (cf. [3], [6], [7]) where the trace
used is no longer the traditional type I trace on L(H) but is the trace on a type II∞ von-Neumann
algebra. This passage from type I to type II makes it possible to include the proper “infrared”
behaviour at little expanse.
Another more serious modification is that when z ∈ C is no longer a real number it is necessary to
drop the hypothesis that D is self-adjoint.
After describing the spaces Xz we shall show that the anomalies of the gauge theory canonically
associated to a spectral triple (cf. [11], [12]) are finite and can be explicitely computed with the same
terms as in the local index formula in noncommutative geometry of [18].
The compatibility of anomalies with NCG has been known and exploited for quite some time but so
far the lack of a conceptual meaning for DimReg prevented people from making direct contact with
the computations as performed in physics.
Our approach makes it possible, in particular, to apply DimReg in the general framework of noncom-
mutative geometry.

1.1. The cubic anomaly and DimReg.

The cubic anomaly is central to the problem of renormalizability of a theory like the standard model,
which involves a gauge theory. The problem is that, in such a theory, one needs to ensure that the
renormalized Lagrangian is still invariant under the same group of local gauge symmetries that leave
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the bare Lagrangian invariant. Thus, it is necessary, in order to have renormalizability and unitarity,
that gauge invariance is preserved at each order in the renormalized perturbation series.
In general the Ward identities determine relations between the Green functions arising from symme-
tries of the Lagrangian. These influence the renormalizability of theories with nontrivial symmetries,
by ensuring cancellations of divergences between different sectors of the theory. There is a complicated
interplay of symmetry and renormalization, whereby the Ward identities can be affected by higher
order corrections, which can generate anomalous terms. In the case of gauge theories, the Ward
identities (or Slavnov–Taylor identities) are related to the symmetries by BRS gauge transformations.
In gauge theories, the problem arises primarily from fermions coupling to gauge fields. This manifests
itself in the Adler–Bell–Jackiw (ABJ) anomaly for electro-weak interactions. The ABJ anomaly can
be formulated in terms of path integrals as the fact that the measure is not invariant under the action
of γ5. Higher order terms do not contribute any further corrections.
Dimensional Regularization (DimReg) is considered the best regularization method, when dealing
with the problem of gauge invariance, because it does not change the formal expression of the Ward
identities, while analytically continuing the dimension D = 4 to complex points D − z = d ∈ C.
In the DimReg scheme, the ABJ anomaly is closely related to the problem of defining γ5 for complex
dimensions. In fact, while for diagrams with open fermion lines it is possible to use a formal definition
of γ5 in arbitrary complex dimension, which satisfies anticommutation relations with all the γµ (cf.
e.g. [9]), when one considers cases like the triangle diagram, with closed fermion loops, one runs into
the further problem of making this formal definition of γ5 compatible with the trace.
In the case of electro-weak interactions where the vector boson associated to the weak interaction
acquires mass through the Higgs mechanism, renormalizability is obtained by showing that the theory
is obtained via a formal transformation of the fields from a renormalizable gauge theory (the latter
can have non-physical particles that may spoil unitarity, cf. [25]). For such a formal transformation
to be possible, one needs to be able to renormalize the gauge theory in a gauge invariant way. This
can be spoiled by the presence of the ABJ anomaly, as shown in [23].
The question of constructing gauge theories that are free of anomalies, both for electro-weakand
strong interactions, was considered in [22], where conditions are given on which gauge groups and
representations will satisfy the vanishing of the triangle anomaly. In the standard electro-weak theory
with SU(2) × U(1), the condition implies relations between the hypercharges.
In fact, an interesting aspect of the equations imposed by the vanishing of the cubic anomalies is that
it imposes constraints on the hypercharges and on the Weyl representations. For instance, it is shown
in [21] and [28] that requiring the theory to be free of anomalies suffices to fix these data uniquely.
This could be an interesting point if one wants to use the vanishing of the anomalies as a constraint
on the geometry.

2. The spaces Xz

We look for a spectral triple whose D = Dz fulfills the following basic equation,

(2.1) Tr(e−λD
2

) = πz/2λ−z/2, ∀λ ∈ R∗
+ ,

corresponding, using (1.1), to

(2.2) Tr(e−λD
2

) =

∫

e−λ k
2

dzk ∀λ ∈ R∗
+ .

Let then Z be a self-adjoint operator affiliated to a type II∞ factor N and with spectral measure given
by

(2.3) TrN (1E(Z)) =
1

2

∫

E

dy

for any interval E ⊂ R, where 1E is the characteristic function of E.
We then let, for any complex number z ∈ C with ℜ(z) > 0,

(2.4) Dz = ρ(z)F |Z|1/z



4 CONNES AND MARCOLLI

Figure 1. The spectrum of D2
z for ℑ(z) 6= 0.

where F is the sign of the operator Z, |Z| its absolute value, and the complex power |Z|1/z is taken
by the usual functional calculus. We take the normalization constant ρ(z) to be

(2.5) ρ(z) = π− 1

2 (Γ(
z

2
+ 1))

1

z .

Proposition 2.1. The operator Dz of (2.4), with the normalization factor (2.5) satisfies (2.1), after
imposing an infrared cutoff on the Trace in the case ℑ(z) 6= 0. The zeta function of Dz has a single
(simple) pole at s = z and is absolutely convergent in the half space ℜ(s/z) > 1.

Proof. We first check it in the case z ∈ R∗
+. One has

TrN(e−λD
2

z ) =
1

2

∫

e−λρ
2 |y|2/z

dy.

Thus, by setting ρ2 |y|2/z = u, one gets dy = ρ−z z2 u
z
2
−1 du and

TrN (e−λD
2

z ) = ρ−z
z

2

∫ ∞

0

e−λu u
z
2
−1 du = ρ−z Γ(

z

2
+ 1)λ−z/2,

so that one obtains as required

(2.6) TrN (e−λD
2

z ) = πz/2 λ−z/2, ∀λ ∈ R∗
+ .

Note that ρ(z) is just a normalization factor and it is well behaved in the limit z → 0, since we have

(2.7)
1

z
log Γ(

z

2
+ 1) = −γ

2
+
π2

48
z + · · · + (−1)n

ζ(n)

n 2n
zn−1 + · · ·

In particular, we have ρ(0) = e−γ/2. (Here γ denotes the Euler constant, not to be confused with the
γ used everywhere else for the grading!)

The above computation of TrN (e−λD
2

z ) makes perfect sense when z ∈ R∗
+, but it requires more care

when the imaginary part of z is non-zero. In fact, in that case the spectrum of D2
z is a spiral in C (cf.

Figure 1), so that e−λD
2

z no longer belongs to the domain of the trace TrN .
One can define the trace by means of a suitable regularization, but it is simpler to directly deal with
the zeta function

(2.8) TrN ((D2
z)

−s/2)

instead of the theta function

(2.9) TrN (e−λD
2

z ).
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We need to impose an infrared cutoff, that is, we perform the integral

(2.10) TrN ((D2
z)

−s/2) =
1

2

∫

(ρ2 |y|2/z)−s/2 dy

in the region outside |y| < 1. This gives, using Tr′N to indicate the cutoff,

(2.11) Tr′N

(

(D2
z)

−s/2
)

= ρ−s
∫ ∞

1

u−s/z du = ρ−s
z

s− z

which, as a function of s, has a single (simple) pole at s = z and is absolutely convergent in the half
space ℜ(s/z) > 1. �

The algebra A′ for the spectral triple defining Xz will play no role below except for the unit element
1 ∈ A′. One could include in A′ any operator a such that [Dz, a] is bounded and both a and [Dz, a]
are smooth for the “geodesic flow”

(2.12) T 7→ eit|Dz | T e−it|Dz |

and it is a relevant question to show that a suitable dimension of the spectrum of such operators is
bounded above by 1/ℜ(1/z) = x+ y2/x for z = x+ iy.

The dimension spectrum of Xz is reduced to the single point z as shown by (2.11).

In order to justify the use of the infrared cutoff in (2.10), one can make the following observation.
Instead of the operator |Z|, consider an operator f(|Z|), where f ∈ C∞(R+) has the following prop-
erties: f is positive, bounded below by a strictly positive real number, one has f(x) = x for x > 1/2,
and f(x) is smaller than 1/2 for x ≤ 1/2. Then one alters (2.6) with an error term

(2.13) R(λ, z) =

∫ 1

2

0

(e−λ ρ
2 |y|2/z − e−λρ

2 f(|y|)2/z

) dy.

This is an analytic function of λ. In the region ℜ(z) > 0, |z| < 1 and |λ| < 2ℜ(2/z), it satisfies the
estimate

(2.14) |R(λ, z)| < C |λ| 2ℜ(−2/z),

for some finite constant C > 0. This does not affect the pole parts in z for all computations involving
DimReg, as we shall check below. With ρ(z)Ff(|Z|1/z) instead of Dz = ρ(z)F |Z|1/z the zeta function
TraceN ((D2

z)
−s/2) is well defined and it differs from (2.11) by an entire function of s which does not

alter the dimension spectrum.

3. An arithmetic realization of Xz

To obtain a concrete realization of the spaces Xz we shall take for N the type II∞ factor obtained
from the noncommutative space L of commensurability classes of Q-lattices in R (cf. [4], [16], [17]).
The unbounded element Y will then be simply given by the inverse of the covolume.

A Q-lattice in R is a pair (Λ, φ), with Λ a lattice in R, and φ : Q/Z → QΛ/Λ a homomorphism of
abelian groups. Two Q-lattices (Λj , φj) are commensurable iff the lattices Λj are commensurable (i.e.
QΛ1 = QΛ2) and the maps φj are equal modulo Λ1 + Λ2.

We let R denote the equivalence relation of commensurability on the space of Q-lattices in R. It is by
construction an étale groupoid with space of units R(0) the space of Q-lattices in R. We identify the

latter with Ẑ × R∗
+ by means of the map

(3.1) L(ρ, λ) = (λ−1Z, λ−1ρ)),

where we use the canonical isomorphism

(3.2) Ẑ ∼ Hom(Q/Z,Q/Z).
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We can then label elements of the groupoid R by triples (r, ρ, λ) with r ∈ Q∗
+ and ρ ∈ Ẑ, such that

r ρ ∈ Ẑ, and λ ∈ R∗
+. The map (3.1) extends to

(3.3) L(r, ρ, λ) = ((r−1 λ−1Z, λ−1ρ) , (λ−1Z, λ−1ρ)), ∀(r, ρ, λ) ∈ R.

The source and range maps are then given by

(3.4) s(r, ρ, λ) = (ρ, λ) , r(r, ρ, λ) = (r ρ, r λ),

and the composition by

(3.5) (r1, ρ1, λ1) ◦ (r2, ρ2, λ2) = (r1 r2, ρ2, λ2), if r2ρ2 = ρ1, r2λ2 = λ1.

It is convenient to use a more compact notation and consider the pair (ρ, λ) as an adele, i.e. as an
element of the subset

(3.6) A+
1 = Ẑ × R∗

+ ⊂ AQ,

where AQ = AQ,f × R denotes the adeles of Q. Thus, we identify R with the groupoid obtained by
restriction to A+

1 ⊂ AQ of the groupoid AQ ⋊ Q∗
+ obtained from the action of Q∗

+ by multiplication
on AQ.
In fact, it is slightly more convenient to use the equivalent groupoid

(3.7) G1 = A1 ⋊ Q∗

obtained by restriction of the groupoid AQ ⋊ Q∗ (which arises in the construction of the adele class
space in [14], [15]) to the subset

(3.8) A1 = Ẑ × R∗ ⊂ AQ.

The convolution of functions is given by

(3.9) f1 ∗ f2(r, a) :=
∑

f1(rs
−1, s a) f2(s, a).

The adjoint of f is given by

(3.10) f∗(r, a) := f(r−1, r a) .

The restriction to A1 of the additive Haar measure da of adeles is preserved by the action of Q∗, hence
it gives rise to a natural trace TrN on the crossed product algebra. More explicitely this is of the form

(3.11) TrN (f) :=

∫

A1

f(1, a) da.

We denote by N the type II∞ factor obtained from this trace. It is dual (in the sense of the duality
introduced in [10]) to the type III1 factor associated to the “critical” (temperature β = 1) KMS state
on the BC system (cf. [4], [16]). In more geometric terms, the space A+

1 is the total space of a principal

R∗
+-bundle over Ẑ corresponding to the difference between considering Q-lattices or Q-lattices up to

scale. Moreover, the equivalence relation of commensurability is compatible with the projection.

Let us then define an unbounded element of N by considering the function on G1

(3.12) Y (1, ρ, λ) = λ , and Y (r, ρ, λ) = 0 if r 6= 1 .

One checks that (with a suitable normalization of da) the corresponding unbounded element of N has
the correct spectral measure with respect to the trace TrN .
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4. The “evanescent” gauge potentials

In noncommutative geometry the gauge bosons appear as derived objects through the simple issue of
Morita equivalence. In fact, they appear as “inner fluctuations of the metric” induced by self Morita
equivalences of the algebra cf. [13].

Indeed, let E be a finite, projective, hermitian right A-module. In order to define the analogue of the
operator D for the algebra of endomorphisms

(4.1) B = EndA(E)

one needs the choice of a hermitian connection on E . Such a connection ∇ is a linear map

∇ : E → E ⊗A Ω1
D,

where Ω1
D ⊂ L(H) is the A-bimodule of operators of the form

(4.2) A = Σai[D, bi], ai, bi ∈ A .

The connection ∇ satisfies the rules (cf. [11])

(4.3) ∇(ξa) = (∇ξ)a+ ξ ⊗ da, ∀ξ ∈ E , ∀a ∈ A.

(4.4) (ξ,∇η) − (∇ξ, η) = d(ξ, η), ∀ξ, η ∈ E ,
where da = [D, a]. The minus sign in (4.4) comes from the equality d(a∗) = −(da)∗.

Any algebra A is Morita equivalent to itself via E = A. When one applies the construction above in
this context one gets the inner deformations of the spectral geometry. These replace the operator D
by

(4.5) D 7→ D + A,

where A = A∗ is an arbitrary selfadjoint operator of the form (4.2). Here we disregard the real
structure for simplicity, since the latter can then easily be taken care of by replacing the algebra A
by the tensor product A⊗A◦ of A by its opposite algebra A◦.

The fact that one has such nontrivial perturbations of the spectral geometry reflects the lack of
invariance of the operator D under the action of the unitary group U of A. In fact, replacing D by
uDu∗ for u ∈ U amounts to adding to D the gauge potential u[D,u∗] ∈ Ω1

D. More generally, the
gauge transformations are given by

(4.6) u (D +A)u∗ = D + αu(A) , with αu(A) = u[D,u∗] + uAu∗, ∀u ∈ U .

4.1. Chiral gauge transformations.

When the basic algebra A is a Z/2-graded algebra, all the above extends trivially, by replacing
everywhere the commutators [D, a] with graded commutators

(4.7) [D, a]− := Da− (−1)deg(a)aD.

Here the subscript − reminds one of the use of graded commutators.

This applies in particular when one replaces the original algebra A with the algebra Ã generated (in

the even case) by A and γ. As an algebra, Ã is isomorphic to the direct sum of two copies of A by

a+ b γ 7→ (a+ b, a− b).

We endow it with the Z/2-grading θ ∈ Aut(Ã) such that θ(γ) = −γ, while θ is the identity on A. The

unitary group Ũ of Ã now contains γ and it is the group of chiral gauge transformations. However, the
anticommutation of γ with D shows that this procedure does not generate really new gauge potentials,
but simply multiplies the existing ones by an arbitrary power of γ.
The situation becomes much more interesting when one keeps the algebra Ã, but one replaces the
original spectral triple by its product (1.5) with the space Xz.
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Thus, we start with a spectral triple (A,H, D) and form its product with the (type II∞) spectral
triple defining the space Xz. With the notations of (1.5) we therefore let D′ = Dz, and we adopt the
following shorthand notation (compatible with the physics notation of [9])

(4.8) D̄ = D ⊗ 1 , D̂ = γ ⊗D′ , D′′ = D̄ + D̂ .

The fact that the spectral triple defining the space Xz is of type II∞ introduces some technical
subtleties that can be ignored at first reading (cf. [3], [6], [7] for the detailed general theory).
We let the algebra A act on H⊗H′ by

(4.9) a 7→ a⊗ 1

Thus, one obtains a type II∞ spectral triple for the algebra A. We then extend the algebra to the
graded algebra Ã generated by A and γ, with the action on H⊗H′ still given by (4.9).

The odd element γ ∈ Ã no longer anticommutes (i.e. graded-commutes) with D′′, since γ⊗1 commutes

with D̂ = γ ⊗D′. Thus, one gets a new non-trivial gauge potential of the form

(4.10) B = [D′′, γ]− = 2 γ D̂ .

This gauge potential accounts for the lack of invariance of D′′ under the “chiral” gauge transformation
γ ∈ Ũ and it corresponds, in the language of QFT, to the divergence ∂µ j

µ
5 of the axial current jµ5 .

One needs special care in discussing this point, since it involves Euclidean Fermi fields ξ and η, which
one needs to treat as independent integration variables in the Euclidean functional integral (see [8],
section 5.2 of “The use of instantons”).
Thus, the fermionic part of the Lagrangian in the action functional is of the form

(4.11) Lfermions = 〈η , D′′ξ〉
When extending the theory to Z/2-graded algebras, one defines the gauge transformations αu on the

fermions, for u ∈ Ũ using the Z/2-grading θ as

(4.12) αu(ξ) = u ξ , αu(η) = θ(u) η .

It follows that the lack of invariance of the action (4.11) is still accounted for by the gauge potential
given by the graded commutator with u. In particular if γ (which is odd) would anticommute with D′′,
then the action (4.11) would be invariant under the corresponding chiral transformation. This is not
the case and the variation at order one of Lfermions under the chiral gauge transformation u = eiωγ ,
for ω = ω∗ ∈ A, is given by

(4.13) δLfermions = 〈η, (i [D,ω] γ + i ω B) ξ〉
with B = 2γ D̂ as in (4.10).
We shall use the physics terminology evanescent to qualify the gauge potentials of the form E = ωB.
The origin of the terminology is clear since they vanish when the extra dimension z is set to 0.

5. The local index cocycle

Let us recall briefly the local index formula in the context of noncommutative geometry [18], which
we shall need here in the even case.
We let (A,H, D) be a finitely summable even spectral triple. The analogue of the geodesic flow is
given by the one parameter group of automorphisms of L(H),

(5.1) t 7→ Ft(T ) = eit|D| T e−it|D| .

We shall say that an operator T on H is smooth iff the above map is smooth, i.e. if it belongs to
C∞(R,L(H)). We also define

(5.2) OP 0 := {T ∈ L(H) ; T is smooth} .
We say that the spectral triple (A,H, D) is regular if it satisfies the condition

(5.3) a and [D, a] ∈ OP 0, ∀ a ∈ A .
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(Notice that A denotes the dense subalgebra of elements that have bounded commutator with D and
not the C∗-algebra of the spectral triple.)

As we already mentioned, in the context of spectral triples, the usual notion of dimension of a space
is replaced by the dimension spectrum , which is the subset Σ of {z ∈ C,ℜ(z) ≥ 0} of singularities of
the analytic functions

(5.4) ζb(z) = Tr (b|D|−z), ℜ(z) > p , b ∈ B .
Here p is the crude dimension provided by the rate of growth of the eigenvalues of D, and B denotes
the algebra generated by δk(a) and δk([D, a]), for a ∈ A, with

(5.5) δ(T ) = [|D|, T ]

the derivation that generates the geodesic flow.

The local index theorem is of the following form (cf. [18]):

Theorem 5.1. Let (A,H, D) be a regular finitely summable spectral triple with simple dimension
spectrum. The following holds.

• The equality

(5.6)

∫

−P := Resz=0 Tr (P |D|−z)

defines a trace on the algebra generated by A, [D,A] and |D|z, with z ∈ C.
• Assuming

∫

−γ a = 0 for all a ∈ A, the formula

(5.7) ϕ0(a) = lim
z→0

Tr(γ a |D|−z), ∀a ∈ A,

defines a linear form ϕ0 on A.
• For n > 0 an even integer, there is only a finite number of non-zero terms in

(5.8) ϕn(a
0, . . . , an) :=

∑

k

cn,k

∫

−γ a0[D, a1](k1) . . . [D, an](kn) |D|−n−2|k|, ∀aj ∈ A.

Here we are using the notation T (ki) = ∇ki(T ) with ∇(T ) = D2T − TD2. The summation
index k is a multi-index with |k| = k1 + . . . + kn, and the coefficients cn,k are given by the
formulae1

(5.9) cn,k =
(−1)|k|

2
(k1! . . . kn!)−1 ((k1 + 1) . . . (k1 + k2 + . . .+ kn + n))−1 Γ (|k| + n/2) .

• The expression (5.8) defines the even components (ϕn)n=0,2,... of a cocycle in the (b, B)-
bicomplex of A.

• The pairing of the cyclic cohomology class (ϕn) ∈ HC∗(A) with K0(A) gives the Fredholm
index of D with coefficients in K0(A).

One of the ingredients in the proof of Theorem 5.1 will be quite useful below and we recall it here (cf.
[18]). For any r ∈ R, one lets

(5.10) OP r = {T ; |D|−r T ∈ OP 0} .
We then have the following result (cf. [18]):

Lemma 5.2. Let T ∈ OP 0 and n ∈ N.

(1) ∇n(T ) ∈ OPn

(2) D−2 T =
∑n

0 (−1)k∇k(T )D−2k−2 +Rn, with

(5.11) Rn = (−1)n+1D−2 ∇n+1(T )D−2n−2 ∈ OP−n−3.

1the trace τ0 of [18] Proposition II.1 is 1

2

R

−
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6. Finiteness of anomalous graphs and relation with residues

Given a regular even spectral triple (A,H, D) we denote by OP (A,H, D) the algebra generated by
A, D and γ. The following lemma will suffice to prove the finiteness of the anomalous graphs.

Lemma 6.1. Suppose given a regular spectral triple (A,H, D). Let P be an element of OP (A,H, D).
For n > k > 0 and in the limit z → 0, one has

Tr (D̂2k (P ⊗ 1)D
′′−2n) = −1

2
B(k, n− k)

∫

−P D−2(n−k) , B(p, q) =
Γ(p) Γ(q)

Γ(p+ q)
.

Proof. For z 6= 0 one has

Tr (D̂2k (P ⊗ 1)D
′′−2n) =

1

Γ(n)

∫ ∞

0

Tr(D̂2k (P ⊗ 1) e−tD̄
2

e−tD̂
2

) tn−1 dt

We also have

(6.1) TrN (D2k
z e−tD

2

z ) =
z (z + 2) · · · (z + 2k − 2)

2k
πz/2 t−z/2−k, ∀t ∈ R∗

+ ,

while

(6.2)

∫ ∞

0

e−tD
2

tn−1−z/2−k dt = Γ(n− z/2 − k) |D|z−2(n−k).

One has D̂2k (P ⊗ 1) = P ⊗D2k
z thus using the factorization of the trace and (6.1) and (6.2), we get

Tr (D̂2k (P ⊗ 1)D
′′−2n) = πz/2

∏k−1
0 (z/2 + j)

Γ(n)
Γ(n− z/2 − k)Tr(P |D|z−2(n−k)) ,

which gives the required result since when z → 0 one has,

πz/2
∏k−1

0 (z/2 + j)

Γ(n)
Γ(n− z/2 − k) ∼ B(k, n− k)

z

2
,

with the minus sign coming from the nuance between |D|z and |D|−z . �

As a corollary of Lemma 6.1 one gets the following expression for the residue at the simple pole z = 0
in the DimReg expression of one loop graphs with only fermionic internal lines, we work as above with
a regular spectral triple with simple dimension spectrum.

Proposition 6.2. Let A ∈ Ω1
D be a gauge potential and n > 0. Then the expression

(6.3) Tr(((A ⊗ 1)D′′−1
)n)

has at most a simple pole at z = 0 with residue given by

(6.4) Resz=0 Tr(((A ⊗ 1)D′′−1
)n) = −

∫

− (AD−1)n

Proof. One has

(6.5) D′′−1
= D′′D′′−2

= (D̄ + D̂)D′′−2

and

(6.6) D′′2 = D̄2 + D̂2.

Using Lemma 5.2 (2) to move the terms D′′−2
to the right we can express (6.3) as a sum of terms of

the form

(6.7) Tr((A⊗ 1) (D̄ + D̂) . . . (A(kj) ⊗ 1) (D̄ + D̂) ) . . . (A(kn) ⊗ 1) (D̄ + D̂)D′′−2k
)
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where we use the notation A(m) = ∇m(A) and k = n+
∑

kj . Only finitely many of these terms have

a divergent trace at z = 0. By construction D̂ anticommutes with the A’s and commutes with all
other terms. Thus one can expand (6.7) in terms of the form

Tr (D̂2q P D
′′−2m)

By Lemma 6.1 any of these terms with q > 0 is regular at z = 0. Thus the only contribution to the
pole comes from the case q = 0. This means that one only takes the terms D̄ in the expansion of (6.7)
and one is thus dealing with

(6.8) Tr((P ⊗ 1)D′′−2k
) , P = AD . . .A(kj)D . . .A(kn)D

As in the proof of Lemma 6.1 one has

Tr ((P ⊗ 1)D
′′−2k) =

1

Γ(k)

∫ ∞

0

Tr((P ⊗ 1) e−tD̄
2

e−tD̂
2

) tk−1 dt

Using the factorization of the trace and (2.1) while
∫ ∞

0

e−tD2 tk−1−z/2 dt = Γ(k − z/2) |D|z−2k

we get

Tr ((P ⊗ 1)D
′′−2k) = πz/2

Γ(k − z/2)

Γ(k)
Tr(P |D|z−2k) .

Thus the residue at z = 0 is given by

−
∫

−P |D|−2k

The computation of −
∫

− (AD−1)n gives exactly the same result. Indeed, one again writes

D−1 = DD−2

and uses Lemma 5.2 (2) to move the terms D−2 to the right, which allows to express −
∫

− (AD−1)n

as a sum of terms of the form
∫

−AD . . . A(kj)D . . . A(kn)DD−2k

which match exactly with the above terms. �

7. The simplest anomalous graphs

We shall now analyze the graphs with only fermionic internal lines which involve linearly the evanescent
gauge potential B, starting from the simplest, which is the tadpole, and continuing to more involved
cases.
The data we start with are, as above, an even spectral triple (A,H, D) with simple dimension spectrum,
i.e. we use exactly the same setup as in the local index formula of [18] that we recalled above in §5.

7.1. The Tadpole.

We start with the simplest graph. This has one loop with a single external leg to which is assigned

an evanescent gauge potential E = γaD̂ (see Figure 2).
The analytic expression for the tadpole is of the form

(7.1) Tr(ED′′−1
),

where D′′−1
plays the role of the fermionic propagator.

We assume
∫

−γ a = 0 for all a ∈ A and obtain the following result.
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E

Figure 2. The tadpole.

Lemma 7.1. Let ϕ0 be the linear form (5.7), which is the zeroth order component of the local index
cocycle, as in Theorem 5.1. In the limit z → 0, one obtains

(7.2) Tr (ED′′−1
) = −ϕ0(a), ∀a ∈ A .

Proof. One has

(7.3) D′′−2
=

∫ ∞

0

e−tD̄
2

e−tD̂
2

dt.

Thus, for fixed z, one gets using (6.5) and (6.6),

(7.4) Tr(ED′′−1
) = Tr(γ aD̂ (D̄ + D̂)D′′−2

) = Tr(γ aD̂2D′′−2
).

In fact, the terms with an odd number of D̂’s have zero trace since one can find an involution in H′

which anticommutes with Dz. Using (7.3) this gives

(7.5) Tr(ED′′−1
) =

∫ ∞

0

Tr(γ aD̂2 e−tD̄
2

e−tD̂
2

) dt

and the trace factorizes to give

(7.6) Tr(γ aD̂2 e−tD
2

e−tD̂
2

) = Tr(γ a e−tD
2

)Tr(D2
z e

−tD2

z).

By the basic equality (2.6) one has

(7.7) TrN (e−tD
2

z ) = πz/2t−z/2, ∀t ∈ R∗
+ .

After differentiating in t this gives

(7.8) TrN (D2
z e

−tD2

z) =
z

2
πz/2 t−z/2−1 ∀t ∈ R∗

+ .

Thus, (7.5) and (7.6) give

(7.9) Tr(ED′′−1
) =

z

2
πz/2

∫ ∞

0

Tr(γ a e−tD
2

) t−z/2−1 dt

Moreover, we have

(7.10)

∫ ∞

0

e−tD
2

t−z/2−1 dt = Γ(−z/2) |D|z,

while the limit for z → 0 of Tr(γ a |D|z) is ϕ0(a). Thus, we get the required equality since, for z → 0,
we have

z

2
πz/2Γ(−z/2) → −1.

�
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EA

Figure 3. The self energy graph.

7.2. The self-energy graph.

The next term linear in E now involves a usual gauge potential A =
∑

ai [D
′′, bi]. (see Figure 3).

Its analytic expression is given by

(7.11) Tr(ED
′′−1AD

′′−1).

One has the following result.

Lemma 7.2. In the limit z → 0, one obtains

(7.12) Tr(E D
′′−1AD

′′−1) =

∞
∑

0

(−1)n+1 1

2n+ 2

∫

− γ a∇n(B)D−2n−2

where B = dA+ A′ with

dA =
∑

[D, ai] [D, bi] , A′ =
∑

ai∇(bi) .

and only finitely many terms in the infinite sum are non-zero.

Proof. Using (6.5), one obtains

Tr(ED
′′−1AD

′′−1) = Tr(γ aD̂ (D̄ + D̂)D
′′−2A (D̄ + D̂)D

′′−2) .

Since the terms with an odd number of D̂ do not contribute, this gives

Tr(γ aD̂2D
′′−2AD̄D

′′−2) + Tr(γ aD̂ D̄ D
′′−2AD̂D

′′−2)

In the second term the second appearance of D̂ can be put in front provided one cares about signs,
since D̂ commutes with D

′′−2 and anticommutes with both A =
∑

ai [D
′′, bi] =

∑

ai [D̄, bi] and D̄.
Thus, we can write the above as

Tr(ED
′′−1AD

′′−1) = Tr(γ aD̂2D
′′−2 (AD̄ + D̄ A)D

′′−2) .

One has

(7.13) (AD̄ + D̄ A) = B ⊗ 1 , B = dA+ A′ ,

where

(7.14) dA =
∑

[D, ai] [D, bi] , A′ =
∑

ai∇(bi) .

Thus we can use Lemma 5.2 to move the first D
′′−2 across and get (only finitely many terms will

contribute)

Tr(ED
′′−1AD

′′−1) =

∞
∑

0

(−1)nTr(γ aD̂2 (∇n(B) ⊗ 1)D
′′−2n−4) .

Since D̂2 commutes with a ∈ A we then conclude using Lemma 6.1.
�
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Notice that, since the regularized trace is a trace outside the dimension spectrum, the order of the
terms ED

′′−1 and AD
′′−1 is irrelevant.

It is worthwhile to double check this in this example by redoing the calculation with the other order.
One has

Tr(AD
′′−1ED

′′−1) = Tr(A (D̄ + D̂)D
′′−2 γ aD̂ (D̄ + D̂)D

′′−2)

= Tr(AD̂D
′′−2 γ aD̂ D̄D

′′−2) + Tr(AD̄D
′′−2 γ aD̂2D

′′−2)

= −Tr(γ D̂2AD
′′−2 a D̄ D

′′−2) + Tr(γ D̂2AD
′′−2 D̄ aD

′′−2)

=

∞
∑

0

(−1)n Tr(γ D̂2A (∇n([D, a]) ⊗ 1)D
′′−2n−4)

=

∞
∑

0

(−1)n+1 1

2n+ 2

∫

− γ A∇n([D, a])D−2n−2 .

We thus get

(7.15) Tr(AD
′′−1ED

′′−1) =

∞
∑

0

(−1)n+1 1

2n+ 2

∫

− γ A∇n([D, a])D−2n−2 .

It might seem at first sight that one passes from (7.12) to (7.15) by a simple integration by parts i.e.
using

(7.16)

∫

− γ∇n(B)C = (−1)n
∫

− γ B∇n(C)

but it is a bit more subtle. One uses the equality

(7.17) D−2n−2 a =
∞
∑

0

(−1)k c(n, k)∇k(a)D−2n−2k−2

with

(7.18) c(n, 0) = 1 , c(n, k) =

∏k
1 (n+ j)

k!
,

to write
∫

− γ a∇n(B)D−2n−2 =

∞
∑

0

(−1)k c(n, k)

∫

− γ∇n(B)∇k(a)D−2n−2k−2

which after integration by parts yields
∫

− γ a∇n(B)D−2n−2 =

∞
∑

0

(−1)n+k c(n, k)

∫

− γ B∇(n+k)(a)D−2n−2k−2

The desired equality between (7.12) and (7.15) then follows using
m

∑

0

(−1)k
c(m− k, k)

m− k + 1
=

∫ 1

0

(t− 1)m dt = (−1)m
1

m+ 1

and the other integration by parts

(7.19)

∫

− γ (DA +AD)C =

∫

− γ A [D,C] .

To conclude we thus have the two equivalent expressions (7.12) and (7.15) for the self-energy graph.
We can express both in a more compact notation using the derivation (cf. [18]),

(7.20) Θ(T ) =

∞
∑

1

(−1)n+1

n
∇n(T )D−2n

which generates the one parameter group Ad D2z. Indeed one has

D2 T D−2 = T + ∇(T )D−2 = (1 + ǫ)(T )
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and by construction

(7.21) Θ = log (1 + ǫ) , eΘ = 1 + ǫ .

We also need the basic “Planck” function

(7.22) π(z) =
z

ez − 1

which is familiar in index theory in the formulas giving the characteristic classes. We can then rewrite
the above formulas as

Proposition 7.3. One has, in the limit z → 0,

Tr(ED
′′−1AD

′′−1) = −1

2

∫

− γ a π(Θ)(B)D−2 = −1

2

∫

− γ Aπ(Θ)([D, a])D−2

Proof. From the above it is enough to check that

(7.23) π(Θ) =

∞
∑

0

(−1)n

n+ 1
ǫn

which follows from (7.21) and (7.22). �

It also follows from the above discussion that for X and Y in the algebra generated by A, γ and D
one has the formula of integration by parts

(7.24)

∫

−X π(Θ)(Y )D−2 =

∫

−Y π(Θ)(X)D−2 .

One can understand this formula as an instance of the KMS condition fulfilled by the functional

(7.25) ϕ1(X) =

∫

−XD−2

with respect to the one-parameter group of automorphisms σt = ei tΘ . Indeed one has, as required
by the KMS1 condition

ϕ1(X σi(Y )) = ϕ1(Y X)

and (7.24) follows from the simple equality

π(−z) = ez π(z) ,

combined with the invariance of ϕ1 under σt which implies that for any formal series f ,

(7.26) ϕ1(f(Θ)(X)Y ) = ϕ1(X f(−Θ)(Y )) .

Given a Hochschild cochain ϕ of dimension n on an algebra A, it defines (cf. [11]) a functional on the
universal n-forms Ωn(A) by the equality

(7.27)

∫

ϕ

a0 da1 · · · dan = ϕ(a0, a1, · · · , an)

When ϕ is a Hochschild cocycle one has

(7.28)

∫

ϕ

aω =

∫

ϕ

ω a, ∀a ∈ A

The boundary operator B0 defined on normalized cochains by

(7.29) (B0ϕ)(a0, a1, · · · , an−1) = ϕ(1, a0, a1, · · · , an−1)

is defined in such a way that

(7.30)

∫

ϕ

dω =

∫

B0ϕ

ω

Proposition 7.3 allows to express the self energy graph in terms of the following two cochain

(7.31) ψ2(a0, a1, a2) =
1

4

∫

− γ a0 [D, a1]π(Θ)([D, a2])D
−2
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so that

(7.32) Tr(ED
′′−1AD

′′−1) = −2

∫

ψ2

Ada

Proposition 7.4. (1) The cochain B0 ψ2 is cyclic : AB0 ψ2 = 2B0 ψ2.
(2) B ψ2 + b ϕ0 = 0
(3) If b ϕ0 = 0 one has

(7.33) Tr(ED
′′−1AD

′′−1) = −2

∫

ψ2

dAa

Proof. 1) One has

B0 ψ2(a0, a1) =
1

4

∫

− γ [D, a0]π(Θ)([D, a1])D
−2

which is antisymmetric by (7.24) (γ anticommutes with [D, a]).

2) Since D anticommutes with γ and D[D, a] + [D, a]D = ∇(a) one gets

B ψ2(a0, a1) = −1

2

∫

− γ a0 π(Θ)(∇(a1))D
−2 = −1

2

∫

− γ a0 Θ(a1)

The coboundary bϕ0 is given by

bϕ0(a, b) = Lims→0 Tr(γ a(b |D|−s − |D|−s b)) =

Lims→0 Tr(γ a (1 − e−
s
2
Θ)(b) |D|−s) =

1

2

∫

− γ aΘ(b)

3) In that case one has, by 1) and 2), B0(ψ2) = 0 and
∫

−
ψ2

(dA)a−
∫

−
ψ2

Ada =

∫

−
ψ2

d(Aa) = 0

by (7.30) thus the result follows from (7.32). �

7.3. Anomalous graphs in dimension 2.

We shall first deal with the two dimensional case and explain how the result of Proposition 7.4
simplifies in this case. The main result of this section is Theorem 7.8 which shows that the sum of
the anomalous graphs is given by the pairing with the local index cocycle.
In the two dimensional case, the top component of the local index cocycle is given by the following
Hochschild 2-cocycle

(7.34) ϕ2(a0, a1, a2) =
1

4

∫

− γ a0 [D, a1] [D, a2]D
−2, ∀aj ∈ A.

Since one is in dimension 2 all the terms with n > 0 in (7.23) vanish and one gets ϕ2 = ψ2.

In case the coboundary of the tadpole vanishes, i.e. assuming that bϕ0 = 0 (7.2), one gets by Theorem
5.1 that ϕ2 is a cyclic cocycle and hence

∫

ϕ2

is a closed graded trace [11]. We thus get,

Corollary 7.5. In dimension ≤ 2, and if bϕ0 = 0, ϕ2 is a cyclic cocycle and

Tr(ED
′′−1AD

′′−1) = −2

∫

ϕ2

a dA

Next, we consider the original ABJ triangle graph. The computation below will prepare the ground
for the four dimensional case and we thus do it in the required generality.
The analytic expression for the triangle graph of Figure 4 is given by

(7.35) Tr(E D
′′−1AD

′′−1AD
′′−1).
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A

A

E

Figure 4. The triangle graph.

This can be polarized in the following manner:

(7.36) Tr(ED
′′−1A1D

′′−1A2D
′′−1),

where one can now assume that Aj are monomials of the form

Aj = aj [D, bj ] .

We first prove the following lemma independent of the dimension,

Lemma 7.6. Let Pj ∈ OP (A,H, D), for k = 1 and k = 2 one has in the limit z → 0,

Tr(D̂2k P0D
′′−2 P1D

′′−2 P2D
′′−2) =

1

2

∑

(−1)a+b+1 (k − 1)!(a+ b + 2 − k)!

(a+ b+ 2) b! (a+ 1)!

∫

−P0∇a(P1)∇b(P2)D
−2(a+b+3−k)

Proof. One has, using Lemma 5.2, for Pj ∈ OP (A,H, D),

D
′′−2 P1D

′′−2 P2 ∼
∑

d(a, b)∇a(P1)∇b(P2)D
′′−2(a+b+2)

where the coefficients are given by

d(a, b) = (−1)a+b
∑

0≤c≤b

(a+ c)!

a! c!
= (−1)a+b

(a+ b+ 1)!

b! (a+ 1)!

Thus using Lemma 6.1 for n = a+ b+ 3 (since there is a remaining term D
′′−2 and the equality

1

2

(a+ b+ 1)!

b! (a+ 1)!

(k − 1)!(a+ b+ 2 − k)!

(a+ b+ 2)!
=

1

2

(k − 1)!(a+ b+ 2 − k)!

(a+ b+ 2) b! (a+ 1)!

one gets the required formula. �

Note that one has

D−2 P1D
−2 P2 ∼

∑

d(a, b)∇a(P1)∇b(P2)D
−2(a+b+2)

but this does not allow to undo the above reordering under the residue since different powers of D
′′

occur in applying Lemma 6.1.
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Proposition 7.7. In the two dimensional case one has in the limit z → 0 (with E = γaD̂)

Tr(ED
′′−1AD

′′−1AD
′′−1) = 2

∫

ϕ2

aA2 .

Proof. Using (6.5), one gets

Tr(ED
′′−1AD

′′−1AD
′′−1) = Tr(γ aD̂ (D̄ + D̂)D

′′−2A (D̄ + D̂)D
′′−2A (D̄ + D̂)D

′′−2) .

Since the terms with an odd number of D̂ do not contribute we get terms with 4 occurences of D̂, i.e.

T4 = Tr(γ aD̂2D
′′−2AD̂D

′′−2AD̂D
′′−2) = −Tr(γ aD̂4D

′′−2AD
′′−2AD

′′−2)

(where the minus sign comes from the anticommutation of D̂ with A) and terms with two occurences

of D̂ which give the following terms Tj , j ∈ {1, 2, 3}
T1 = Tr(γ aD̂2D

′′−2AD̄D
′′−2AD̄D

′′−2)

T2 = Tr(γ aD̂ D̄ D
′′−2AD̂D

′′−2AD̄D
′′−2) = Tr(γ aD̂2 D̄ D

′′−2AD
′′−2AD̄D

′′−2)

T3 = Tr(γ aD̂ D̄ D
′′−2AD̄D

′′−2AD̂D
′′−2) = Tr(γ aD̂2 D̄ D

′′−2AD̄D
′′−2AD

′′−2)

Let us first compute T4 and T2. By Lemma 7.6, we get

T4 =
1

4

∫

− γ aA2D−2

since all the terms with non-zero powers of ∇ give zero since we are in dimension 2.
Next, by Lemma 7.6, we get

T2 = − 1

4

∫

− γ aDA2D−3

We can replace aD → Da since the commutator [D, a] is bounded. Thus since the sign changes when
we permute D and γ we get using the trace property of the residue,

T2 =
1

4

∫

− γ aA2D−2

We thus get

T2 + T4 = 2

∫

ϕ2

aA2

Next one has by Lemma 7.6,

T1 = −1

4

∫

− γ aADAD−3

Since one is in dimension 2 one can permute the factor D−2 which gives

T1 = −1

4

∫

− γ aAD−1AD−1

If we let

ψ(a0, a1) =

∫

− γ a0 [D, a1]D
−1

we get

bψ(a0, a1, a2) = −
∫

− γ a0 [D, a1] [a2, D
−1] = −

∫

− γ a0 [D, a1]D
−1 [D, a2]D

−1

Moreover one has
∫

bψ

aA2 = −
∫

− γ aAD−1AD−1

as one checks replacing the first A by a1[D, b1] and the second by a2[D, b2], and showing that
∫

− γ a a1[D, b1]D
−1 a2[D, b2]D

−1 =

∫

− γ a a1[D, b1]a2D
−1 [D, b2]D

−1

= −
∫

bψ

a a1 db1 a2 db2
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E

A

A

A

Figure 5. The five legs graph.

We have thus shown that

T1 =
1

4

∫

bψ

aA2

Since bψ is a coboundary this ensures that T1 is not a significant term but in fact we shall now show
that it is exactly canceled by T3, indeed one has

T3 = −1

4

∫

− γ aDADAD−4 = −1

4

∫

− γ D aADAD−4 =
1

4

∫

− γ aADAD−3 = −T1

where we used the boundedness of [D, a] to permuteD and a and the minus sign comes from permuting
D with γ. �

We can now summarize the relation with the index cocycle in the two dimensional case as follows,

Theorem 7.8. Assume that the dimension is ≤ 2 and that the coboundary of the tadpole vanishes,
bϕ0 = 0, then

(1) ϕ2 is a cyclic two cocycle.
(2) For any a ∈ A and any gauge potential A one has

Tr(ED
′′−1AD

′′−1AD
′′−1) − Tr(E D

′′−1AD
′′−1) = 2

∫

ϕ2

a (dA+ A2)

In other words the alternate sum of the anomalous graphs has a simple interpretation in terms of the
pairing of the curvature F = dA+A2 and of the local index cocycle.

Proof. This follows from Proposition 7.7 and Corollary 7.5. �

7.4. The five legs graph in dimension 4.

The analytic expression for the pentagon graph of Figure 5 is given by

(7.37) Tr(ED
′′−1AD

′′−1AD
′′−1AD

′′−1AD
′′−1) ,

and we can proceed as above and rewrite this as

(7.38) Tr(γ aD̂ (D̄+ D̂)D
′′−2A (D̄+ D̂)D

′′−2A (D̄+ D̂)D
′′−2A (D̄+ D̂)D

′′−2A (D̄+ D̂)D
′′−2) .
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Since we work in dimension 4 we can move the D
′′−2 to the right in each of the obtained monomials,

since the contributions from all additional terms obtained from lemma 5.2 all vanish at z = 0. We are
thus dealing with,

(7.39) Tr(γ aD̂ (D̄ + D̂)A (D̄ + D̂)A (D̄ + D̂)A (D̄ + D̂)A (D̄ + D̂)D
′′−10) ,

and the various terms are given by even powers of D̂. The first

Tr(γ aD̂6A4D
′′−10) = − 1

24

∫

− γ aA4D−4

is the only term of degree 6 in D̂, the others are :

Terms in D̂4

Tr(γ aD̂ D̄ A D̄ A D̂ A D̂ A D̂D
′′−10) = −Tr(γ aD̂4D ADA3D

′′−10) =
1

24

∫

− γ aD ADA3 D−6

Tr(γ aD̂ D̄ A D̂ A D̄ A D̂ A D̂D
′′−10) = −Tr(γ aD̂4DA2DA2D

′′−10) =
1

24

∫

− γ aD A2DA2 D−6

Tr(γ aD̂ D̄ A D̂ A D̂ A D̄ A D̂D
′′−10) = −Tr(γ aD̂4DA3DAD

′′−10) =
1

24

∫

− γ aDA3DA D−6

Tr(γ aD̂ D̄ A D̂ A D̂ A D̂ A D̄D
′′−10) = −Tr(γ aD̂4DA4DD

′′−10) =
1

24

∫

− γ aDA4DD−6

Tr(γ aD̂ D̂ A D̄ A D̄ A D̂ A D̂D
′′−10) = −Tr(γ aD̂4ADADA2D

′′−10) =
1

24

∫

− γ aADADA2D−6

Tr(γ aD̂ D̂ A D̄ A D̂ A D̄ A D̂D
′′−10) = −Tr(γ aD̂4ADA2DAD

′′−10) =
1

24

∫

− γ aADA2DAD−6

Tr(γ aD̂ D̂ A D̄ A D̂ A D̂ A D̄D
′′−10) = −Tr(γ aD̂4ADA3DD

′′−10) =
1

24

∫

− γ aADA3DD−6

Tr(γ aD̂ D̂ A D̂ A D̄ A D̄ A D̂D
′′−10) = −Tr(γ aD̂4A2DADAD

′′−10) =
1

24

∫

− γ aA2DADAD−6

Tr(γ aD̂ D̂ A D̂ A D̄ A D̂ A D̄D
′′−10) = −Tr(γ aD̂4A2DA2DD

′′−10) =
1

24

∫

− γ aA2DA2DD−6

Tr(γ aD̂ D̂ A D̂ A D̂ A D̄ A D̄D
′′−10) = −Tr(γ aD̂4A3DADD

′′−10) =
1

24

∫

− γ aA3DADD−6

Using the boundedness of [D, a] and the anticommutation of D with γ (and the trace property) one
gets three pairwise cancelations and a term in

1

24

∫

− γ aDA4DD−6 = − 1

24

∫

− γ aA4D−4

There remains three terms which add up to

1

24

∫

− γ a (A2DADA+ ADA2DA+ ADADA2)D−6

which can be written as

(7.40)
1

24

∫

− γ aA (AD +DA)2AD−6 − 1

24

∫

− γ aA4D−4

We can then use the decomposition

DA+ AD = dA + A′

where dA is bounded and replace the contribution (7.40) by

(7.41)
1

24

∫

− γ aAA
′ 2AD−6 − 1

24

∫

− γ aA4D−4
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Thus adding up the terms we got so far we get

(7.42)
1

24

∫

− γ aAA
′ 2AD−6 − 1

8

∫

− γ aA4D−4

Terms in D̂2

t1 = Tr(γ aD̂ D̂ A D̄ A D̄ A D̄ A D̄D
′′−10) = − 1

8

∫

− γ a (AD)4D−8

t2 = Tr(γ aD̂ D̄ A D̂ A D̄ A D̄ A D̄D
′′−10) = − 1

8

∫

− γ aDA2D(AD)2D−8

t3 = Tr(γ aD̂ D̄ A D̄ A D̂ A D̄ A D̄D
′′−10) = − 1

8

∫

− γ a (DA)2(AD)2D−8

t4 = Tr(γ aD̂ D̄ A D̄ A D̄ A D̂ A D̄D
′′−10) = − 1

8

∫

− γ a (DA)3(AD)D−8

t5 = Tr(γ aD̂ D̄ A D̄ A D̄ A D̄ A D̂D
′′−10) = − 1

8

∫

− γ a (DA)4D−8

Note that t1 + t5 = 0 using the anticommutation of D with γ and the boundedness of [D, a] which
allows to permute a with D. For the same reason we can move the front D to the end in the remaining
three terms, which then add up to three times (7.40) and thus contribute by

(7.43)
1

8

∫

− γ aAA
′ 2AD−6 − 1

8

∫

− γ aA4D−4

Thus adding up all the terms we get

(7.44) Tr(E D
′′−1 (AD

′′−1)4) =
1

6

∫

− γ aAA
′ 2AD−6 − 1

4

∫

− γ aA4D−4

We can thus summarize the above computation,

Proposition 7.9. In the 4 dimensional case one has in the limit z → 0 (with E = γaD̂)

Tr(E D
′′−1 (AD

′′−1)4) =

∫

ϕ

aA4 ,

where ϕ = − 12ϕ4 + 1
12 bψ where

ϕ4(a0, a1, a2, a3, a4) =
1

48

∫

− γ a0 [D, a1] [D, a2] [D, a3] [D, a4]D
−4

and

ψ(a0, a1, a2, a3) =

∫

− γ a0 [D, a1]∇2(a2) [D, a3]D
−6

Proof. Using

∇2(a b) = ∇2(a) b+ 2∇(a)∇(b) + a∇2(b)

one gets

bψ(a0, a1, a2, a3, a4) = 2

∫

− γ a0 [D, a1]∇(a2)∇(a3) [D, a4]D
−6

It follows that
∫

bψ

aA4 = 2

∫

− γ aAA
′ 2AD−6

while one has by construction

− 12

∫

ϕ4

aA4 = −1

4

∫

− γ aA4D−4

Thus the conclusion follows from (7.44). �
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Let us now compute Bψ, one has

(7.45) Bψ(a0, a1, a2) = −2

∫

− γ a0[D, a1](1)[D, a2](1) D−6 − 2

∫

−γ a0[D, a1](2)[D, a2] D−6

+

∫

− γ a0 (∇(a1)∇2(a2) −∇2(a1)∇(a2))D
−6

To check this one treats separately the three terms in Bψ = AB0ψ = B0ψ+ (B0ψ)λ + (B0ψ)λ
2

with

B0ψ(a0, a1, a2) =

∫

− γ [D, a0]∇2(a1) [D, a2]D
−6

One has

B0ψ(a0, a1, a2) = −
∫

− γ a0 (D∇2(a1) [D, a2] + ∇2(a1) [D, a2]D)D−6

= −
∫

−γ a0[D, a1](2)[D, a2] D−6 −
∫

− γ a0 ∇2(a1)∇(a2))D
−6

B0ψ(a1, a2, a0) =

∫

− γ [D, a1]∇2(a2) [D, a0]D
−6 =

∫

− γ [D, a1]∇2(a2)D
−6 [D, a0]

since the commutator of [D, a0] with D−6 is of lower order. Thus

B0ψ(a1, a2, a0) = −
∫

− γ [D, a0] [D, a1]∇2(a2)D
−6

=

∫

− γ a0 (D [D, a1]∇2(a2) + [D, a1]∇2(a2)D)D−6

=

∫

−γ a0[D, a1] [D, a2](2) D−6 +

∫

− γ a0 ∇(a1)∇2(a2))D
−6

Finally one has

B0ψ(a2, a0, a1) =

∫

− γ [D, a2]∇2(a0) [D, a1]D
−6 = −

∫

− γ∇2(a0) [D, a1] [D, a2]D
−6

which gives

B0ψ(a2, a0, a1) = −
∫

− γ a0 [D, a1]
(2) [D, a2]D

−6 −2

∫

− γ a0 [D, a1]
(1) [D, a2]

(1)D−6 −
∫

− γ a0 [D, a1] [D, a2]
(2)D−6

Thus adding up the three terms in Bψ = AB0ψ = B0ψ + (B0ψ)λ + (B0ψ)λ
2

, one gets (7.45).

7.5. The four legs graph in dimension 4.

The analytic expression for the square graph of Figure 6 is given by

(7.46) Tr(ED
′′−1AD

′′−1AD
′′−1AD

′′−1).

and we proceed as above and rewrite this as

(7.47) Tr(γ aD̂ (D̄ + D̂)D
′′−2A (D̄ + D̂)D

′′−2A (D̄ + D̂)D
′′−2A (D̄ + D̂)D

′′−2) ,

and write the various terms with an even number of D̂ as follows,

Terms in D̂4

S1 = Tr(γ aD̂ D̄ D
′′−2AD̂D

′′−2AD̂D
′′−2AD̂D

′′−2) = −Tr(γ aD̂4 D̄D
′′−2AD

′′−2AD
′′−2AD

′′−2)

S2 = Tr(γ aD̂ D̂ D
′′−2AD̄D

′′−2AD̂D
′′−2AD̂D

′′−2) = −Tr(γ aD̂4D
′′−2AD̄D

′′−2AD
′′−2AD

′′−2)

S3 = Tr(γ aD̂ D̂ D
′′−2AD̂D

′′−2AD̄D
′′−2AD̂D

′′−2) = −Tr(γ aD̂4D
′′−2AD

′′−2AD̄D
′′−2AD

′′−2)

S4 = Tr(γ aD̂ D̂ D
′′−2AD̂D

′′−2AD̂D
′′−2AD̄D

′′−2) = −Tr(γ aD̂4D
′′−2AD

′′−2AD
′′−2AD̄D

′′−2)

Terms in D̂2
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Figure 6. The four legs graph.

R1 = Tr(γ aD̂2D
′′−2AD̄D

′′−2AD̄D
′′−2AD̄D

′′−2)

R2 = Tr(γ aD̂ D̄ D
′′−2AD̂D

′′−2AD̄D
′′−2AD̄D

′′−2) = Tr(γ aD̂2 D̄ D
′′−2A D

′′−2AD̄D
′′−2AD̄D

′′−2)

R3 = Tr(γ aD̂ D̄ D
′′−2AD̄D

′′−2AD̂D
′′−2AD̄D

′′−2) = Tr(γ aD̂2 D̄ D
′′−2AD̄D

′′−2AD
′′−2AD̄D

′′−2)

R4 = Tr(γ aD̂ D̄ D
′′−2AD̄D

′′−2AD̄D
′′−2AD̂D

′′−2) = Tr(γ aD̂2 D̄ D
′′−2AD̄D

′′−2AD̄D
′′−2AD

′′−2)

Let us now compute S1 in dimension 4. We need to move the D
′′−2 to the right. To get some feeling

about the order we first look at the term (using Lemma 6.1)

−Tr(γ aD̂4 D̄ A3D
′′−8) =

1

12

∫

− γ aDA3D−4

Thus the terms with more than one occurence of ∇ can all be ignored in the process of moving the
D

′′−2 to the right. Thus we can use the following replacements

(7.48) D
′′−2 P1D

′′−2 P2D
′′−2 P3D

′′−2 ∼
P1 P2 P3D

′′−8 − ∇(P1)P2 P3D
′′−10 − 2P1 ∇(P2)P3D

′′−10 − 3P1 P2 ∇(P3)D
′′−10

when we compute the S terms. We thus get

S1 = −Tr(γ aD̂4 D̄ D
′′−2AD

′′−2AD
′′−2AD

′′−2) = −Tr(γ aD̂4 D̄ A3D
′′−8)+

Tr(γ aD̂4 D̄∇(A)A2 D
′′−10) + 2Tr(γ aD̂4 D̄ A∇(A)AD

′′−10) + 3 Tr(γ aD̂4 D̄ A2 ∇(A)D
′′−10) =

1

12

∫

− γ aDA3D−4 − 1

24

∫

− γ aD (∇(A)A2 + 2A∇(A)A+ 3A2 ∇(A))D−6

and in a similar manner

S2 =
1

12

∫

− γ aADA2D−4 − 1

24

∫

− γ a (∇(A)DA2 + 2AD∇(A)A + 3ADA∇(A))D−6

S3 =
1

12

∫

− γ aA2DAD−4 − 1

24

∫

− γ a (∇(A)ADA+ 2A∇(A)DA+ 3A2D∇(A))D−6

S4 =
1

12

∫

− γ aA3D−3 − 1

24

∫

− γ a (∇(A)A2 + 2A∇(A)A+ 3A2 ∇(A))D−5

Using the boundedness of [D, a] and the anticommutation of D with γ one gets

(7.49) S1 + S4 =
1

12

∫

− γ a (DA3 + A3D)D−4
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Using the equality DA+AD = dA+ A′ and the boundedness of dA one gets

S2 + S3 =
1

12

∫

− γ aA (DA+ AD)AD−4 − 1

24

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′ ∇(A))D−6

One has
DA3 + A3D = (DA+ AD)A2 − A (DA+ AD)A+ A2 (DA+ AD)

We can thus collect together all the S terms and get,

(7.50) S1 + S2 + S3 + S4 =
1

12

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4

− 1

24

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′ ∇(A))D−6

Let us now look at the R-terms. The first term in R1 after moving the D
′′−2 to the right, is

Tr(γ aD̂2 (AD̄)3D
′′−8) = −1

6

∫

− γ a (AD)3D−6

and the above simplification applies also in computing the R terms. One gets

R1 = Tr(γ aD̂2D
′′−2AD̄D

′′−2AD̄D
′′−2AD̄D

′′−2) = Tr(γ aD̂2 (AD̄)3D
′′−8)

−Tr(γ aD̂2 ∇(A) D̄ (AD̄)2D
′′−10)−2 Tr(γ aD̂2AD̄∇(A) D̄ A D̄D

′′−10)−3 Tr(γ aD̂2 (AD̄)2 ∇(A) D̄ D
′′−10)

= −1

6

∫

− γ a (AD)3D−6 +
1

8

∫

− γ a (∇(A)D (AD)2 + 2AD∇(A)DAD + 3 (AD)2 ∇(A)D)D−8

Similarly

R2 = −1

6

∫

− γ aDA2DAD−5+
1

8

∫

− γ a (D∇(A)ADAD+ 2DA∇(A)DAD+ 3DA2D∇(A)D)D−8

R3 = −1

6

∫

− γ aDADA2D−5+
1

8

∫

− γ a (D∇(A)DA2D+ 2DAD∇(A)AD+ 3DADA∇(A)D)D−8

R4 = −1

6

∫

− γ a (DA)3D−6 +
1

8

∫

− γ a (D∇(A) (DA)2 + 2DAD∇(A)DA+ 3 (DA)2D∇(A))D−8

Using the boundedness of [D, a] and the anticommutation of D with γ one gets

R1 +R4 = −1

6

∫

− γ a ((AD)3 + (DA)3)D−6

Next,

R2+R3 = −1

6

∫

− γ aDA(dA+A′)AD−5+
1

8

∫

− γ a (D∇(A)A′ AD+ 2DA∇(A′)AD+ 3DAA′ ∇(A)D)D−8

= −1

6

∫

− γ aDA(dA +A′)AD−5 − 1

8

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′∇(A))D−6

We thus get

(7.51) R1 +R2 +R3 +R4 = −1

6

∫

− γ a ((AD)3 + (DA)3)D−6 − 1

6

∫

− γ aDA(dA +A′)AD−5

− 1

8

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′∇(A))D−6

and adding with the S-terms gives the following sum

Σ =
1

12

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4− 1

6

∫

− γ a ((AD)3 +DA(dA+A′)AD+(DA)3)D−6

− 1

6

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′∇(A))D−6

We need to simplify the term

T = −1

6

∫

− γ a ((AD)3 +DA2DAD +DADA2D + (DA)3)D−6
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Using DA+AD = dA+ A′ one can rewrite it as

−1

6

∫

− γ a ((dA+ A′)(ADAD) + (DADA)(dA + A′))D−6

which gives using ADAD = −A2D2 + AdAD + AA′D and DADA = −D2A2 + DdAA+ DA′A
gives

1

6

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4 +
1

6

∫

− γ a∇(A2A′)D−6

−1

6

∫

− γ a ((dA+ A′)(AdAD + AA′D) + (DdAA+ DA′A)(dA + A′))D−6

The second line gives using dimension 4,

−1

6

∫

− γ a (dAAA′D + A′AdAD + A′AA′D + DdAAA′ + DA′ AdA+ DA′ AA′)D−6

= −1

6

∫

− γ a (A′AA′D + DA′AA′)D−6

we can thus collect these terms and get

(7.52) T =
1

6

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4 +
1

6

∫

− γ a∇(A2 A′)D−6

−1

6

∫

− γ a (A′AA′D + DA′AA′)D−6

Thus when we replace T in the sum Σ we get

(7.53) Σ =
1

4

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4 +
1

6

∫

− γ a∇(A2A′)D−6

−1

6

∫

− γ a (A′ AA′D + DA′AA′)D−6 − 1

6

∫

− γ a (∇(A)A′ A+ 2A∇(A′)A+ 3AA′∇(A))D−6

Using (7.48) in the form

(7.54) D−2 P1D
−2 P2D

−2 P3 ∼
P1 P2 P3D

−6 − ∇(P1)P2 P3D
−8 − 2P1 ∇(P2)P3D

−8 − 3P1 P2 ∇(P3)D
−8

one gets
∫

− γ a (∇(A)A′ A+2A∇(A′)A+3AA′ ∇(A))D−6 =

∫

− γ aAA′AD−4−
∫

− γ aD−2AD−2A′D−2AD2

Thus

(7.55) Σ =
1

4

∫

− γ a ((dA+A′)A2 + A2 (dA+A′))D−4 +
1

6

∫

− γ a∇(A2A′)D−6

−1

6

∫

− γ a (A′AA′D + DA′ AA′)D−6 − 1

6

∫

− γ aAA′AD−4 +
1

6

∫

− γ aD−2AD−2A′D−2AD2

Let us gather a certain number of these terms in the form

(7.56)

∫

ψ

daA3

Using integration by parts one has

1

6

∫

− γ a∇(A2A′)D−6 = −1

6

∫

− γ∇(a)A2 A′D−6

and this is given in the form (7.56) by the contribution

ψ1(a0, a1, a2, a3, a4) = −1

6

∫

− γ a0 ∇(a1) [D, a2] [D, a3]∇(a4)D
−6
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Next, one has

−1

6

∫

− γ a (A′AA′D + DA′AA′)D−6 =
1

6

∫

− γ [D, a]A′AA′D−6

and this is given in the form (7.56) by the contribution

ψ2(a0, a1, a2, a3, a4) =
1

6

∫

− γ a0 [D, a1]∇(a2) [D, a3]∇(a4)D
−6

Next one has
1

6

∫

− γ aD−2AD−2A′D−2AD2 =
1

6

∫

− γ∇(a)AA′ AD−6 +
1

6

∫

− γ aAD−2A′D−2A

where the first term of the rhs corresponds to

ψ3(a0, a1, a2, a3, a4) =
1

6

∫

− γ a0 ∇(a1) [D, a2]∇(a3) [D, a4]D
−6

and one has
1

6

∫

− γ aAD−2A′D−2A =
1

6

∫

− γ aAA′AD−4 − 1

6

∫

− γ a (A∇(A′)A+ 2AA′ ∇(A))D−6

so that we can write the last two terms in the form

− 1

6

∫

− γ aAA′ AD−4 +
1

6

∫

− γ aD−2AD−2A′D−2AD2 =
1

6

∫

− γ∇(a)AA′ AD−6

− 1

6

∫

− γ a (A∇(A′)A+ 2AA′ ∇(A))D−6

Proposition 7.10. In the 4 dimensional case one has in the limit z → 0 (with E = γaD̂)

Tr(ED
′′−1 (AD

′′−1)3) = −
∫

ϕ

a (dAA2 +A2 dA) ,

where ϕ = − 12ϕ4 + 1
12 bψ is defined in Proposition 7.9.

Proof. Let us compute the right hand side. The contribution coming from − 12ϕ4 just gives

(7.57)
1

4

∫

− γ a (dAA2 + A2 dA)D−4

which already appears in the sum (7.53).
To compute the next term we use the notation A = u dv and forget about the summation symbol.
No ambiguity will arise since the ordering of the terms will never change. With this notation one has

−
∫

1

12
bψ

a (dAA2 +A2 dA) = −1

6

∫

− γ a ([D,u]∇(v)u∇(v)u [D, v] + u [D, v]u∇(v)∇(u) [D, v])D−6

Moreover in all the above expressions under the
∫

− we can use the replacements

(7.58) A→ u[D, v] , dA→ [D,u] [D, v] , A′ → u∇(v) , ∇(A) → ∇(u) [D, v] + u∇([D, v])

We now collect all the terms from the above computation, except for those already used in 7.57 and
use (7.58). We get

1

4

∫

− γ a (u∇(v)u[D, v]u[D, v] + u[D, v]u[D, v]u∇(v))D−4 +
1

6

∫

− γ a∇(u[D, v]u[D, v]u∇(v))D−6

−1

6

∫

− γ a (u∇(v)u[D, v]u∇(v)D + Du∇(v)u[D, v]u∇(v))D−6

− 1

6

∫

− γ a (∇(u[D, v])u∇(v)u[D, v] + 2 u[D, v]∇(u∇(v))u[D, v] + 3 u[D, v]u∇(v)∇(u[D, v]))D−6

�
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7.6. The triangle graph and anomalous graphs in dimension 4.

In dimension 4 the two dimensional component of the local index cocycle is given by

ϕ2(a0, a1, a2) =
1

4

∫

−γ a0[D, a1][D, a2] D−2 − 1

12

∫

−γ a0[D, a1](1)[D, a2] D−4

−1

6

∫

−γ a0[D, a1][D, a2](1) D−4 +
1

24

∫

−γ a0[D, a1](2)[D, a2] D−6

+
1

8

∫

−γ a0[D, a1](1)[D, a2](1) D−6 +
1

8

∫

−γ a0[D, a1][D, a2](2) D−6

We look for a formula of the form
∑

(−1)n Tr(ED
′′−1 (AD

′′−1)n) = −ϕ′
0(a) + 2

∫

ϕ′

2

a (dA+ A2) − 12

∫

ϕ′

4

a (dA+ A2)2

where the ϕ′
n are the components of a cocycle cohomologous to the local one ϕn. The point is that

the pairing between cocycles and elements of K0 i.e. idempotents e ∈ A is given by the combination

(7.59) 〈ϕ, e〉 = ϕ0(e−
1

2
) − 2ϕ2(e−

1

2
, e, e) + 12ϕ4(e−

1

2
, e, e, e, e)

The two dimensional case tells us that we should not have terms of the form
∫

− γ a0 ∇(a1)∇(a2)D
−4

in the correction of ϕ2, since such terms would already show up in D = 2. But we should expect
terms like

∫

− γ a0 (∇(a1)∇2(a2) −∇2(a1)∇(a2))D
−6

8. Evanescent gauge potentials and vanishing cycles

We want to present here a suggestive analogy between dimensional regularization and deformations
of singularities. This can be thought of as an analogy between the deformation of the singularities of
the special fiber of a geometric degeneration over a disk and the process of removal of singularities of
the Feynman integrals in the deformation to complex dimension of DimReg.

More precisely, the two geometric setting we will compare are the following. On the algebro-geometric
side, we consider the case of a geometric degeneration of a family X of smooth algebraic varieties over
a disk ∆ ⊂ C. Here X is a complex analytic manifold of dimension dimC X = n+ 1 and f : X → ∆ is
a flat, proper morphism with projective fibers. We assume that the map f is smooth on X

∗ = X r Y
and that Y is a divisor with normal crossings in X. On the side of noncommutative geometry, we
consider the noncommutative spaces (A′′,H′′, D′′) obtained by taking the cup product of a spectral
triple (A,H, D) with a noncommutative space Xz in “complexified dimension” z ∈ ∆.

We shall see that the complex of gauge potentials on (A′′,H′′, D′′) behaves in many ways like a
complex of forms with logarithmic poles associated to the family X of smooth algebraic varieties
over the disk z ∈ ∆. In particular, in the algebro-geometric case, it is known that the special fiber
f−1(0) of f : X → ∆ carries a mixed Hodge structure, [30], [24]. This structure also appears in the
cohomological theory of the fibers over the archimedean places of an arithmetic variety, [19], [20].

To describe the analogous structure associated to the complex of gauge potentials in the case of a
noncommutative space and its deformation to complexified dimension, we take the point of view of
Saito’s polarized Hodge–Lefschetz modules (cf. [29] and [24]).
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8.1. Hodge–Lefschetz modules.

We recall the following notions from [29], cf. also [24]. Let L = ⊕i,j∈ZL
i,j be a finite dimensional

bigraded real vector space. Let ℓ1, ℓ2 be endomorphisms of L, with [ℓ1, ℓ2] = 0 and

(8.1) ℓ1 : Li,j → Li+2,j, ℓ2 : Li,j → Li,j+2.

The data (L, ℓ1, ℓ2) define a bigraded Lefschetz module if

(8.2) ℓi1 : L−i,j → Li,j and ℓj2 : Li,−j → Li,j

are isomorphisms for i > 0 (j > 0, resp.).

In the case of a geometric degeneration, with the generic fiber a compact Kähler manifold, one
can obtain such structure from the action of the Lefschetz on the primitive part of the cohomology
(induced by wedging with the Kähler form) and of the monomdromy: the Lefschetz and the log of
the monodromy give the endomorphisms ℓ1, ℓ2.

Bigraded Lefschetz modules correspond bijectively to finite dimensional representations of SL(2,R)×
SL(2,R). We will use the following notation

(8.3) χ(λ) :=

(

λ 0
0 λ−1

)

λ ∈ R∗, u(s) :=

(

1 s
0 1

)

s ∈ R, w :=

(

0 1
−1 0

)

,

and

u =

(

0 1
0 0

)

=
d

ds
u(s)|s=0.

In these terms, the representation σ = σ(L,ℓ1,ℓ2) satisfies

dσ(u, 1) = ℓ1, dσ(1, u) = ℓ2, σ(χ(λ), χ(t)) = λitjx, ∀x ∈ Li,j .

The data (L, ℓ1, ℓ2) define a bigraded Hodge–Lefschetz module if all the Li,j have a real Hodge structure
and ℓ1, ℓ2 are morphisms of Hodge structures.

A polarization on (L, ℓ1, ℓ2) is a bilinear form

(8.4) ψ : L⊗ L→ R

which is compatible with the Hodge structure, satisfies

(8.5) ψ(ℓkx, y) + ψ(x, ℓky) = 0, k = 1, 2,

and is such that

(8.6) ψ(·, Cℓi1ℓj2·)

is symmetric and positive definite on L−i,−j . (Here C is the Weil operator.) The data (L, ℓ1, ℓ2, ψ)
then define a bigraded polarized Hodge–Lefschetz module.

It is also convenient (e.g. when working at the level of forms) to consider differential bigraded polarized
Hodge–Lefschetz modules (L, ℓ1, ℓ2, ψ, d), where d : Li,j → Li+1,j+1 is a differential (d2 = 0) satisfying
[ℓ1, d] = 0 = [ℓ2, d] and ψ(dx, y) = ψ(x, dy). In this case, the cohomology H∗(L, d) inherits the
structure of a bigraded polarized Hodge–Lefschetz module. Moreover, H∗ is identified with Ker2,
where 2 = d∗d + dd∗, where d∗ = σ(w,w)−1 ◦ d ◦ σ(w,w), for w as in (8.3) and σ = σ(L,ℓ1,ℓ2), the
representation of SL(2,R) × SL(2,R).
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8.2. A bigraded complex of gauge potentials.

We now introduce an analog of this structure for noncommutative spaces. We let (A,H, D) be an
even finitely summable spectral triple. Let γ be the grading operator. We consider the graded algebra
Ã generated by A and by γ. Let (A′′,H′′, D′′) be the noncommutative space obtained as the product

of (Ã,H, D) with the noncommutative space Xz in “complexified dimension” z. Namely, we have

A′′ = Ã, H′′ = H ⊗ H′, and D′′ = D′′
z = D ⊗ 1 + γ ⊗ D′

z, where D′
z is the Dirac operator on the

space Xz. We let Ω∗
D(A) denote the complex of gauge potentials of a triple (A,H, D), and H∗

D(A) its
cohomology.

We begin now by considering the complex Ωm,r,k, with differentials δ : Ωm,r,k → Ωm+1,r,k and
δ′ : Ωm,r,k → Ωm,r+1,k. Here we take Ωm,r,k to be the span of elements of the form

(8.7) ∇k(ω)D2r,

with ω ∈ ΩmD(Ã). Here we define ∇(a) = [D2, a] as before, for an element a ∈ A or a ∈ [D,A], while
we set ∇(aγ) := [D2, a]γ, for all a ∈ A or a ∈ [D,A].

We consider a descending filtration F p ⊃ F p+1 on Ω∗
D(Ã) defined by setting

(8.8) F pΩmD(Ã) = ⊕t+s=m,t≥pΩt,sD (Ã),

where Ωt,sD (Ã) = ΩtD(A)θs is the span of ω θs, with ω ∈ ΩtD(A) and θ = γD̂. We take

(8.9) Fm+r−kΩmD(Ã) = ⊕t+s=m,s+r≤k ΩtD(A) θs.

This way, we can endow the complex Ωm,r,k with a tensor product of “Hodge structures” (the second

1-dim with F−r
D (C) := C ·D2r and F

−(r+1)
D (C) = 0)

(8.10) Ωm,r,k = Fm+r−kΩmD(Ã) ⊗C F
−r
D (C).

The index of the resulting filtration is i−k, where i = 2r+m, hence we take then the Ωm,r,k with the
conditions k ≥ 0 and k ≥ 2r +m. The differential d = δ + δ′ on this complex is the same described
above, induced by da = [D′′, a] for a ∈ ∇k(A), when decomposing D′′ = D ⊗ 1 + γ ⊗ D′

z, so that

δ′a = [D̄, a] and δ′′(a) = [D̂, a].

Notice that the decomposition of the total differential d = δ + δ′, where δ is essentially the original
de Rham differential on Ω∗

D(A) and δ′ acts by wedging with the differential θ = γD̂, resembles very
closely the case of geometric degenerations, where one also has a total differential d = δ + δ′, with δ
the usual de Rham differential and δ′ given by wedging with the form θ = f∗(dz/z), for f : X → ∆
and z the coordinate on the base ∆ (cf. [30]).

8.3. Representations.

We introduce endomorphisms ℓ1 : Ωm,r,k → Ωm,r+1,k+1 and ℓ2 : Ωm,r,k → Ωm+2,r−1,k of (Ω, d = δ+δ′)
defined as follows:

(8.11) ℓ1(∇k(ω)D2r) = ǫ(∇k(ω)D2r) = ∇k+1(ω)D2(r−1)

(8.12) ℓ2(∇k(ω)D2r) =
√
−1∇k(ω) ∧ θ2D2(r+1) =

√
−1∇k(ω (γD̂)2)D2(r+1),

with θ = γD̂.

We then have the following result.

Lemma 8.1. The endomorphisms ℓ1 and ℓ2 satisfy [ℓ1, ℓ2] = 0 and are compatible with the differential,
namely, [ℓ1, d] = 0 and [ℓ2, d] = 0.
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Proof. It is immediate to verify that [ℓ1, ℓ2] = 0. We check compatibility with the differential. We
have [ℓ1, d] = 0. In fact, we can check the result on elements of the form ∇k(a)D2r or ∇k(γa)D2r for
a ∈ A. We have

(ℓ1δ − δℓ1)∇k(a)D2r = [D2, [D,∇k(a)]]D2(r−1) − [D,∇k+1(a)]D2(r−1) = 0,

since [D2, [D, b]] = −[D, [D2, b]], for all b ∈ ∇k(A). We also have

(ℓ1δ − δℓ1)∇k(γa)D2r = [D2, [D̂, γ∇k(a)]]D2(r−1) − [D̂, γ∇k+1(a)]D2(r−1) = 0,

where we use the fact that we have set ∇(γa) := γ∇(a) and we get [D2, [D̂, γb]] = [D2, 2γbD̂] =

2[D2, b]γD̂ and [D̂, γ[D2, b]] = 2[D2, b]γD̂. Similarly, we verify that [ℓ2, d] = 0. This can be seen

easily on elements of the form bD2r, since [D, b(γD̂)2] = −[D, b](γD̂)2, and on elements γbD2r, where

ℓ2[D̂, γb] = 2
√
−1 bθ3 = −[D̂, ℓ2(γb)].

�

Thus, ℓ1, ℓ2 induce endomorphisms on the cohomology of the double complex.

We introduce an SL(2,R)× SL(2,R) representation (σ1, σ2) on the complex introduced above, which
is associated to the operators ℓ1, ℓ2.

Definition 8.2. Assume that the spectral triple (A,H, D) is N -summable with N = 2n. Consider σ1

and σ2 defined by

(8.13) σ1(χ(λ)) = λ2r+m, σ1(u(s)) = exp(s ℓ1), σ1(w) = S1.

(8.14) σ2(χ(λ)) = λn−m, σ2(u(s)) = exp(s ℓ2), σ2(w) = S2.

Here the operators S1 and S2 are defined by powers of ℓ1, ℓ2, in the following way. We consider
involutions

Ŝ1 : Ωm,r,k → Ωm,−(r+m),k−(2r+m) and Ŝ2 : Ωm,r,k → Ω2n−m,r−(n−m),k

of the form

(8.15) Ŝ1(∇k(ω)D2r) = ℓ
−(2r+m)
1 (∇k(ω)D2r) and S2(∇k(ω)D2r) = ℓn−m2 (∇k(ω)D2r),

for ω ∈ ΩmD(Ã). We set S1 =
√
−1

m
Ŝ1.

These satisfy the following.

Proposition 8.3. The data specified in Definition 8.2 define a representation of SL(2,R)× SL(2,R)
on (Ω, d).

Proof. In order to show that σ = σk, for k = 1, 2, defined by (8.13) and (8.14) is indeed a representa-
tions of SL(2,R) it is sufficient ([27] §XI.2) to check that it satisfies the relations

(8.16)
σ(w)2 = σ(χ(−1)),

σ(χ(λ))σ(u(s))σ(χ(λ−1)) = σ(u(sλ2)).

The first relation is clearly satisfied and the second can be verified easily on elements ∇k(ω)D2r, with
ω ∈ ΩmD(A), where we have

σ1(χ(λ))σ1(u(s))σ1(χ(λ−1)) ∇k(ω)D2r = σ1(χ(λ))

(

1 + sℓ1 +
s2

2
ℓ21 + · · ·

)

λ−(2r+m) ∇k(ω)D2r =

(

1 + λ2(r+1)+msℓ1λ
−(2r+m) + λ2(r+2)+m s

2

2
ℓ21λ

−(2r+m) + · · ·
)

∇k(ω)D2r = exp(sλ2 ℓ1) ∇k(ω)D2r,

and

σ2(χ(λ))σ2(u(s))σ2(χ(λ−1)) ∇k(ω)D2r = σ2(χ(λ))

(

1 + sℓ2 +
s2

2
ℓ22 + · · ·

)

λn−m ∇k(ω)D2r =
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(

1 + λ−n+m+2sℓ2λ
n−m + λ−n+m+4 s

2

2
ℓ22λ

n−m + · · ·
)

∇k(ω)D2r = exp(sλ2 ℓ2) ∇k(ω)D2r.

�

Notice that, in the case of the representation associated to the “Lefschetz” ℓ2, the analog of the Hodge
* on forms, which appears in σ1(w), is realized by a power of ℓ2, by analogy to what happens in the
classical case, where the Hodge * can be realized (on the primitive cohomology) by the (n −m)-th
power of the Lefschetz operator.

This construction parallels exactly what happens in the construction of the archimedean cohomology
of [19] for the fibers at infinity of arithmetic varieties, in the form presented in [20]. This defines a
structure that is analogous to the differential bigraded Hodge–Lefschetz modules, by setting Li,j =
⊕kΩm,r,k with i = 2r +m and j = −n+m.

8.4. Polarization.

We now discuss the polarization. Define the bilinear form ψ by setting

(8.17) ψ(∇k(ω)D2r,∇k′(ω′)D2r′) :=

∫

−γ∇k(η∗)∇k′ (η′)D2(r+r′)

where ω = ηθs and ω′ = η′θs
′

.

Lemma 8.4. The bilinear form (8.17) satisfies the relation (8.5).

Proof. For a = ∇k(η)θsD2r and b = ∇k′(η′)θs
′

D2r′ , we have

ψ(ℓ1(a), b) =

∫

−γ∇k+1(η∗)∇k′ (η′)D2(r−1+r′),

while

ψ(a, ℓ1(b)) =

∫

−γ∇k(η)∇k′+1(η′)D2(r+r′−1).

Thus, integration by parts gives ψ(ℓ1(a), b) + ψ(a, ℓ1(b)) = 0.
We also have

ψ(ℓ2(a), b) =

∫

−γ(−
√
−1∇k(η∗))∇k′ (η′)D2(r+1+r′),

and

ψ(a, ℓ2(b)) =

∫

−γ∇k(η∗)
√
−1∇k′ (η′)D2(r+r′+1).

Thus, we also have ψ(ℓ2(a), b) + ψ(a, ℓ2(b)) = 0.
�

We also have the following result, analogous to the requirement (8.6) for polarizations of Hodge–
Lefschetz modules.

Lemma 8.5. The bilinear form (8.17) has the property that

〈a∗, b〉 := ψ(a, ℓi1ℓ
j
2b)

agrees on L−i,−j with the integral with respect to the volume form of (A,H, D). Under the assumptions
of “tameness” for (A,H, D), it agrees with the inner product on the complex of gauge potentials.

Proof. For b = ∇k′(η′)θsD2r in L−i,−j , we have

ℓj2(b) = ∇k′ (η′)θs
′+2jD2r+2j .

We then have

ℓi1ℓ
j
2(b) = ∇k′+i(η′)θs

′+2jD2r+2j−2i.

This gives

ℓi1ℓ
j
2(b) = ∇k′+2r+m(η′)θs

′+2(m−n)D−2r−2n.



32 CONNES AND MARCOLLI

Thus, for a = ∇k(η′)θsD2r in L−i,−j , we obtain

ψ(a, ℓi1ℓ
j
2(b)) =

∫

−γ∇k(η∗)∇k′+2r+m(η′)D−2n.

Recall that
∫

a :=
∫

−aD−2n is the integration with respect to the volume form D−2n of the spectral
triple (A,H, D). Under the assumption of “tameness” (cf. [31]) this satisfies

∫

ab =
∫

ba and
∫

a∗a ≥ 0,

so that 〈a∗, b〉 agrees with the inner product of forms in Ω∗
D(Ã).

�

The fact that the structure described here in terms of Hodge–Lefschetz modules parallels very closely
the construction of the archimedean cohomology of [19], in the form presented in [20], suggests that the
formalism of DimReg via noncommutative geometry may be useful also to describe a “neighborhood”
of the fibers at infinity of an arithmetic variety.

8.5. Vanishing and nearby cycles.

In the algebro-geometric setting of a degeneration over a disk, the local monodromy plays an important
role in determining the limiting mixed Hodge structure. In fact, geometrically, the difference between
the cohomology of the generic fiber and of the special fiber is measured by the vanishing cycles. These
span the reduced cohomology H̃∗(Mz,C) of the Milnor fiber Mz := BP ∩ f−1(z), defined for P ∈ Y ,
BP a small ball around P , and a sufficiently small z ∈ ∆∗. The nearby cycles span the cohomology
H∗(Mz,C). To eliminate the non-canonical dependence of everything upon the choice of z, one usually

considers all choices by passing to the universal cover ∆̃∗ = H of the punctured disk and replacing
Mz by X̃

∗ = X ×∆ ∆̃∗. The identification (cf. [30])

(8.18) Hm(X̃∗,C)
≃→ Hm(Y,Ω·

X/∆(logY ) ⊗OX
OY )

shows that, when working with nearby cycles, one can use a complex of forms with logarithmic
differentials. This approach, with an explicit resultion of the complex, was used ([30], [24]) to obtain

a mixed Hodge structure on Hm(X̃∗,C) determined by (Hm(X̃∗,C), L·, F
·), where F · is the Hodge

filtration and L· is the Picard–Lefschetz filtration associated to the local monodromy.

The analogy described above with the structure of polarized Hodge–Lefschetz modules allows one to
think of the operator

(8.19) Θ(a) =

∞
∑

n=1

(−1)n+1

n
∇n(a)D−2n.

as the logarithm of the local monodromy, with ℓ1 satisfying eΘ = 1 + ℓ1, and with the induced action
of (2π

√
−1)ℓ1 on the cohomology corresponding to the residue of the Gauss–Manin connection in the

algebro-geometric setting.
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