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Differential geometry. — A metric on shape space with explicit geodesics, by LAURENT

YOUNES, PETER W. M ICHOR, JAYANT SHAH and DAVID MUMFORD.

ABSTRACT. — This paper studies a specific metric on plane curves that has the property of being isometric to
classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of
these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo
rotation etc.). Using these isometries, we are able to explicitly describe the geodesics, first in the parametric
case, then by modding out the parametrization and considering horizontal vectors. We also compute the sectional
curvature for these spaces, and show, in particular, that the space of closed curves modulo rotation and change
of parameter has positive curvature. Experimental results that explicitly compute minimizing geodesics between
two closed curves are finally provided.
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INTRODUCTION

The definition and study of spaces of plane shapes has recently met a large amount of
interest [2, 5, 7, 10, 18, 15], and has important applications, in object recognition, for the
analysis of shape databases or in medical imaging. The theoretical background involves
the construction of infinite-dimensional manifolds of shapes [7, 15]. The Riemannian
framework, in particular, is appealing, because it provides shape spaces with a rich
structure which is also useful for applications. A general discussion of several classes of
metrics that can be introduced for this purpose can be found in [11].

The present paper focuses on a particular Riemannian metric that has very specific
properties. This metric, which will be described in the next section, can be seen as a
limit case of one of the classes studied in [11], and would receive the labelH1,∞ in
the nomenclature introduced therein. One of its surprising properties is that it can be
characterized as the image of a Grassmann manifold under a suitably chosen Riemannian
submersion. A consequence of this is the possibility to derive explicit geodesics in this
shape space.

A precursor of theH1,∞ metric has been introduced in [18, 19] and studied in the
context of open plane curves. It has also recently been used in [12]. Because the metric
is placed on curves modulo changes of parametrization, the computation of geodesics
naturally provides an elastic matching algorithm.

The paper is organized as follows. We first provide the definitions and notation that
we will use for spaces of curves, theH1,∞ metric and the classical manifolds that will
be shown to be isometric to it. We then study some local properties of the resulting
manifold, discussing in particular its geodesics and sectional curvature. We finally provide
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experimental results for the numerical computation of geodesics and the solution of the
related elastic matching problem.

1. SPACES OF CURVES

Throughout this paper, we will assume our plane curves are curves in thecomplexplaneC.
Then real inner products and 2× 2 determinants of real 2-vectors are given by〈x, y〉 =

Re(x̄y) and det(x, y) = Im(x̄y).
We first recall the notations for various spaces of plane curves which we will need,

some of which were introduced in the previous paper [11]. For all questions about infinite-
dimensional analysis and differential geometry we refer to [9]. By

Immop = Imm([0,2π ],C)

we denote the space ofC∞-immersionsc : [0,2π ] → C. Here ‘op’ stands foropen
curve. Bi,op is the quotient of Immop by the group Diff+([0,2π ]) of C∞ increasing
diffeomorphisms of [0,2π ]. Next

Immev(S
1,C), Immod(S

1,C)

are the spaces ofC∞-immersionsc : S1
→ C of even, respectivelyodd rotation degree.

Here,S1 is the unit circle inC, which will be identified in this paper toR/(2πZ). Then
Bi,ev andBi,od are the quotients of Immev, respectively Immod by the group Diff+(S1) of
C∞ orientation preserving diffeomorphisms ofS1. For example,Bi,od contains the simple
closed plane curves, since they have index+1 or−1 (depending on how they are oriented).
These are the main focus of this study. To save us from enumerating special cases, we will
often consider open curves as defined onS1 but with a possible discontinuity at 0. We will
also consider the quotients of these spaces by the group of translations, by the group of
translations and rotations, and the group of translations, rotations and scalings.

Using the notation of [11], we can introduce the basic metric studied in this paper
on these three spaces of immersions, butmodulo translations, as follows. Identify
Tc(Imm/transl) with the set of vector fieldsh : S1

→ C alongc modulo constant vector
fields. Then we consider the limiting case of the scale invariant metric of Sobolev order 1
from [11, 4.8]:

(1) Gc(h, h) = Gimm,scal,1,∞
c (h, h) =

1

`(c)

∫
S1

|Dsh|
2 ds

where, as in [11],ds = |cθ | dθ is arc-length measure,Ds = Ds,c = |cθ |
−1∂θ is the

derivative with respect to arc-length, and`(c) is the length ofc. We also recall for later use
the notationv = cθ/|cθ | for the unit tangent vector, and, as multiplication byi is rotation
by 90 degrees,n = iv for the unit normal. Note that this metric is invariant with respect
to reparametrizations of the curvec, hence it induces a metric which we also callG on the
quotient spacesBi,op, Bi,ev andBi,od also modulo translations.

The geodesic equation in all these metrics is a simple limiting case of those worked out
in [11]. Supposec(θ, t) is a geodesic. Then

ct t = D−1
s (〈Dsct , v〉Dsct −

1
2|Dsct |

2v〉)− 〈〈Dsct , v〉〉ct −
1

2
〈|Dsct |2〉D

−2
s (κn).
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Here the bar indicates theaverageof the quantity over the curvec, i.e. 〈F 〉 = `−1
∫
F ds.

Unfortunately, this case was not worked out in [11], hence we give the details of its
derivation in Appendix I. The local existence and uniqueness of solution to this equation
can be proved easily, essentially because of the regularizing influence of the termD−1

s .
This will also follow from the explicit representation of these geodesics to be given below,
but because of its more general applicability, we give a direct proof in Appendix I.

It is convenient to introduce themomentumu = −D2
s (ct ) associated to a geodesic.

Using the momentum, the geodesic equation is easily rewritten in the more compact form:

ut = −〈u,Dsct 〉v −
(
〈Dsct , v〉 − 〈〈Dsct , v〉〉

)
u−

1

2

(
|Dsct |

2
+ 〈|Dsct |2〉

)
κ(c)n.

By the theory of Riemannian submersions, geodesics on the quotient spacesBi are
nothing more thanhorizontalgeodesics in Imm, that is, geodesics which are perpendicular
at one and hence all points to the orbit of the group of reparametrizations. As is shown
in [11], horizontality is equivalent to the conditionu = an for some scalar function
a(θ, t). Substitutingu = an and taking then-component of the last equation, we find
that horizontal geodesics are given by:

at = −a
(
〈Dsct , v〉 − 〈〈Dsct , v〉〉

)
+
κ(c)

2

(
|Dsct |

2
+ 〈|Dsct |2〉

)
.

From the inequality

|ct (θ1, t)− ct (θ0, t)| ≤

∫
C

|Ds(ct )| ds ≤
√
`

√∫
C

|Ds(ct )|2 ds,

we can easily deduce that the geodesic distance on Imm/(transl) is larger than theL∞

distance between the curves (optimized over translations).
There are several conserved momenta along each geodesict 7→ c(θ, t) of this metric

(see [11, 4.8]): The ‘reparametrization’ momentum is

−1

`(c)
〈cθ ,D

2
s,cct 〉|cθ |,

which vanishes along all horizontal geodesics. The translation momentum vanishes
because the metric does not feel translation (constant vector fields alongc). The angular
momentum is

−1

`(c)

∫
S1

〈i.c,D2
s,cct 〉 ds =

1

`(c)

∫
S1
κ〈v, ct 〉 ds.

Since the metric is invariant under scalings, we also have the scaling momentum

−1

`(c)

∫
S1

〈c,D2
s,cct 〉 ds = ∂t log`(t).

So we may equivalently consider either the quotient space Imm/translations or consider
the section of the translation action{c ∈ Imm : c(0) = 0}. In the same way, we may
either pass modulo scalings or consider the section by fixing`(c) = 1, since the scaling
momentum vanishes here. Finally, in some cases, we will pass modulo rotations. We could
consider the section where angular momentum vanishes: but this latter is not especially
simple.
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2. THE BASIC MAPPING FOR PARAMETRIZED CURVES

2.1. The basic mapping

We introduce three function spaces:

Vop = Vector space of allC∞ mappingsf : [0,2π ] → R,

Vev = Vector space of allC∞ mappingsf : S1
→ R such thatf (θ + 2π) ≡ f (θ),

Vod = Vector space of allC∞ mappingsf : S1
→ R such thatf (θ + 2π) ≡ −f (θ).

All three spaces have the weak inner product with norm

‖f ‖
2

=

∫ 2π

0
f (x)2 dx.

Givene, f from any of these spaces, the basic map is

Φ : (e, f ) 7→ c(θ) =
1

2

∫ θ

0
(e(x)+ if (x))2 dx.

The mapc so defined carries [0,2π ] or S1 to C. It need not be an immersion, however,
becausee andf might vanish simultaneously. Define

Z(e, f ) = {θ : e(θ) = f (θ) = 0}.

Then we get three maps:

{(e, f ) ∈ Vx × Vx : Z(e, f ) = ∅} → Immx for x = op,ev,od.

Looking separately at the three cases, define first the sphereS(V 2
op) to be the set

of (e, f ) ∈ V 2
op such that‖e‖2

+ ‖f ‖
2

= 2. S0(V 2
op) is defined as the subset where

Z(e, f ) = ∅. Then the magic of the mapΦ is shown by the following key fact [18]:

2.2. THEOREM. Φ defines a map

Φ : S0(V 2
op) → {c ∈ Immop : `(c) = 1, c(0) = 0} ∼= Immop/(transl, scalings)

which is an isometric2-fold covering, using the natural metric onS and the metric
Gimm,scal,1,∞ on Immop.

PROOF. The mappingΦ is surjective: Givenc ∈ Immop with c(0) = 0 and`(c) = 1, we
write c′(u) = r(u)eiα(u). Then we may choosee(u) =

√
2r(u) cos(α(u)/2) andf (u) =

√
2r(u) sin(α(u)/2). Since 1= `(c) =

∫ 2π
0 |c′(u)| du =

∫ 2π
0 r(u) du we see that

‖e‖2
+ ‖f ‖

2
=

∫ 2π

0
2r(u)

(
cos2

(
α(u)

2

)
+ sin2

(
α(u)

2
)

)
du = 2.

The only choice here is the sign of the square root, i.e.Φ(−e,−f ) = Φ(e, f ), thusΦ
is 2:1.
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To see thatΦ is an isometry, letΦ(e, f ) = c = x + iy andδc = δx + iδy. Then the
differentialDΦ(e, f ) is given by

(2) DΦ(e, f ) : (δe, δf ) 7→ δc(θ) =

∫ θ

(δe + iδf )(e + if ) dθ.

We haveds =
1
2|e + if |

2 dθ . This implies first that̀ (c) = (‖e‖2
+ ‖f ‖

2)/2 = 1 as
required. Then

Ds(δc) =
2(e + if )(δe + iδf )

|e + if |2
,

Gc(δc, δc) =
1

2

∫ 2π

0
|Ds(δc)|

2 ds =

∫ 2π

0
|δe + iδf |

2 dθ = ‖(δe, δf )‖2.

The dictionary between pairs(e, f ) and immersionsc connects many properties of
each with those of the other. Curvatureκ works out especially nicely. We list here some of
the connections:

ds

dθ
= |cθ | =

1

2
(e2

+ f 2), v = Ds(c) =
(e + if )2

e2 + f 2
,

and ifWθ (e, f ) = efθ − f eθ is the Wronskian, then

vθ =

(
(e + if )2

e2 + f 2

)
θ

= 2
Wθ (e, f )

e2 + f 2
iv,

hence

κ = 2
Wθ (e, f )

(e2 + f 2)2
for the curvature ofc.

2.3. Geodesics leaving the space of immersions

Since geodesics on a sphere are always given by great circles, this theorem gives us the
first case of explicit geodesics on spaces of curves in the metric of this paper. However,
note that great circles in the open partS0 are susceptible to crossing the ‘bad’ partS− S0

somewhere. This occurs if and only if there existsθ such that(e + if )(θ) and (δe +

iδf (θ)) have identical complex arguments moduloπ . So we find that our metric on Imm
is incomplete.

We can form a commutative diagram:

Φ : S0(V 2
op)

2-fold //
� _

��

Immop/(transl, scalings)� _

��
Φ̃ : S(V 2

op)
// C∞([0,2π ],C)/(transl, scalings)



30 L . YOUNES - P. W. MICHOR - J. SHAH - D. MUMFORD

where we have denoted the extendedΦ by Φ̃. For rather technical reasons̃Φ is not
surjective: there are pathological non-negativeC∞ functions which have noC∞ square
root (see [8], e.g.) But what this diagram does do is give some space of maps to hold the
extended geodesics. The example:

e(x, s)+ if (x, s) = (x + is)/
√
C, −π ≤ x ≤ π,−1 ≤ s ≤ 1, C = 2a3/3 + 2as2,

c(x, s) = (x3/3 − s2x + isx2)/C − is/2 (suitably translated)

is shown in Figure 1. This is a geodesic in which all curves are immersions fors 6= 0, but
cx(x,0) has a double zero atx = π .

FIG. 1. The generic way in which a family of open immersions crosses the hypersurface whereZ 6= ∅. The
parametrized straight line in the middle of the family has velocity with a double zero at the black dot, hence is
not an immersion. See text.

2.4. The basic mapping in the periodic case

Next, consider the periodic cases. Here we need theStiefel manifolds:

St(2, V ) = {orthonormal pairs(e, f ) ∈ V × V }, V = Vev or Vod,

andSt0(2, V ) the subset defined by the constraintZ(e, f ) = ∅. For later use, it is also
convenient to note thatSt(2, V ) = {A ∈ L(C, V ) : ATA = IdC} whereL(C, V ) is the
space of linear maps fromC to V and 〈AT v,w〉C = 〈v,Aw〉V . For (e, f ) ∈ S0(V 2

op),
when isc = Φ(e, f ) periodic? If and only if

c′ =
1
2(e + if )2 is periodic, so thate, f ∈ Vev or Vod;(A)

0 =

∫ 2π

0
c′(u) du =

1

2

∫ 2π

0
(e2

− f 2) du+ i

∫ 2π

0
ef du.(B)
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Condition (B) says that‖e‖2
= ‖f ‖

2
= 1 (since the sum is 2) and〈e, f 〉 = 0, so that

(e, f ) ∈ St0(2, Vev) or (e, f ) ∈ St0(2, Vod). Recall that the indexn of an immersed curve
c is defined by considering log(c′). The log must satisfy log(c′(θ+2π)) ≡ log(c′(θ))+2πn
for somen and this is the index. So this index is even or odd depending on whether the
square root ofc′ is periodic or anti-periodic, that is, whethere, f are both inVev or in
Vod. So ifΦ is restricted toSt0(2, Vev) or St0(2, Vod) (and is still denotedΦ), it provides
isometric 2-fold coverings

Φ : St0(2, Vev) → {c ∈ Immev(S
1,C) : c(0) = 0, `(c) = 1},

Φ : St0(2, Vod) → {c ∈ Immod(S
1,C) : c(0) = 0, `(c) = 1}.

All three of these mapsΦ can be modified so as to divide out by rotations. The mapping
(e, f ) 7→ eiϕ(e+ if ) produces a rotation of the immersed curveΦ(e, f ) through an angle
2ϕ. The complex projective spaceCP(V 2

op) is S(V 2
op) divided by the action of rotations, and

we denote byCP0(V 2
op) the subset obbtained by dividingS0(V 2

op) by rotations. The group
generated by translations, rotations and scalings will be called the group ofsimilitudes,
abreviated as ‘sim’. Then we get the variant

Φ : CP0(V 2
op) → Immop/(sim).

Similarly, letGr(2, V ) be the Grassmannian of unoriented 2-dimensional subspaces of
V and letGr0(2, V ) be its subset containing all subspacesW with Z(W) = ∅ for V = Vev
or V = Vod. Then we have maps

Φ : Gr0(2, Vev) → Immev/(sim), Φ : Gr0(2, Vod) → Immod/(sim).

For later use, we describe the tangent spaces of these spaces. The tangent spaceTW Gr
to Gr(2, V ) atW ∈ Gr(2, V ) is naturally identified withL(W,W⊥) and has the following
norm, induced from that onV :

‖v‖2
= tr(vT ◦ v) = ‖v(e)‖2

+ ‖v(f )‖2

for v ∈ TW Gr and{e, f } an orthonormal basis ofW . Similarly,T(e,f ) St can be naturally
identified with pairs{δe, δf } in V such that〈e, δe〉 = 〈f, δf 〉 = 〈e, δf 〉+〈f, δe〉 = 0 with
norm

‖(δe, δf )‖2
= ‖δe‖2

+ ‖δf ‖
2.

The same definition holds forT(e,f )(S), this time with the constraint〈e, δe〉+ 〈f, δf 〉 = 0.

3. THE BASIC MAPPING FOR SHAPES

3.1. Dividing out by the group of reparametrizations

Let C∞,+([0,2π ]) be the group of increasing diffeomorphismsϕ of [0,2π ] (so that
ϕ(0) = 0, ϕ(2π) = 2π) and letC∞,+(R) be the group of increasingC∞ diffeomorphisms
ϕ : R → R such thatϕ(x + 2π) ≡ ϕ(x) + 2π for all x. Modulo the central subgroup of
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translationsϕ(x) = x + 2πn, the second group is justDiff +(S1). ForV = Vop, Vev, Vod
letU(V ) be the group of unitary maps onV given by

f 7→ f ϕ =

√
ϕ′ (f ◦ ϕ), where

{
ϕ ∈ C∞,+([0,2π ]) if V = Vop,

ϕ ∈ C∞,+(R) if V = Vev, Vod.

These are the reparametrization groups for our various spaces. The infinitesimal action of
a vector fieldX on [0,2π ] or a periodic vector fieldX onS1 is then

(3) f 7→
1
2Xθ · f +X · fθ .

For all three sets of isometriesΦ, we can now divide each side by the reparametrization
groupU(V ). For open curves, we get a diagram

Φ : S0(V 2
op)/U(Vop)

2-fold //

��

Bi,op/(transl, scalings)

��
Φ : CP0(V 2

op)/U(Vop)
≈ // Bi,op/(sim)

and a similar one for closed curves of even and odd index whereV = Vev, Vod andB =

Bi,ev, Bi,od:

Φ : St0(2, V )/U(V )
2-fold //

��

B/(transl, scalings)

��
Φ : Gr0(2, V )/U(V )

≈ // B/(sim)

Here we have divided by isometries on both the left and right: byU(V ) orU(V )× S1

on the left (whereS1 rotates the basis{e, f }) and by reparametrizations and rotations
on the right. ThusΦ is again an isometry if we make both quotients into Riemannian
submersions. This means we must identify the tangent spaces to the quotients with the
horizontalsubspaces of the tangent spaces in the larger space, i.e. those perpendicular to
the orbits of the isometric group actions. ForSt, this means:

3.2. PROPOSITION. The tangent vector{δe, δf } to St satisfies

〈δe, e〉 = 〈δf, f 〉 = 0, 〈δe, f 〉 + 〈δf, e〉 = 0.

It is horizontal for the rotation action if and only if

bothδe, δf are perpendicular to bothe, f.

It is horizontal for the reparametrization group if

Wθ (e, δe)+Wθ (f, δf ) = 0

whereWθ (a, b) = abθ − baθ is the Wronskian with respect to the parameterθ .
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PROOF. Consider the action of rotations, which is one-dimensional, with orbitsβ 7→

eiβ(e + if ); the direction at(e, f ) is chosen as(−f, e). So (δe, δf ) being horizontal at
(e, f ) for this action means that−〈f, δe〉 + 〈e, δf 〉 = 0. This proves the first assertion.

For the action ofU(V ), one has to note that horizontal vectors must satisfy

〈
1
2Xθ · e +X · eθ , δe〉 + 〈

1
2Xθ · f +X · fθ , δf 〉 = 0

for any periodic vector fieldX on R, which yields the horizontality condition after
integration by parts of the terms inXθ . 2

Horizontality on the shape space side means (see [11]):

3.3. PROPOSITION. h ∈ Tc Imm(S1,C) is horizontal for the action ofDiff (S1) if and
only ifD2

s (h) is normal to the curve, i.e.〈v,D2
s (h)〉 = 0.

3.4. PROPOSITION. For any smooth pathc in Imm(S1,R2) there exists a smooth path
ϕ in Diff (S1) with ϕ(0, ·) = IdS1 depending smoothly onc such that the pathe given by
e(t, θ) = c(t, ϕ(t, θ)) is horizontal:〈D2

s (et ), eθ 〉 = 0.

This is a variant of [11, 4.6].

PROOF. WritingDc instead ofDs we note that

Dc◦ϕ(f ◦ ϕ) =
(fθ ◦ ϕ)ϕθ

|cθ ◦ ϕ| · |ϕθ |
= (Dc(f )) ◦ ϕ

for ϕ ∈ Diff +(S1). So we haveLn,c◦ϕ(f ◦ ϕ) = (Ln,cf ) ◦ ϕ.
Let us writee = c ◦ ϕ for e(t, θ) = c(t, ϕ(t, θ)), etc. We look forϕ as the integral

curve of a time dependent vector fieldξ(t, θ) on S1, given byϕt = ξ ◦ ϕ. We want the
following expression to vanish:

〈D2
c◦ϕ(∂t (c ◦ ϕ)), ∂θ (c ◦ ϕ)〉 = 〈D2

c◦ϕ(ct ◦ ϕ + (cθ ◦ ϕ) ϕt ), (cθ ◦ ϕ) ϕθ 〉

= 〈D2
c (ct ) ◦ ϕ +D2

c (cθξ) ◦ ϕ, cθ ◦ ϕ〉ϕθ

= ((〈D2
c (ct ), cθ 〉 + 〈D2

c (ξcθ ), cθ 〉) ◦ ϕ) ϕθ .

Using the time dependent vector fieldξ = −
1

|cθ |
D−2
c (〈D2

c (ct ), v〉) and its flowϕ achieves
this. 2

3.5. Bigger spaces

As we will see below, we can describe geodesics in the ‘classical’ spacesS,CP,St,Gr
quite explicitly. By the above isometries, this gives us the geodesics in the various spaces
Imm, Bi . But, as we mentioned above for the spaceS, geodesics in the ‘good’ parts
S0,CP0,St0,Gr0 do not stay there, but they cross the ‘bad’ part whereZ(e, f ) 6= ∅. Now
the basic mapping is still defined on the full sphere, projective space, Stiefel manifold or
Grassmannian, giving us some smooth mappings of [0,2π ] or S1 to C, possibly modulo
translations, rotations and/or scalings.

But when we divide byU(Vop), a major problem arises. The orbits ofU(Vop) acting on
C∞([0,2π ],C) are not closed, hence the topological quotient of the spaceC∞([0,2π ],C)
byU(Vop) is not Hausdorff. This is shown by the following construction:
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(1) Start with aC∞ non-decreasing mapψ from [0,2π ] to itself such thatψ(θ) ≡ π for
θ in some intervalI .

(2) Letψn(θ) = (1−1/n)ψ(θ)+ θ/n. The sequence{ψn} of diffeomorphisms of [0,2π ]
converges toψ .

(3) Then for anyc ∈ Immop, the mapsc ◦ψn are all in the orbit ofc. But they converge to
c ◦ ψ which is constant on the whole intervalI , hence is not in the orbit.

Thus, if we want some Hausdorff space of curves which (a) have singularities more
complex than those of immersed curves and (b) can hold the extensions of geodesics in
some spaceBi which come from the mapΦ, we must divideC∞([0,2π ],C) by some
equivalence relation larger than the group action byU(V ). The simplest seems to be:
first define amonotone relationR ⊂ [0,2π ] × [0,2π ] to be any closed subset such that
p1(R) = p2(R) = [0,2π ] (p1 andp2 being the projections on the axes) and for every
pair of points(s1, t1) ∈ R and(s2, t2) ∈ R, eithers1 ≤ s2 andt1 ≤ t2 or vice versa. Then
f, g : [0,2π ] → C areFréchet equivalentif there is a monotone relationR such that
f (s) = g(t) for all (s, t) ∈ R.

This is a good equivalence relation because if{fn}, {gn} : [0,2π ] → C are two
sequences and limn fn = f, limn gn = g andfn, gn are Fŕechet equivalent for alln, then
f, g are Fŕechet equivalent. The essential point is that the set of non-empty closed subsets
of a compact metric spaceX is compact in the Hausdorff topology (see [1]). Thus if{Rn}

are the monotone relations instantiating the equivalence offn andgn, then a subsequence
{Rnk } Hausdorff converges to someR ⊂ [0,2π ] × [0,2π ] and it is immediate thatR is a
monotone relation makingf andg Fréchet equivalent.

Define

Bbig,op = C∞([0,2π ],C)/(Fréchet equivalence, translations, scalings).

Then we have a commutative diagram

Φ : S0(V 2
op)

//
� _

��

Bi,op/(transl, scalings)� _

��
Φ̃ : S(V 2

op)
// Bbig,op

Thus the whole of a geodesic which enters the ‘bad’ part ofS(Vop) creates a path in
Bbig,op. Of course, the same construction works for closed curves also. We will see several
examples in the next section.

4. CONSTRUCTION OF GEODESICS

4.1. Great circles in spheres

The spaceS(V 2) being the sphere of radius
√

2 onV 2, its geodesics are the great circles.
Thus, the geodesic distance between(e0, f 0) and(e1, f 1) is given by

√
2D with

D = arccos((〈e0, e1
〉 + 〈f 0, f 1

〉)/2)
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and the geodesic is given by

e(t) =
sin((1 − t)D)

sinD
e0

+
sin(tD)

sinD
e1,

f (t) =
sin((1 − t)D)

sinD
f 0

+
sin(tD)

sinD
f 1.

The corresponding geodesic on Immop modulo translation and scaling is the time-indexed
family of curvest 7→ c(u, t) with

∂c/∂u =
1
2(e(t)+ if (t))2 = (e(t)2 − f (t)2)/2 + ie(t)f (t).

The following notation will be used throughout this section:

c0(u) = c(u,0), c1(u) = c(u,1),

∂c0/∂u = r0(u)e
iα0(u), ∂c1/∂u = r1(u)e

iα1(u),

so thatej =
√

2rj cos(αj/2) andf j =
√

2rj sin(αj/2) for j = 0,1. Thus the distance
D is

Dop(c
0, c1) = arccos

∫ 2π

0

√
r0r1 cos

α1
− α0

2
du.

The metric on Immop modulo rotations is

Dop,rot(c
0, c1) = inf

α
arccos

∫ 2π

0

√
r0r1 cos

α1
− α0

− α

2
du

= arccos sup
α

∫ 2π

0

√
r0r1

(
cos

α1
− α0

2
cos

α

2
+ sin

α1
− α0

2
sin

α

2

)
du

= arccos

((∫ 2π

0

√
r0r1 cos

α1
− α0

2
du

)2

+

(∫ 2π

0

√
r0r1 sin

α1
− α0

2
du

)2)1/2

.

The distance onBi,op is the infimum of this expression over all changes of coordinate
for c0. Assuming thatc0 andc1 are originally parametrized with 1/2π times arc-length so
thatr0 ≡ 1/2π, r1 ≡ 1/2π , this is

(4) Dop,diff(c
0, c1) = arccos sup

φ

1

2π

∫ 2π

0

√
φθ cos

α1
◦ φ − α0

2
dθ

and modulo rotations

Dop,diff,rot(c
0, c1) = arccos sup

φ

((
1

2π

∫ 2π

0

√
φθ cos

α1
◦ φ − α0

2
dθ

)2

+

(
1

2π

∫ 2π

0

√
φθ sin

α1
◦ φ − α0

2
dθ

)2)1/2

.

The supremum in both expressions is taken over all increasing bijectionsφ ∈

C∞([0,2π ], [0,2π ]).
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To shorten these formulae, we will use the following notation. Define

C−(φ) =
1

2π

∫ 2π

0

√
φθ cos

α1
◦ φ − α0

2
dθ,

S−(φ) =
1

2π

∫ 2π

0

√
φθ sin

α1
◦ φ − α0

2
dθ.

Then we have

Dop,diff = inf
φ

arccos(C−(φ)),

Dop,diff,rot = infφ arccos
(√
(C−(φ))2 + (S−(φ))2

)
.

4.2. Problems with the existence of geodesics

These expressions give very explicit descriptions of distance and geodesics. We have
already noted, however, that even if both(e0, f 0) and (e1, f 1) belong toS0, the same
property is not guaranteed at each point of the geodesic.e(α, t) = f (α, t) = 0 happens
for some t whenever(e0(α), f 0(α)) and (e1(α), f 1(α)) are collinear with opposite
orientations. This is not likely to happen for geodesics joining nearby points. When it
does happen, it is usually a stable phenomenon: for example, if the geodesic crossesS− S0

transversally, as illustrated in Figure 1, then this happens for all nearby geodesics too. Note
that this means that the geodesic spray on Immop is notsurjective. In fact, any geodesic on
Immop comes from a great circle onS0 and if it crossesS− S0, it leaves Immop.

When we pass to the quotient by reparametrizations, another question arises: does
the inf over reparametrizations exist? or equivalently is there is ahorizontal geodesic
joining any two open curves? In fact, there need not be any such geodesic even if you
allow it to crossS− S0. In general, to obtain a geodesic minimizing distance between
two open curves, the curves themselves must be given parametrizations with zero velocity
somewhere, i.e. they may need to be lifted to points inS− S0.

This is best illustrated by the special case in whichc1 is the line segment from 0
to 1, namelye1

+ if 1
= 1/

√
π , α1

≡ 0. The curvec0 can be arbitrary. Then the
reparametrizationφ which minimizes distance is the one which maximizes∫ 2π

0

√
φθ cos

α0

2
dθ.

This variational problem is easy to solve: the optimalφ is given by

φ(u) = 2π
∫ u

0
max

(
cos

α0

2
,0

)2/ ∫ 2π

0
max

(
cos

α0

2
,0

)2

.

Note that φ is not in general a diffeomorphism: it is constant on intervals where
cos(α0/2) ≤ 0. Its graph is a monotone relation in the sense of Section 3.5. In fact, it
is easy to see that monotone relations enjoy a certain compactness, so that the inf over
reparametrizations is always achieved by a monotone relation. Assumingα0 is represented
by a continuous function for which−2π < α0(u) < 2π , the result is that the places on
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100-fold blow-up middle

FIG. 2. This is a geodesic of open curves running from the curve with the kink at the top left to the straight line
on the bottom right. A blow up of the next to last curve is shown to reveal that the kink never goes away – it
merely shrinks. Thus this geodesic is not continuous in theC1-topology onBop. The straight line is parametrized

so that it stops for a whole interval of time when it hits the middle point and thus it isC1-continuous in Immop.

the curvec0 where|α0(u)| > π get squashed to points on the line segment. The result is
that this limit geodesic is not actually a path in the spaceB of smooth curves. Figure 2
illustrates this effect.

The general problem of maximizing the functional

U(φ) =
1

2π

∫ 2π

0

√
φθ cos

α1
◦ φ − α0

2
dθ

with respect to increasing functionsφ has been addressed in [17]. Existence of solutions
can be shown in the class of monotone relations, or equivalently, functionsφ that take the
form φ(s) = µ([0, s)) for some positive measureµ on [0,2π ] with total mass less than
or equal to 2π (φθ being replaced by the Radon–Nikodym derivative ofµ in the definition
ofU ). The optimalφ is a diffeomorphism as soon as cos((α1(u)−α0(v))/2) > 0 whenever
|u−v| is smaller than a constant (which depends onα0 andα1). More details can be found
in [17].

It is easy to show that maximizingU is equivalent to maximizing

U+(φ) =
1

2π

∫ 2π

0

√
φθ max

(
cos

α1
◦ φ − α0

2
,0

)
dθ

because one can always modifyφ on intervals on which cos((α1
◦φ−α0)/2) < 0 to ensure

thatφθ dθ = 0. In [18], it is proposed to maximize

Ū (φ) =
1

2π

∫ 2π

0

√
φθ

∣∣∣∣cos
α1

◦ φ − α0

2

∣∣∣∣ dθ.
This corresponds to replacing the lifte(u)+ if (u) by σ(u)(e(u)+ if (u)) whereσ(u) = ±

for all u, but this is beyond the scope of this paper.
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4.3. Neretin geodesics onGr(2, V )

The integrated path-length distance and explicit geodesics can be found in any
Grassmannian usingJordan angles[13] as follows: IfW0,W1 ⊂ V are two 2-dimensional
subspaces the singular value decomposition of the orthogonal projectionp of W0 to W1
gives orthonormal bases{e0, f 0

} of W0 and {e1, f 1
} of W1 such thatp(e0) = λee

1,
p(f 0) = λf f

1, e0
⊥ f 1 andf 0

⊥ e1, where 0≤ λf , λe ≤ 1. Writeλe = cos(ψe), λf =

cos(ψf ). Thenψe, ψf are the Jordan angles, 0≤ ψe, ψf ≤ π/2. The global metric is
given by

d(W0,W1) =

√
ψ2
e + ψ2

f

and the geodesic by

(5) W(t) =


e(t) =

sin((1 − t)ψe)e
0
+ sin(tψe)e1

sinψe
,

f (t) =
sin((1 − t)ψf )f

0
+ sin(tψf )f 1

sinψf

 .
We apply this now in order to compute the distance between the curves in the

two spaces Immev/(sim) and Immod/(sim), as well as in the unparametrized quotients
Bi,ev/(sim) and Bi,od/(sim). We write as above∂θc0

= r0(θ)e
iα0(θ) and ∂θc1

=

r1(θ)e
iα1(θ). We put

ē0
=

√
2r0 cos

α0

2
, f̄ 0

=

√
2r0 sin

α0

2
,

ē1
=

√
2r1 cos

α1

2
, f̄ 1

=

√
2r1 sin

α1

2
,

thus lifting these curves to 2-planes in the Grassmannian. The 2×2 matrix of the orthogonal
projection from the space{ē0, f̄ 0

} to {ē1, f̄ 1
} in these bases is

M(c0, c1) =


∫
S1 2

√

r0r1 cosα
0

2 cosα
1

2 dθ
∫
S1 2

√

r0r1 cosα
0

2 sin α
1

2 dθ∫
S1 2

√

r0r1 sin α
0

2 cosα
1

2 dθ
∫
S1 2

√

r0r1 sin α
0

2 sin α
1

2 dθ

 .

It will be convenient to use the notations

C± :=
∫
S1

√
r0r1 cos

α0
± α1

2
dθ =

1
2(M(c

0, c1)11)∓M(c0, c1)22),

S± :=
∫
S1

√
r0r1 sin

α0
± α1

2
dθ =

1
2(M(c

0, c1)21 ±M(c0, c1)12).

We have to diagonalize this matrix by rotating the curvec0 by a constant angleβ0, i.e.,
the basis{ē0, f̄ 0

} by the angleβ0/2; and similarly the curvec1 by a constant angleβ1. So
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we have to replaceα0 by α0
− β0 andα1 by α1

− β1 in such a way that

0 =

∫
S1

√
r0r1 sin

(
(α0

− β0)± (α1
− β1)

2

)
dθ (for both signs)(6)

= S± cos
β0

± β1

2
− C± sin

β0
± β1

2
.

Thus
β0 ± β1 = 2 arctan(S±/C±).

In the newly aligned bases, the diagonal elements ofM(c0, c1) will be the cosines
of the Jordan angles. But even without preliminary diagonalization, the following lemma
gives you a formula for them:

LEMMA . If M =
(
a b
c d

)
andC± =

1
2(a∓ d), S± =

1
2(c± b), then the singular values of

M are √
C2

− + S2
− ±

√
C2

+ + S2
+.

The proof is straightforward. This gives the formula

Dod,rot(c
0, c1)2 = arccos2

(√
S2

+ + C2
+ +

√
S2

− + C2
−

)
(7)

+ arccos2
(√
S2

− + C2
− −

√
S2

+ + C2
+

)
.

This is the distance in the space Immod(S
1,C)/(transl, rot., scalings).

4.4. Horizontal Neretin distances

If we want the distance in the quotient spaceBi,od/(transl, rot., scalings) by the group
Diff (S1) we have to take the infimum of (7) over all reparametrizations. To simplify the
formulas that follow, we can assume that the initial curvesc0, c1 are parametrized by arc-
length so thatr0

≡ r1
≡ 1/2π . Then consider a reparametrizationφ ∈ Diff (S1) of one of

the two curves, sayc0
◦ φ:

(8) Dsim,diff(c
0, c1)2 = inf

φ
(arccos2(λe(c

0
◦ φ, c1))+ arccos2(λf (c

0
◦ φ, c1)))

where now

λe(c
0
◦ φ, c1) =

√
S2

−(φ)+ C2
−(φ)+

√
S2

+(φ)+ C2
+(φ),

λf (c
0
◦ φ, c1) =

√
S2

−(φ)+ C2
−(φ)−

√
S2

+(φ)+ C2
+(φ),

S±(φ) :=
1

2π

∫
S1

√
φθ sin

(α0
◦ φ)± α1

2
dθ,

C±(φ) :=
1

2π

∫
S1

√
φθ cos

(α0
◦ φ)± α1

2
dθ.
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To describe the inf, we can use the fact that geodesics on the space of curves are the
horizontal geodesics in the space of immersions. Consider the geodesict 7→ {e(t), f (t)}

in Gr(2, V ) described in (5), for

e0
=

√
φθ

π
cos

(α0
◦ φ)− β0

2
, e1

=
1

√
π

cos
α1

− β1

2
,

f 0
=

√
φθ

π
sin

(α0
◦ φ)− β0

2
, f 1

=
1

√
π

sin
α1

− β1

2
,

where the rotationsβ0 andβ1 must be computed fromc0
◦ φ andc1. Note that

e0
θ =

φθθ

2
√
πφθ

cos
(α0

◦ φ)− β0

2
−

1

2
√
π
φ

3/2
θ (α0

θ ◦ φ) sin
(α0

◦ φ)− β0

2
,

e1
θ =

−1

2
√
π
α1
θ sin

α1
− β1

2
,

f 0
θ =

φθθ

2
√
πφθ

sin
(α0

◦ φ)− β0

2
+

1

2
√
π
φ

3/2
θ (α0

θ ◦ φ) cos
(α0

◦ φ)− β0

2
,

f 1
θ =

1

2
√
π
α1
θ cos

α1
− β1

2
.

If the Jordan angles areψe andψf , then the tangent vector to the geodesict 7→ W(t) at
t = 0 is described by

et (0) = ∂t |0e =
ψe

sinψe
(e1

− cosψe · e0), ft (0) = ∂t |0f =
ψf

sinψf
(f 1

− cosψf · f 0).

By 3.2 the geodesic is perpendicular to all Diff(S1)-orbits if and only if the sum of
Wronskians vanishes:

0=Wθ (e
0,et (0))+Wθ (f

0,ft (0))

= e0 ψe

sinψe
(e1
θ−cosψe ·e

0
θ )−e

0
θ

ψe

sinψe
(e1

−cosψe ·e
0)

+ f 0 ψf

sinψf
(f 1
θ −cosψf ·f 0

θ )−f
0
θ

ψf

sinψf
(f 1

−cosψf ·f 0)

=
ψe

sinψe
Wθ (e

0,e1)+
ψf

sinψf
Wθ (f

0,f 1)

=−
1

√
φθ

{
φθθ

(
ψe

sinψe
cos

(α0
◦φ)−β0

2
cos

α1
−β1

2
+

ψf

sinψf
sin
(α0

◦φ)−β0

2
sin
α1

−β1

2

)
−φθα

1
θ

(
ψe

sinψe
cos

(α0
◦φ)−β0

2
sin
α1

−β1

2
−

ψf

sinψf
sin
(α0

◦φ)−β0

2
cos

α1
−β1

2

)
+φ2

θ (α
0
θ ◦φ)

(
ψe

sinψe
sin
(α0

◦φ)−β0

2
cos

α1
−β1

2
−

ψf

sinψf
cos

(α0
◦φ)−β0

2
sin
α1

−β1

2

)}
.
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This is an ordinary differential equation forφ which is coupled to the (integral) equations
for calculating theβ ’s as functions ofφ. If it is non-singular (i.e., the coefficient function
of φθθ does not vanish for anyθ ) then there is a solutionφ, at least locally. But the non-
existence of the inf described for open curves above will also affect closed curves, and
global solutions may actually not exist. However, for closed curves that do not double
back on themselves too much, as we will see, geodesics do seem to usually exist.

Note that the geodesic distance between distinct curves is always positive. Since we
have noticed in Section 1 that path lengths are always larger than theL∞ distance, the
lower bound obtained after reparametrization is the Fréchet distance.

4.5. An example

Geodesics in the sphere are great circles, which go all the way around the sphere and are
always closed geodesics. In the case of the Grassmannian, using the Jordan angle basis,
the geodesic can be continued indefinitely using formula (5) above. In fact, it will be a
closedgeodesic if the Jordan anglesψe, ψf are commensurable. It is interesting to look
at an example to see what sort of immersed curves arise, for example, at the antipodes to
the point representing the unit circle. To do this, we takec0(θ) = eiθ/2π to be the circle
of unit length, giving the orthonormal basise0

= cos(θ/2)/
√
π, f 0

= sin(θ/2)/
√
π . We

want e1, f 1 to lie in a direction horizontal with respect to these and the simplest choice
satisfying the Wronskian condition is

e1
+ if 1

=
eiθ/2
√
π

(
cos(2θ)

2
− i sin(2θ)

)
.

The result is shown in Figure 3.

FIG. 3. A great circle geodesic onBod. The geodesic begins at the circle at the top left, runs from left to right,
then to the second row and finally the third. It leavesBod twice: at the top right and bottom left, in both of which
the singularity of Figure 1 occurs in two places. The index of the curve changes from+1 to −3 in the middle
row. See text.

5. SECTIONAL CURVATURE

We compute, in this section, the sectional curvature ofBi,od/(sim) (i.e., translations,
rotations, scaling). We first compute the sectional curvature on the Grassmannian which
is non-negative (but vanishes on many planes) and conclude from O’Neill’s formula [14]
that the sectional curvature onBi/(sim) is non-negative. But since the O’Neill correction
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term is difficult to compute in this setting we also do it in a more explicit way, computing
first the curvature on the Stiefel manifold by Gauss’ equation, then carrying it over to
Imm/(transl). Since this is an open subset in a Fréchet space, the O’Neill correction term
can be computed more easily on Imm/(transl) and so we finally get a more explicit formula
for the sectional curvature onBi/(transl).

5.1. Sectional curvature onGr(2, V )

LetW ∈ Gr(2, V ) be a fixed 2-plane which we identify again withR2. Let η : V → V

be the isomorphism which equals−1 onW and 1 onW⊥ satisfyingη = η−1. Then
the Grassmannian is the symmetric spaceO(V )/(O(W) × O(W⊥)) with the involutive
automorphismσ : O(V ) → O(V ) given byσ(U) = ηUη. For the Lie algebra in the
V = W ⊕W⊥-decomposition we have(

−1 0
0 1

) (
x −yT

y U

) (
−1 0
0 1

)
=

(
x yT

y U

)
Herex ∈ L(W,W), y ∈ L(W,W⊥). The fixed point group isO(V )σ = O(W)×O(W⊥).
The reductive decompositiong = k + p is given by{(

x −yT

y U

)}
=

{(
x 0
0 U

)
: x ∈ so(2)

}
+

{(
0 −yT

y 0

)
: y ∈ L(W,W⊥)

}
.

Let π : O(V ) → O(V )/(O(W) × O(W⊥)) = Gr(2, V ) be the quotient projection.
ThenTeπ : p → To Gr is an isomorphism, and theO(V )-invariant Riemannian metric on
Gr(2, V ) is given by

GGr
o (Teπ.Y1, Teπ.Y2) = −

1

2
tr(Y1Y2) = −

1

2
tr

(
0 −yT1
y1 0

) (
0 −yT2
y2 0

)
= −

1

2
tr

(
−yT1 y2 0

0 −y1y
T
2

)
=

1

2
trW (y

T
1 y2)+

1

2
trW⊥(y1y

T
2 )

= trW (y
T
1 y2) = 〈y1(e1), y2(e1)〉W⊥ + 〈y1(e2), y2(e2)〉W⊥

for Y1, Y2 ∈ p, wheree1, e2 is an orthonormal base ofW . By the general theory of
symmetric spaces [6], the curvature is given by

RGr
o (Teπ.Y1, Teπ.Y2)Teπ.Y1 = Teπ.[[Y1, Y2], Y1],[(

0 −yT1
y1 0

)
,

(
0 −yT2
y2 0

)]
=

(
−yT1 y2 + yT2 y1

0 −y1y
T
2 + y2y

T
1

)
,[[(

0 −yT1
y1 0

)
,

(
0 −yT2
y2 0

)]
,

(
0 −yT1
y1 0

)]
=

[(
−yT1 y2 + yT2 y1 0

0 −y1y
T
2 + y2y

T
1

)
,

(
0 −yT1
y1 0

)]
=

(
0 2yT1 y2y

T
1 − yT2 y1y

T
1 − yT1 y1y

T
2

−2y1y
T
2 y1 + y2y

T
1 y1 + y1y

T
1 y2 0

)
.
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For the sectional curvature we have (where we assume thatY1, Y2 are orthonormal):

k
Gr(2,V )
span(Y1,Y2)

= − B(Y2, [[Y1, Y2], Y1]) = trW (y
T
2 y2y

T
1 y1 + yT2 y1y

T
1 y2 − 2yT2 y1y

T
2 y1)

=
1

2
trW ((y

T
2 y1 − yT1 y2)

T (yT2 y1 − yT1 y2))

+
1

2
trW⊥((y2y

T
1 − y1y

T
2 )
T (y2y

T
1 − y1y

T
2 ))

=
1

2
‖yT2 y1 − yT1 y2‖

2
L2(W,W)

+
1

2
‖y2y

T
1 − y1y

T
2 ‖

2
L2(W⊥,W⊥)

≥ 0.

whereL2 stands for the space of Hilbert–Schmidt operators. Note that there are many
orthonormal pairsY1, Y2 on which sectional curvature vanishes and that its maximum value
2 is attained whenyi are isometries andy2 = Jy1 whereJ is rotation through angleπ/2
in the image plane ofy1.

5.2. Sectional curvature onImm/(sim)

The curvature formula can be rewritten by ‘lowering the indices’ which will make it much
easier to express in terms of the immersionc. Fix an orthonormal basise, f of W and let
δek = yk(e), δfk = yk(f ). Forx, y ∈ W⊥, we use the notationx ∧ y = x ⊗ y − y ⊗ x ∈

W⊥
⊗W⊥. Then

k
Gr(2,V )
span(Y1,Y2)

= (〈δe1, δf2〉 − 〈δe2, δf1〉)
2
+

1

2
‖δe1 ∧ δe2 + δf1 ∧ δf2‖

2.

To check this, note thatyT2 y1 − yT1 y2 is given by a skew-symmetric 2× 2 matrix whose
off-diagonal entry is just〈δe1, δf2〉 − 〈δe2, δf1〉, and this identifies the first terms in the
two formulas fork. On the other hand,y2y

T
1 is given by a matrix of rank 2 on the infinite-

dimensional spaceW⊥. In view ofW⊥
⊗W⊥

⊂ L(W⊥,W⊥) it is the 2-tensorδe1⊗δe2+

δf1 ⊗ δf2. Skew-symmetrizing, we identify the second terms in the two expressions fork.
Going over to the immersionc, the tangent vectorδek+iδfk to Gr becomes the tangent

vectorhk = δc =
∫
(δek + iδfk)(e+ if ) dθ to Imm/(sim). To express the first term in the

curvature, we have:

PROPOSITION.

〈δe1, δf2〉 − 〈δe2, δf1〉 =

∫
C

det(Dsh1,Dsh2) ds.

PROOF. We have

Ds(hk) =
(e + if )(δek + iδfk)

e2 + f 2
,

hence

det(Dsh1,Dsh2) = Im(Dsh1,Dsh2) =
Im((δe1 − iδf1)(δe2 + iδf2))

e2 + f 2
,

hence ∫
C

det(Dsh1,Dsh2)ds =

∫
S1
(δe1δf2 − δe2δf1) dθ. 2
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The second term is not quite so compact: because it is a norm onW⊥
⊗W⊥, it requires

double integrals overC×C, not just a simple integral overC. We use the notation as above
c(θ) = r(θ)eiα(θ). Then we have:

PROPOSITION.

‖δe1 ∧ δe2 + δf1 ∧ δf2‖
2

= term1+ term2,

term1=

∫∫
C×C

1 + cos(α(x)− α(y))

2
·

(
〈Dsh1(x),Dsh2(y)〉

− 〈Dsh2(x),Dsh1(y)〉

)2

ds(x) ds(y),

term2=

∫∫
C×C

1 − cos(α(x)− α(y))

2
·

(
det(Dsh1(x),Dsh2(y))

− det(Dsh2(x),Dsh1(y))

)2

ds(x) ds(y).

PROOF. Usingr andα, we have
√
re−iα/2Dshk = δek + iδfk, hence√

r(x)r(y)ei(α(x)−α(y))/2Dsh1(x)Dsh2(y) = δe1(x)δe2(y)+ δf1(x)δf2(y)+ i(· · · ).

Skew-symmetrizing in the two vectorsh1, h2, we get√
r(x)r(y)Re{ei(α(x)−α(y))/2(Dsh1(x)Dsh2(y)−Dsh2(x)Dsh1(y))}

= δe1(x)δe2(y)− δe2(x)δe1(y)+ δf1(x)δf2(y)− δf2(x)δf1(y).

Squaring and integrating overS1
×S1, the right hand side becomes‖δe1∧δe2+δf1∧δf2‖

2.
On the left, first write Re(ei(α(x)−α(y))/2(· · · )) as the sum of cos((α(x)−α(y))/2)Re(· · · )
and− sin((α(x) − α(y))/2) Im(· · · ). Then when we square and integrate, the cross term
drops out because it is odd whenx, y are reversed. 2

We therefore obtain the expression of the curvature in Imm/(sim):

(9) k
Imm/(sim)
span(h1,h2)

=

( ∫
C

det(Dsh1,Dsh2) ds

)2

+

∫∫
C×C

1 + cos(α(x)− α(y))

2
·

(
〈Dsh1(x),Dsh2(y)〉

− 〈Dsh2(x),Dsh1(y)〉

)2

ds(x) ds(y)

+

∫∫
C×C

1 − cos(α(x)− α(y))

2
·

(
det(Dsh1(x),Dsh2(y))

− det(Dsh2(x),Dsh1(y))

)2

ds(x) ds(y).

A major consequence of the calculation for the curvature on the Grassmannian is:

5.3. THEOREM. The sectional curvature onBi/(sim) is non-negative.

PROOF. We apply O’Neill’s formula [14] to the Riemannian submersion

π : Gr0
→ Gr0 /U(V ) ∼= Bi/Diff +(S1),

k
Gr0/U(V )

π(W) (X, Y ) = kGr0

W (Xhor, Y hor)+
3
4‖[Xhor, Y hor]ver

|W‖
2

≥ 0,
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whereXhor is a horizontal vector field projecting to a vector fieldX at π(W); similarly
for Y . The horizontal and vertical projections exist and are pseudodifferential operators
(see 5.6). 2

5.4. Sectional curvature onSt(2, V )

The Stiefel manifold is not a symmetric space (as the Grassmannian); it is a homogeneous
Riemannian manifold. This can be used to compute its sectional curvature. But the
following procedure is simpler:

For (e, f ) ∈ V 2 we consider the functions

Q1(e, f ) =
1

2
‖e‖2, Q2(e, f ) =

1

2
‖f ‖

2, Q3(e, f ) =
1

√
2
〈e, f 〉.

ThenSt(2, V ) is the codimension 3 submanifold ofV 2 defined by the equationsQ1 =

Q2 = 1/2,Q3 = 0.
The metric onSt(2, V ) is induced by the metric onV 2. If ξ1 = (δe1, δf1) andξ2 =

(δe2, δf2) are tangent vectors at a point inV 2, we have〈ξ1, ξ2〉 = 〈δe1, δe2〉 + 〈δf1, δf2〉.
For a functionϕ on V 2 its gradient gradϕ (if it exists) is given by〈gradϕ(v), ξ〉 =

dϕ(v)(ξ) = Dv,ξϕ. The following are the gradients ofQi :

gradQ1 = (e,0), gradQ2 = (0, f ), gradQ3 =
1

√
2
(f, e),

and these form an orthonormal basis of the normal bundle Nor(St) of St(2, V ). Let ξ1, ξ2
be two normal unit vectors tangent toSt(2, V ) at a point(e, f ). SinceV 2 is flat the
sectional curvature ofSt(2, V ) is given by the Gauss formula [4]:

k
St(2,V )
span(ξ1,ξ2)

= 〈S(ξ1, ξ1), S(ξ2, ξ2)〉 − 〈S(ξ1, ξ2), S(ξ1, ξ2)〉

whereS denotes the second fundamental form ofSt(2, V ) in V 2. Moreover, when a
manifold is given as the zeros of functionsFk in a flat ambient space whose gradients
are orthonormal, the second fundamental form is given by

S(X, Y ) =

∑
k

HFk (X, Y ) · gradFk

whereH is the Hessian of second derivatives. Givenξ1, ξ2 ∈ T(e,f ) St with ξi = (δei, δfi),
we have:

HQ1(ξ1, ξ2) = 〈δe1, δe2〉, HQ2(ξ1, ξ2) = 〈δf1, δf2〉,

HQ3(ξ1, ξ2) =
1

√
2
(〈δe1, δf2〉 + 〈δe2, δf1〉)

so that

S(ξ1, ξ2) = − 〈δe1, δe2〉 gradQ1 − 〈δf1, δf2〉 gradQ2

−
1

√
2
(〈δf1, δe2〉 + 〈δe1, δf2〉)gradQ3.
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Finally, the sectional curvature ofSt(2, V ) for a normal pair of unit vectorsξ, η in
Tf St(2, V ) is given by

k
St(2,V )
span(ξ1,ξ2)

= ‖δe1‖
2
‖δe2‖

2
+ ‖δf1‖

2
‖δf2‖

2
+ 2〈δe1, δf1〉〈δe2, δf2〉(10)

− 〈δe1, δe2〉
2
− 〈δf1, δf2〉

2
−

1
2(〈δe1, δf2〉 + 〈δf1, δe2〉)

2

=
1
2‖δe1 ⊗ δe2 − δe2 ⊗ δe1 + δf1 ⊗ δf2 − δf2 ⊗ δf1‖

2

−
1
2(〈δe1, δf2〉 − 〈δe2, δf1〉)

2.

Comparing this with the curvature for the Grassmannian, we see that the O’Neill factor
in this case is32(〈δe1, δf2〉 + 〈δf1, δe2〉)

2. Moreover, we can write for the curvature of the
isometric Imm/(transl, scal)

(11) k
Imm/(transl,scal)
span(h1,h2)

= −
1

2

(∫
C

det(Dsh1,Dsh2) ds

)2

+
1

2

∫∫
C×C

1 + cos(α(x)− α(y))

2
·

(
〈Dsh1(x),Dsh2(y)〉

− 〈Dsh2(x),Dsh1(y)〉

)2

ds(x) ds(y)

+
1

2

∫∫
C×C

1 − cos(α(x)− α(y))

2
·

(
det(Dsh1(x),Dsh2(y))

− det(Dsh2(x),Dsh1(y))

)2

ds(x) ds(y).

5.5. Sectional curvature on the unscaled Stiefel manifold

Using the basic mappingΦ, the manifold Imm/(transl) can be identified with the unscaled
Stiefel manifold which we view as the following submanifold ofV 2 (we do not introduce
a systematic notation for it):

(12) M = {(e, f ) ∈ V 2
\ {(0,0)} : ‖e‖2

= ‖f ‖
2 and〈e, f 〉 = 0}

equipped with the metric

‖(δe, δf )‖2
(e,f ) = 2

‖δe‖2
+ ‖δf ‖

2

‖e‖2 + ‖f ‖2
.

Consider the diffeomorphismΨ : R+
× St(2, V ) → M defined by

Ψ (`, (e, f )) = (
√
` e,

√
` f ) =: (ē, f̄ ).

For ξ(δe, δf ) ∈ T(e,f ) St we have

T(`,e,f )Ψ.(λ, ξ) =

(
λ

2
√
`
e +

√
` δe,

λ

2
√
`
f +

√
` δf

)
=: (δ̄e, δ̄f ).

Thus,Ψ is an isometry ifR+
× St(2, V ) is equipped with the metric

‖(λ, ξ)‖2
`,(e,f ) =

λ2

2`2
+ ‖δe‖2

+ ‖δf ‖
2
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so thatM is isometric to the Riemannian product ofR+ and St(2, V ), taking ‖λ‖` =

|λ|/(
√

2`) for the metric onR+. This implies that the curvature tensor onM is the sum of
the tensors onR+ (which vanishes) andSt(2, V ). Thus, if ξ̄i = T(`,f )π.(λ, ξi), i = 1,2,
with (ξ1, ξ1) orthonormal,

kM
span(ξ̄1,ξ̄2)

=
−〈RM(ξ̄1, ξ̄2)ξ̄1, ξ̄2〉

‖ξ̄1‖2‖ξ̄2‖2 − 〈ξ̄1, ξ̄2〉2
=

−〈RSt(ξ1, ξ2)ξ1, ξ2〉

‖ξ̄1‖2‖ξ̄2‖2 − 〈ξ̄1, ξ̄2〉2

=

kSt
span(ξ1,ξ2)

‖ξ̄1‖2‖ξ̄2‖2 − 〈ξ̄1, ξ̄2〉2
,

Note that we have the relations

δē =
λ

2
√
`
e +

√
` δe,(13)

δf̄ =
λ

2
√
`
f +

√
` δf.(14)

5.6. O’Neill’s formula

For Riemannian submersions, O’Neill formula [14] states that the sectional curvature, in
the plane generated by two horizontal vectors, is given by the curvature computed on the
space “above” plus a positive correction term given by 3/4 times the squared norm of the
vertical projection of the Lie bracket of any horizontal extensions of the two vectors. We
now proceed to the computation of this correction for the submersion from Imm/(sim) to
Bi/(sim).

Because of the simplicity of local charts there, it will be easier to start from
Imm/(transl). Let c ∈ Imm with

∫
S1 c ds = 0. We first compute the vertical projection

of a vectorh ∈ Tc Imm/(transl) for the submersion Imm/(transl) → Bi/(sim). Vectors in
the vertical space atc take the form

h̃ = bv + iαc + βc,

each generator corresponding (in this order) to the action of diffeomorphisms, rotation and
scaling (b is a function andα, β are constants). Denotingh> the vertical projection ofh,
and using the fact thatGc(h, h̃) = Gc(h

>, h̃) for any verticalh̃, we easily obtain the fact
that

h>
= bv + iαc + βc,

with
L>b + ακ = v · Lh, 〈bκ〉 + α = 〈Dsh · n〉, β = 〈Dsh · v〉,

where we have used the following notation:Lh = −D2
s h, L>b = −D2

s b + κ2b and, as
before,

〈F 〉 =
1

`

∫
F ds.

From this, we deduce thatb must satisfy

(15) L>b − 〈bκ〉κ = v · Lh− 〈Dsh · n〉κ.
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The operatorL> is of order two, unbounded, selfadjoint, and positive on{f ∈ L2(S1, ds) :∫
f ds = 0}, thus it is invertible on{f ∈ C∞(S1,R) :

∫
f ds = 0} by an index argument

as given in [11, 4.5]. The operatorL̃> on the left-hand side of (15) is also invertible under
the condition thatc is not a circle, with an inverse given by

(16) (L̃>)−1ψ = (L>)−1ψ +
〈(L>)−1ψκ〉

1 − 〈κ(L>)−1κ〉
(L>)−1κ.

This is well defined unlessκ ≡ constant. Indeed, lettingf = (L>)−1κ, we have−fD2
s f+

κ2f 2
= κf , which implies〈κf 〉 ≥ 〈κ2f 2〉. By the Schwarz inequality we have〈κf 〉 ≤

(〈κ2f 2〉)1/2, which ensures〈κf 〉 ≤ 1. Equality requires〈fD2
s f 〉 = 0 or f = constant,

which in turn implies thatκ = constant and thatc is a circle. We note for future use that
(L̃>)−1κ = (L>)−1κ.

We hereafter assume thatc has length 1, is parametrized with its arc-length divided by
2π , and that it is different from the unit circle (which is a singular point inBi/(sim)). We
can therefore write

(17) h>
=

(
(L̃>)−1ψ(h)v − i〈κ(L̃>)−1ψ(h)〉c

)
+ i〈Dsh · v〉c + 〈Dsh · n〉c

with ψ(h) = v · Lh− 〈Dsh · n〉κ.
The right-hand term in (17) is the sum of three orthogonal terms, the last two

forming the vertical projection for the submersion Imm/(transl) → Imm/(sim). Applying
O’Neill’s formula twice, to this submersion and to Imm/(sim) → Bi/(sim), we see that
the correcting term for the sectional curvature onBi/(sim) relative to the curvature on
Imm/(sim), in the direction of the horizontal vectorsh1 andh2, is

ρ(h1, h2)c =
3
4

∥∥(L̃>)−1ψ([h̄1, h̄2]c)v − i〈κ(L̃>)−1ψ([h̄1, h̄2]c)〉c
∥∥2
,

h̄1, h̄2 being horizontal extensions ofh1 andh2. From the identity

‖bv − i〈κb〉c‖2
c =

∫
|b′v + κbn− 〈κb〉n|2 ds =

∫
(bLb + κ2b2n− 〈κb〉κb) ds

=

∫
b(L̃T b) ds

we can write

ρ(h1, h2)c =
3

4

∫
ψ([h̄1, h̄2]c)(L̃

>)−1ψ([h̄1, h̄2]c) ds.

We now proceed to the computation of the Lie bracket:

5.7. PROPOSITION. We have

ψ([h⊥

1 , h
⊥

2 ]c) = Ws(Dsh1 · n,Dsh2 · n)− 〈det(Dsh1,Dsh2)〉κ

whereWs(h, k) = hDsk−kDsh is the Wronskian with respect to the arc-length parameter.
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PROOF. We takeh1, h2 ∈ {f ∈ C∞(S1,R2) :
∫
f ds = 0} which are horizontal

at c, consider them as constant vector fields on Imm/(transl) and take, as horizontal
extensions, their horizontal projectionsγ 7→ h⊥

1 (γ ), h
⊥

2 (γ ). Then we compute the Lie
bracket evaluated atγ :

[h⊥

1 , h
⊥

2 ]|γ = Dc,h2h
⊥

1 (γ )−Dc,h1h
⊥

2 (γ ) = −Dc,h2h
>

1 (γ )+Dc,h1h
>

2 (γ )

sinceh>

i + h⊥

i = hi is constant fori = 1,2. We have

h>

1 (γ ) =
(
(L̃>
γ )

−1ψγ (h1)vγ − i〈κγ (L̃>
γ )

−1ψγ 〉
γ
γ
)

+ i〈Dsγ h1 · nγ 〉
γ
γ + 〈Dsγ h1 · vγ 〉

γ
γ

with ψγ (h1) = vγ · Lγ h1 − 〈Dsγ h1 · vγ 〉
γ
κγ . We have added subscriptsγ to quantities

that depend on the curve, withDsγ standing for the derivative with respect to theγ arc-
length (we still use no subscript forγ = c). Note that〈Dsγ h1 · nγ 〉

γ
= `γ 〈Dsh1 · nγ 〉 and

〈Dsγ h1 · vγ 〉
γ

= `γ 〈Dsh1 · vγ 〉, which is a first simplification. Also, since we assume that

h1 is horizontal atc, we have〈Dsh1 · n〉 = 〈Dsh1 · v〉 = 0 andv ·Lh1 = 0, which implies
ψ(h1) = 0.

We therefore have (to simplify, we temporarily use the notationf ′
= Dsf )

Dc,h2h
>

1 =
(
(L̃>)−1Dc,h2ψγ (h1)v − i〈κ(L̃>)−1Dc,h2ψγ (h1)〉c

)
(18)

+ i〈h′

1 ·Dc,h2nγ 〉c + 〈h′

1 ·Dc,h2vγ 〉c.

SinceDc,h2vγ = (h′

2 · n)n andDc,h2nγ = −(h′

2 · n)v we immediately obtain the
expression of the last two terms in (18), which are

(19) −i〈(h′

1 · v)(h′

2 · n)〉c + 〈(h′

1 · n)(h′

2 · n)〉c.

We now focus on the variation ofψγ . We need to compute

Dc,h2ψγ (h1) = Dc,h2(vγ · Lγ h1)− 〈(h′

1 · v)(h′

2 · n)〉κ.

If h is a constant vector field, we have

Dsγ h = h′
‖γ ′

‖
−1 and Lγ h = −(h′

‖γ ′
‖
−1)′‖γ ′

‖
−1.

This implies

Dc,h2Lγ h1 = −h′′

1Dc,h2‖γ
′
‖
−1

− (h′

1Dc,h2‖Dsγ ‖
−1)′ = 2h′′

1(h
′

2 · v)+ h′

1(h
′

2 · v)′.

Therefore

Dc,h2(Lγ h1 · vγ ) = (h′

1 · v)(h′

2 · v)′ − (h′′

1 · n)(h′

2 · n).

Using

h′′

1 = ((h′

1 · v)v + (h′

1 · n)n)′ = ((h′

1 · v)′ − κ(h′

1 · n))v + ((h′

1 · n)′ + κ(h′

1 · v))n
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and the fact thath′′

1 · v = h′′

2 · v = 0, we can write

Dc,h2(Lγ h1 · vγ ) = −(h′

2 · n)(h′

1 · n)′,

which yields

Dc,h2ψγ (h1) = −(h′

2 · n)(h′

1 · n)′ − 〈(h′

1 · v)(h′

2 · n)〉κ.

By symmetry

Dc,h2ψγ (h1)−Dc,h1ψγ (h2) = Ws(h
′

1 · n, h′

2 · n)− 〈det(h′

1, h
′

2)〉κ,

whereWs(ϕ1, ϕ2) = ϕ1ϕ
′

2 − ϕ′

1ϕ2.

Combining this with (19), we get

[h⊥

1 , h
⊥

2 ]c = (L̃>)−1(Ws(h
′

1 · n, h′

2 · n)− 〈det(h′

1, h
′

2)〉κ
)
v

− i
〈
κ(L̃>)−1(Ws(h

′

1 · n, h′

2 · n)− 〈det(h′

1, h
′

2)〉κ)
〉
c − i〈det(h′

1, h
′

2)〉c

so that

ψ([h⊥

1 , h
⊥

2 ]c) = Ws(h
′

1 · n, k′

2 · n)− 〈det(h′

1, h
′

2)〉κ.

(We have used the fact thatψ(bv + iαc) = L̃>b.) 2

We therefore obtain the formula

(20) ρ(h1, h2)c =
3

4

∫ (
Ws(Dsh1 · n,Dsh2 · n)− 〈det(Dsh1,Dsh2)〉κ

)
· (L̃>)−1

(
Ws(Dsh1 · n,Dsh2 · n)− 〈det(Dsh1,Dsh2)〉κ

)
ds

with (L̃>)−1 given by (16). Finally, assuming thath1 andh2 are orthogonal,

k
Bi/(sim)
span(h1,h2)

= k
Imm/(sim)
span(h1,h2)

+ ρ(h1, h2)c

wherekImm/(sim)
span(h1,h2)

is given in (9).

A similar (and simpler) computation provides the correcting term for the space
Bi/(transl, scale). In this case, the rotation part of the vertical space disappears, and the
remaining two components (parametrization and scale) are orthogonal. The result is

(21) ρ(h1, h2)c =
3

4

∫
Ws(Dsh1 · n,Dsh2 · n)(L>)−1Ws(Dsh1 · n,Dsh2 · n) ds.
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5.8. An upper bound forkBi/(sim)
span(h1,h2)

Here we derive an explicit upper bound forkBi/(sim)
span(h1,h2)

at a fixed curvec ∈ Bi/(sim) and a
fixed tangent vectorh2. This will show that geodesics (such as the one in theh1 direction)
have at least a small interval before they meet another geodesic. The size of this interval
can be controlled, as we will see, by an upper bound that involves the supremum norm of
the first two derivatives ofh1.

We assume thatc has length 2π . Since Imm/(sim) is isometric toGr(2, V ), its
sectional curvature is not larger than 2 as already remarked. We estimate the terms in

ρ(h1, h2)c =
3
4〈ψ(h1, h2)(L̃>)−1ψ(h1, h2)〉 where

ψ(h1, h2) = Ws(Dsh1 · n,Dsh2 · n)− 〈det(Dsh1,Dsh2)〉κ.

For a fixed h2, ψ(h1, h2) is function of h1 belonging to H−1(c). We estimate
‖ψ(h1, h2)‖c,−1 and thenρ(h1, h2)c by estimating the norm of the operator(L>)−1 which
mapsH−1(c) toH 1(c).

If f ∈ H 0(c), then‖f ‖c,−1 ≤ ‖f ‖c,0 and‖f ′
‖c,−1 ≤ ‖f ‖c,0. Therefore,

‖Ws(Dsh1 · n,Dsh2 · n)‖−1 = ‖(Dsh1 · n)Ds(Dsh2 · n)−Ds(Dsh1 · n)(Dsh2 · n)‖−1

≤ (‖Dsh2 · n‖c,∞ + ‖Ds(Dsh2 · n)‖c,∞)‖Dsh1 · n‖c,0.

Sinceh1 has norm 1,‖Dsh1 · n‖c,0 and‖Dsh1 · v‖c,0 are≤
√

2π . Hence

〈det(Dsh1,Dsh2)〉 ≤ 〈|Dsh1 · n| · |Dsh2 · v|〉 + 〈|Dsh1 · v| · |Dsh2 · n|〉

≤
1

2π
(‖Dsh1 · n‖c,0 · ‖Dsh2 · v‖c,0 + ‖Dsh1 · v‖c,0 · ‖Dsh2 · n‖c,0) ≤ 2.

This results in

‖ψ(h1, h2)‖c,−1 ≤
√

2π
(
‖Dsh2 · n‖c,∞ + ‖Ds(Dsh2 · n)‖c,∞ + 2

√
〈κ2〉

)
.

Now

〈ψ(L̃>)−1ψ〉 = 〈ψ(L>)−1ψ〉 +
〈ψ(L>)−1κ〉

2

1 − 〈κ(L>)−1κ〉
≤

〈ψ(L>)−1ψ〉

1 − 〈κ(L>)−1κ〉

since〈ψ(L>)−1κ〉
2

≤ 〈ψ(L>)−1ψ〉 · 〈κ(L>)−1κ〉.

5.9. PROPOSITION. If ψ ∈ H−1(c) then

〈ψ(L>)−1ψ〉 ≤
1

2π
(1 + 3‖1 − κ2

‖c,∞)‖ψ‖
2
c,−1.

PROOF. LetLo = −D2
s + 1. LetL>f = Lofo = ψ . Then,f, fo ∈ H 1(c) and‖fo‖c,1 =

‖ψ‖c,−1. Letg = f−fo so thatL>g = (1−κ2)fo. The eigenvalues ofL> are positive and



52 L . YOUNES - P. W. MICHOR - J. SHAH - D. MUMFORD

bounded from below by 1/2 (see [3]). Therefore,‖g‖2
c,0 ≤ 2(g, L>g) where(g, L>g) =∫

gL>g ds. We also have‖g′
‖

2
c,0 ≤ (g, L>g). Hence,

‖g‖2
c,1 ≤ 3(g, L>g) ≤ 3

∫
(1 − κ2)gfo ds ≤ 3‖1 − κ2

‖c,∞‖g‖c,1‖fo‖c,1.

Therefore,‖g‖c,1 ≤ 3‖1 − κ2
‖c,∞‖ψ‖c,1 and‖f ‖c,1 ≤ (1 + 3‖1 − κ2

‖c,∞)‖ψ‖c,−1.
Finally,

〈ψ(L>)−1ψ〉 ≤
1

2π
‖ψ‖c,−1 · ‖(L>)−1ψ‖c,1 ≤

1

2π
(1 + 3‖1 − κ2

‖c,∞)‖ψ‖
2
c,−1. 2

Putting all the estimates together we get, for orthonormalh1, h2 as always,

(22) 0≤ k
Bi/(sim)
span(h1,h2)

≤ 2 +
3(1 + 3‖1 − κ2

‖c,∞)
(
‖Dsh2 · n‖c,∞ + ‖(Dsh2 · n)′‖c,∞ + 2

√
〈κ2〉

)2

4
(
1 − 〈κ(L>)−1κ〉

) .

6. NUMERICAL PROCEDURE AND EXPERIMENTS

The distanceDop,dif given in 4.1 can be computed in a very short time by dynamic
programming, using a slight modification of a procedure from [16]. Here is a sketch of
how it works.

LetF(α0, α1) = max(0, cos((α0
−α1)/2)), and assume that the curves are discretized

over intervals [θ i(k), θ i(k + 1)), k = 0, ni − 1, i = 0,1, so that the angles have constant
values,αi(k) on these intervals. The problem is then equivalent to maximizing∑

k,l

Fkl

∫ min(θ0(k+1),φ−1(θ1(l+1)))

max(θ0(k),φ−1(θ1(l)))

√
φθ dθ

with Fkl = F(α0(k), α1(l)). Because the integral of
√
φθ is maximal for linearφ, we must

in fact maximize∑
k,l

Fkl

√
(max(θ0(k), θ̃1(l)))− min(θ0(k + 1), θ̃1(l + 1))))+

·

√
(max(θ̃0(k), θ1(l)))− min(θ̃0(k + 1), θ1(l + 1))))+

with the notationθ̃0(k) = φ(θ0(k)) andθ̃1(l) = φ−1(θ1(l)). The method now essentially
implements a coupled linear programming procedure over the values ofθ̃0 and θ̃1. See
[18, 16] for more details. This procedure is very fast, and one still obtains an efficient
procedure by combining it with an exhaustive search for an optimal rotation.

For closed curves, we can furthermore optimize the result with respect to the offset
φ(0) ∈ S1, for the diffeomorphism. Doing so provides the value of

D′

op,diff ,rot(c
0, c1) = inf

φ
arccos

√
(C−(φ))2 + (S−(φ))2,
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where the notationD′ is to remember that the minimization is overφ ∈ C∞,+(S1) and not
C∞,+([0,2π ]).

This combination of the almost instantaneous dynamic programming method and of
an exhaustive search over two parameters provides a feasible elastic matching method for
closed curves. But this does not provide the geodesic distance overBi/(sim), since we
worked with great circles instead of the Neretin geodesics. There are two consequences
for this: first, the resulting distance is only a lower bound of the distance onBi/(sim), and
second, since the closedness constraint is not included, the curves generally become open
during the evolution (as shown in the experiments).

However, the optimal diffeomorphism which has been obtained by this approach can
be used to reparametrize the curvec0, and we can compute the geodesic betweenc0

◦ φ∗

and c1 in Imm/(sim) using Neretin geodesics, which forms, this time, an evolution of
closed curves. Its geodesic length now obviously provides an upper bound for the geodesic
distance onBi/(sim). The numerical results that are presented in Figures 4 to 8 compare
the great circles and Neretin geodesics obtained using this method. Quite surprisingly, the
differences between the lower and upper bounds in these examples are quite small.

FIG. 4. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.443 and 0.444.

FIG. 5. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.462 and 0.46.4.

FIG. 6. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.433 and 0.439.
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FIG. 7. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.498 and 0.532.

FIG. 8. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.513 and 0.528.

7. APPENDIX: THE GEODESIC EQUATION ONGimm,scal,1,∞

7.1. The geodesic equation

We use the method of [11] for the space{c ∈ Immc : c(1) = 0} which is an open subset
in a Fŕechet space, with tangent space{h ∈ C∞(S1,C) : f (1) = 0}. We shall use the
following conventions and results from [11]:

Ds = Ds,c =
∂θ

|cθ |
, ds = |cθ | dθ, Dc,m`(c) =

∫
〈Dsm, vc〉 ds = −

∫
κc〈m, nc〉 ds,

Dc,m(Ds) = −〈Dsm, vc〉Ds, Dc,m(ds) = 〈Dsm, vc〉 ds.

Then the derivative of the metric atc in directionm is

Dc,mGc(h, k) =
1

`2
c

∫
κc〈m, nc〉 ds ·

∫
〈−D2

s h, k〉 ds

+
1

`c

∫
〈Dsm, vc〉〈D

2
s h, k〉 ds +

1

`c

∫
〈Ds(〈Dsm, vc〉Dsh), k〉 ds

−
1

`c

∫
〈D2

s h, k〉〈Dsm, vc〉 ds

=
1

`2
c

∫
κc〈m, nc〉 ds ·

∫
〈−D2

s h, k〉 ds

−
1

`c

∫
〈−D2

sm,D
−1
s (〈Dsh,Dsk〉vc)〉 ds.

According to [11, 2.1] we should rewrite this as

D(c,m)Gc(h, k) = Gc(K
n
c (m, h), k) = Gc(m,H

n
c (h, k)),
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and thus we find the two versionsK andH of theG-gradient ofc 7→ Gc(h, k):

Kc(m, h) =
1

`c

∫
κc〈m, nc〉 ds · h−D−1

s (〈Dsm, vc〉Dsh),

Hc(h, k) = −
1

`c
D−2
s (κcnc) ·

∫
〈−D2

s h, k〉 ds −D−1
s (〈Dsh,Dsk〉vc),

which gives us the geodesic equation by [11, 2.4]:

ct t =
1
2H

n
c (ct , ct )−Kn

c (ct , ct ) = −
1
2D

−2
s (κcnc)‖ct‖

2
Gc

−
1
2D

−1
s (|Dsct |

2vc)g(23)

−
1

`c

∫
κc〈ct , nc〉 ds · ct −D−1

s (〈Dsct , vc〉Dsct ).

7.2. THEOREM. For eachk ≥ 3/2 the geodesic equation derived in7.1has unique local
solutions in the Sobolev space ofH k-immersions. The solutions dependC∞ on t and on
the initial conditionsc(0, ·) andct (0, ·). The domain of existence (int) is uniform ink and
thus this also holds inImm∗ := {c ∈ Imm(S1,R2) : c(1) = 0}.

PROOF. The proof is very similar to the one of [11, 4.3]. We denote by∗ any space of
based loops(c(1) = 0). We consider the geodesic equation as the flow equation of a
smooth (C∞) vector field on theH 2-open setU k × H k

∗ (S
1,R2) in the Sobolev space

H k
∗ (S

1,R2) × H k
∗ (S

1,R2) whereU k = {c ∈ H k
∗ : |cθ | > 0} ⊂ H k is H 2-open. To

see that this works we will use the following facts: By the Sobolev inequality we have a
bounded linear embeddingH k

∗ (S
1,R2) ⊂ Cm∗ (S

1,R2) if k > m+1/2. The Sobolev space
H k

∗ (S
1,R) is a Banach algebra under pointwise multiplication ifk > 1/2. For any fixed

smooth mappingf the mappingu 7→ f ◦ u is smoothH k
∗ → H k if k > 0. We write

Ds,c := Ds just for the remainder of this proof to stress the dependence onc. The mapping
(c, u) 7→ −D2

s,cu is smoothU × H k
∗ → H k−2n and is a bibounded linear isomorphism

H k
∗ → H k−2n

∗ for fixed c. This can be seen as follows (compare with [11, 4.5]): It is
true if c is parametrized by arc-length (look at it in the space of Fourier coefficients). The
index is invariant under continuous deformations of elliptic operators of fixed degree, so
the index of−D2

s is zero in general. But−D2
s is self-adjoint positive, so it is injective

with vanishing index, thus surjective. By the open mapping theorem it is then bibounded.
Moreover(c, w) 7→ (−D2

s )
−1(w) is smoothU k ×H k−2n

∗ → H k
∗ (by the inverse function

theorem on Banach spaces). The mapping(c, f ) 7→ Dsf = (1/|cθ |)∂θf is smoothH k
∗ ×

Hm
∗ ⊃ U × Hm

∗ → Hm−1 for k ≥ m, and is linear inf . We havev = Ds,cc and
n = iDs,cc. The mappingc 7→ κ(c) is smooth on theH 2-open set{c : |cθ | > 0} ⊂ H k

∗

intoH k−2
∗ . Keeping all this in mind we now write the geodesic equation (23) as follows:

ct = u =: X1(c, u),

ut = −D−2
s,c

(1
2‖u|t=0‖

2
Gκcnc +

1
2Ds,c(|Ds,cu|

2vc)+Ds,c(〈Ds,cu, vc〉Ds,cu)
)

−

(
1

`c

∫
〈u,D2

s,cc〉 ds

)∣∣∣∣
t=0
u

=: X2(c, u).

Here we have used the fact that along any geodesic the norm‖ct‖G and the scaling
momentum−(1/`c)

∫
〈ct ,D

2
s,cc〉 ds = ∂t log`(c) are both constant int . Now a term by
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term investigation shows that the expression in the brackets is smoothU k ×H k
→ H k−2

sincek − 2 > 1/2. The operator−D−2
s,c then takes it smoothly back toH k. So the vector

fieldX = (X1, X2) is smooth onU k ×H k. Thus the flow Flk exists onH k and is smooth
in t and in the initial conditions for fixedk.

Now we consider smooth initial conditionsc0 = c(0, ·) andu0 = ct (0, ·) = u(0, ·)
in C∞(S1,R2). Suppose the trajectory Flk

t (c0, u0) of X through these intial conditions
in H k maximally exists fort ∈ (−ak, bk), and the trajectory Flk+1

t (c0, u0) in H k+1

maximally exists fort ∈ (−ak+1, bk+1) with bk+1 < bk. By uniqueness we have
Flk+1
t (c0, u0) = Flkt (c0, u0) for t ∈ (−ak+1,bk+1). We now apply∂θ to the equationut =

X2(c, u) = −D−2
s,c ( . . . ); note that the commutator [∂θ ,−D−2

s,c ] is a pseudodifferential
operator of order−2 again, and writew = ∂θu. We obtainwt = ∂θut = −D−2

s,c ∂θ ( . . . )+

[∂θ ,−D−2
s,c ]( . . . ) + const· w. In the term∂θ ( . . . ) we now consider only the terms∂3

θ u

and rename them∂2
θw. Then we get an equationwt (t, θ) = X̃2(t, w(t, θ)) which is

inhomogeneous bounded linear inw ∈ H k with coefficients bounded linear operators
on H k which areC∞ functions ofc, u ∈ H k. These we already know on the interval
(−ak, bk). This equation therefore has a solutionw(t, ·) for all t for which the coefficients
exist, thus for allt ∈ (ak, bk). The limit limt↗bk+1 w(t, ·) exists inH k and by continuity it
equals∂θu inH k at t = bk+1. Thus theH k+1-flow was not maximal and can be continued.
So(−ak+1, bk+1) = (ak, bk). We can iterate this and conclude that the flow ofX exists in⋂
m≥k H

m
= C∞. 2
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A METRIC ON SHAPE SPACE WITH EXPLICIT GEODESICS 57

[11] P. MICHOR - D. MUMFORD, An overview of the riemannian metrics on spaces of curves using
the hamiltonian approach. Appl. Comput. Harmonic Anal. 23 (2007), 64–113.

[12] W. M IO - A. SRIVASTAVA - S. JOSHI, On the shape of plane elastic curves. Tech. report,
Florida State Univ., 1995.

[13] Y. A. NERETIN, On Jordan angles and the triangle inequality in Grassmann manifolds. Geom.
Dedicata 86 (2001), 81–92.

[14] B. O’NEILL , The fundamental equations of a submersion. Michigan Math. J. (1966), 459–469.
[15] E. SHARON - D. MUMFORD, 2d-shape analysis using conformal mapping. Int. J. Comput.

Vision 70 (2006), 55–75.
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