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ABSTRACT 

It is now generally accepted among neuroscientists that the sensory cortex of the 
brain is arranged in a structure that is simultaneously “topographic” (a pointwise 
mapping), layered, and columnar. The microcolumns in the columnar structure 
exhibit both a directional and an areal response in addition to the pointwise one. It is 
shown that these directional-areal response fields are contact elements upon the visual 
manifold that generate visual contours as the “lifts“ of the form stimuli upon the 
retina into a contact bundle embodied in the visual cortex itself. Those invariances of 
form perception termed the “psychological constancies”-shape, size, motion, color 
constancies, etc. -represent the action of the conformal group CQ(1,3) upon the 
visual manifold. It follows that the connection for the cortical contact bundle is a Lie 
group connection. The paper closes with an axiomatic treatment of visual perception 
and expression of Riegel’s dialectical psychology in terms of the symmetric difference 
operation to provide an association between perceptual and cognitive function. 

1. INTRODUCTION 

This paper is devoted to a mathematical model of the brain utilizing the 
structures of modem differential geometry and topology. To some this may 
seem a bit much. Yet what happens at the local, neurond level in the brain 
is integrated somehow into our global percepts and cog&ions at the ‘IIMCTO- 
scopic, psychological scale. This duality between local and global scales and 
the primacy of form in our perceptions suggest that the connection with 
differential geometry and topology may not be so remote after all. 

The cortex is a thin surface layer of neuronal tissue that surrounds the 
brain. In it the higher brain functions reside. The German word for the cortex 
is Rinde -rind-an apt descriptor of this tissue, only a couple of millimeters 
thick, wherein much of what we see, hear, and feel is actually perceived. 

It is generally accepted among neuroscientists nowadays that the cerebral 
cortex is organized in a topographic, laminar, and columnar structure. 
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FIG. 1. The visual pathway: the visual field splits into right and left halves at the eyes, 
crosses over in part at the chiasm, becomes further sharpened and processed for color at the 
late&J geniculate bodies, and then flows onward, via the optic radiation, to the visual cortex at 
the back of the brain in humans. 

“Topographic” here means something in the nature of the point-to-point 
retinotopic map from retina to visual cortex that Talbot and Marshall [I] 
discovered many years ago (Figure 1). The term “laminar” refers to the 
arrangement of the primary perceptual regions of the cortex in recognizable 
layers (Figure 2) that consist largely of neurons of a particular morphology 
[2]. A fuller description of these neuronal types is shown in Figure 3. 

It is difficult for anyone versed in the topological-“qualitative’‘-theory 
of differential equations to gaze upon such Golgi-Gox preparations of cortical 
neurons without being reminded of a local phase portrait.’ This aspect of the 

‘These Golgi-Cox preparations are spatial phase portraits of neuronal processes, not to be 
confused with such temporal phase portraits as those for the Hodgkin-Huxley equations for the 
propagation of the nerve impulse in a section of axon. 
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FIG. 2. A contour diagram for densities of 5, 10, 15, 20, 25, and 30 neurons per cubic 
centimeter of visual cortical tissue that shows the numbers of cells of different types contained in 
unit cortical volume in the several cortical layers. (See Figure 3 for identification of the seven 
types of cortical neurons.) The apparent “zoning” is one basis for the concept of a layered 
cortex; the other is that the laye::s are clearly discernible under the microscope. (After Sholl[2].) 

matter is pointed up in the archetypal neurons studied by Colonnier [3] 
shown in Figure 4. The pyramidal cells, numbered 1, 2, and 3, possess a 
cylindrical symmetry. The stellate cells, 4 and 5, exhibit, on the other hand, a 
radial, spheroidal sort of symmetry. 

The relative importance of the neuronal arborescence compared to the 
soma (the neuronal cell body) is indicated in Figure 5. What keeps pace with 
memory and learning throughout life is the grcwth and proliferation of the 
neuronal arborescence [4]. The proliferation process continues all through life 
unler;s terminated by senile dementia or Alzheimer’s disease. 

It is worthy of note that the basic neocortical circuit [5, 61 has all the 
characteristics of a hyperbolic dynamical system [7], as shown in Figure 6, 
which thus serves as a basis for Isebb’s [8] cell assembly of reverberating 
neuronal circuits. 
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FIG. 3. The seven types of neuron in the visual cortex, classified according to their 

characteristic morphology. (After Sholl [Z].) 

“Columnar” in the cortical description refers to the latest dimension to be 
added to cortical structure, viz., the tiny cortical columns (hereafter micro- 
columns) found by Hubel and Wiesel [g-11], Mountcastle [12], and others. 
These microcolumns run transverse to the laminar structure. Several exam- 
ples are shown in Figure 7. Most of the electrode tracks shown traverse 
several neighboring microcolumns (I, II, III, IV, and VI in Figure 7) owing to 
the curvature of the cortical convolutions. Every so often, however, condi- 
tions are just right, and socalled “pure penetrations” (V in Figure 7) occur. 
These “ pure penetrations” are characterized by occurrence of the surne 
orientation response throughout the entire microcolumn. 

The term “orientation response” is employed by neuroscientists to de- 
scribe the directionally sensitive response field of a single cortical neuron. As 

I 
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FIG. 4. Colonnier’s archetypal cortical neurons. Types 1, 2, and 3 are pyramidal cells, 
exhibiting a cylindrical kind of symmetry. Types 4 and 5 are stellate cells, ones that possess 
primarily radial or spheroidal symmetry. (After Colonnier [3].) 
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Frc. 5. Golgi-Cox preparations of neurcns from the human visual cortex at the following 
stages of development: neonatal, 3 months, 6 months, 24 months. Neonatally, cortical neurons 
are mauny unipolar or bipolar, but shortly after birth their arborescences begin to branch and 
proliferate. TE: process continues all through life and keeps pace with the growth of memory 
and learning [4]. (After Pribram [51].) 
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FIG. 6. Interpretation as a hyperbolic dynamical system of the BishopCoombs-Henry and 
Shepherd models for the basic neocortical circuit. A and A’ denote excitatory stellate cells 
(sources), and B and B’ are inhibitory stellate cells (sinks). C and C’ are pyramidal cells 
(saddles). rc denotes a “recurrent collateral” type of axon. The dashed curves represent 

perturbations of the stationary system arriving in the form of an afferent volley of nerve 
impulses. 

is clear from Figure 7, any particular cortical neuron has both a direction- 
field-like response and an areal one. In the experimental preparation, a dark 
bar or a slit of light is moved about on a screen in front of the subject until 
the neuron begins to fire. The stimulus element is then rotated until the 
maximum response is obtained, as shown in Figure 8. The direction of 
maximal response is said to represent the orientation response of the cell, 
indicated by an arrow in Figure 7. 

We emphasize the dual nature of these response fields: directional and 
areal. The latter aspect is represented in Figure 7 by the associated rectan- 
gles. The essential features are depicted at length in Figure 3. 

Hubel and Wiesel classified the orientation response fields as one of three 
types: simple, complex, and hypercomplex. Simple cells are those that 
encompass the least area. Complex cells were postulated by Hubel and 
Diesel to be those representing the combined output of several simple cells. 
Hypercomplex celIs (2 and III in Figure 7), in contrast to the length-indepen- 
dent response of simple and complex cells, represent orientation responses 
that are limited by the length or angular character of the stimulus element. 

These three aspects of cortical neuron function-the microcolumnar struc- 
ture, the linear nature of the response field, and the areal character of the 
latter-wiU all play key roles in the formal model adduced below for the way 
in which visual percepts are reconstructed fram such microscopic orientation 
response fields. 



The Visual Cortex is a Contact Bundle 143 

FIG. 7. Six microelectrode penetrations through the visual cortex (area 17) and the psycho- 
visual cortex (areas 18 and 19) of a cat. The circles at the end of each track indicate electrolytic 
lesions made to locate the terminus of the track. Track V is a “pure penetration,” i.e., one 
transverse to the cortical layers in which the microelectrode remained in the same miwcohunn 
throughout. Penetrations I-IV and VI, on the other hand, are oblique penetrations which cross 
several microcolumns. The directional response at each stage of a penetration is indicated by an 
arrow; the position and size of the receptive field is indicated by a rectangle. In the upper right 
comer appear response fields characteristic of hypercomplex cells. (4fter Hubel and Wiesel [ll].) 
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FIG. 8. A typical orientation response field @RF) in the visual cortex: the neuronal firing 
rate response to shining a rectangular 1” ~8” slit of light on the receptive field of a neuron 
whose “orientation” (i.e., directional) response is maximal in the vertical direction. 

2. THE VISUAL MANIFOLD 

A basic property of vis~ual perception for present purposes is the figure- 
grotcnd reirrtion, which generates the visual contours that bound a perceived 
object. The figure-ground relation appears to be intrinsic to visual perception. 
In patients blind from birth who have had their sight restored surgically, it is 
the first phenomenon to be observed [ 131. We thus take a5 the stntm of the 
visual system these vkuul contours. Audition has a similar representation in 
terms of the trajectories of relaxation oscillations upon the cochlea [14], and 
haptic perception in the “Roman-soldier leggings” found by Werner [15] and 
his colleagues. 
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FIG. 9. The receptive field of a complex cell in visual cortex. The V and Z-f axes represent 
respectively the vertical and horizontal meridians of the visual field, intersecting at the center of 
gaze F (the retinotopic projection of the fovea). This cell was in the right hemisphere; hence the 
receptive field-represented by the rectangle- lies in the left visual field. When this region is 
illuminated with diffuse light, no response is observed. Similar shining of small circular spots of 
light produces at best only weak or flickering responses. But an appropriately oriented line 
element source yields strong, reproducible responses. The particular cell recorded here responds 
best to a long, narrow slit of light oriented in the direction of the lines shown on either side of 
the respnse field. Movement of the line element in the transverse direction indicated by the 
arrow yields an especially strong response. (After Hubel and Wiesel [ll].) 

Referring again to Figure l? we see that these paths, the visual contours, 
are “lifted” along the visual pathway from retina to visual cortex, where the 
patterns characteristic of the psychological constancies-shape, size, motisn, 
color, etc. - are first “seen,” and thence to the psychovisual cortex (areas 18 
and 19 in the humtii visual cortex), wherein higher forms are perceived. 
Mathematically speaking, such a projection as this from retina to cortex 
constitutes the path Zi.ing property (PLP) [ 16, U]. A path on one manifold is 
“lifted” via a fibering to another manifold in coherent fashion. Here the first 
manifold is the visual field of view as imaged upon the retina; the second is 
what Colonnier termed the “cortical retina” within the occi.pital cortex, upon 
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which all the contours, gradients, and textures of the visual image are 
somehow registered by the actions of countless tiny neurons. Both are 
manifolds in the technical, mathematical sense, a statement which we now 
proceed to justify. 

The “center-surround” response fields of the cells of both retina and 
cortex constitute the C/W&, or “local coordinate patches,” that cover the 
retina and so provide an atlas for the manifold. Adjacent, perhaps overlap- 
ping charts (response fields Ui and Uj) are connected in transition-function 
fashion by bipolar, horizontal, and ganglion cells of the retina. This center- 
surround type of response field is preserved along the visual pathway-the 
optic nerve to lateral geniculate body to optic radiation-and is again 
encountered at the cortical level. IIowever, as was noted above, at the 
cortical level something new makes its appearance, namely, the directionally 
sensitive orientation response that is superimposed upon the center-surround 
response. At the cortical level we again have a manifold, but now one with a 
direction field also present. In the presence of a Lie transformation group 
stich a direction field becoSmes oriented and so constitutes a vector field. 

PRI~IPLE 2.1. The cortical retina is a PL manifold. 

ARCXJMENT. As demonstrated above, the retina 9 and the cortical retina 
V are manifolds; in the presence of the orientation response direction fields, 
the vector fie!ds on V make it PL. 

Figure 10 summarizes the essential features of the cortical structure of 
perceptual systems. The six-layer cortex is traversed by an ensemble of 
cortical microcolumns, each of which has a characteristic directional re- 
sponse, except in layer IVc, where incoming stimulus volleys terminate upon 
stellate cells. As indicated in Figure 10, the directional response varies 
smoothly in small increments across adjoinq microcolumns. This structure is 
very suggestive of the mathematical entities of fibre bundle and cross SC& tion 
th~Z?Of, regarding the latter as a vector field. 

PRINCIPLE 2.2. The cortical retin,l is embedded in a “smooth” (Coo) 
manifold. 
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FIG. 10. A diagrammatic representation of the directionally sensitive microcolumns in the 
visual cortex of the monkey. Two penetrations are illustrated, one vertical (“pure”), the other 
oblique. In the vertical penetration the directional response remains constant from cell to cell 
within cortical layers above and below layer IVc. In layer NC, wherein the afferent volleys 
terminate largely upon stellate cells, which then relay the stimulus on to pyramidal cells in other 
layers, the response fields exhibit circular symmetry without any directional dependence. In the 
oblique penetration one sees a systematic rotation of the ORF in increments of about IO” or less 
at every SO pm or so. This variation may be continuous. (After Hubel and Wiesel [ll].) 

~GUMFWT. Quoting from Anderson [18], 

. . . Not every space has a finite triangulation; those spaces 
polyhedra. Included among the polyhedra are such 
sKmnifolds. 

3. THE PATH LImING PROPERTY 

Recall the figureground relation: primitive 
perception of objects defined by their bounding 

spaces as 

for form 

which do are called 
compact differential 

perception is the 
curves. Thus visual contcurs 

on the visual manifold V constitute the basic data for visual form percq ion, 
and similarly for the auditory and sensorimotor modalities. These paths, the 
visual contours, are “Me along the visual pathway by the actions of 
countless tiny neurons which, acting in concert, deliver a visual stimulus as 
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such to our conscious awareness. So the problem is how to construct visual 
contours out of these microscopic orientation response fields (hereafter 
OBF’S). 

The thing one first thinks of is that the visual contours are integral curves 
of the cortical vector field embodied in the OBFs. In other words, the visual 
map is a tangent bundle 7~ Tg = V + 9, where 2 denotes the retinal 
manifold and V the cortical “manifold of perceptual consciousness.” But the 
OBFs unfortunately do line up head to tail as in an Euler line approximation 
to an integral curve. Furthermore, the OBFs have an areal character as well 
as a lin&ement one. 

A second thought-the basis for which we shall proceed to establish: The 
path on the retina is lifted into a contact bundle V = %U?, and this in turn is 
related in standard ways to a symplectic manifold. 

To define a connection on an n-manifold, one needs either n vectors 
Xi = a/axi - pi a/a?j or else n I-fOllTlS 8 = CZfJ +Cipi hi. In the present 
context of neuropsychology, these I-forms are the OBFs, and the pi corre- 
spond to the orientations. 

PRINCIPLE 3.1. The oisud pathway is a contact bundle V = %‘B, and the 
cortical ORFs represent contact forms defined by a connection l-form, with 
an associated %fm ii = d0 defined me-r a symplectic manifold. 

Before arguing this proposition we proceed to establish the existence of a 
connection on the basis of the following lemma. 

LEMMA 3.2. l7ie visual pathway has the path lij-ting property (PLP); the 
latter determines a lkw of parallel transport. 

To establish 5 ekstence of parallel transport and so the presence of a 
parallel connection one needs to verify the following five axioms [19]: (i) the 
existence oC a unique parallel field within the vector bundle along any given 
path 1, with specified initial values; (ii) that the parallel transport map along 
y which sends 6 = P,&O) to a parallel translate PY,$(u) is an isomorphism of 
linear vector spaces; (iii) that the parak! transport is independent of 
parametrization; (iv) that the parallel transport depends smoothly on the 
initial conditions; (v) that the initial tangent vectors for two different parallel 
transport flows are equal. 

We are thus concerned with a phenomenon like inertial navigation, 
wherein a gyroscopically fixed direction is used to generate parallel transport 
of a frame of reference along the world line of an aircraft. The line element 
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FIG. 11. A connection in a fibre bundle is fully determined by a law of parallel transport. At 
any given point in the bundle the operation of parallel transport may be used to lift all the curve; 
y that pass through the base point, thus specifying a vector field that is constant along the curve. 
Given one vector along the curve, all the rest are determined by the connection. The lifted 
curves have a unique contact element, viz., the horizontal subspace of the connection. (After 
Burke [21].) 

system, starting from a given initial value, determines a field that is constant 
along the path y. 

We argue Lemma 3.2 in terms of the abstract ORF configuration shown in 
Figure 10. With reference to axiom (i) above, visual inspection indicates the 
presence of such a unique paraUe1 field. The initial value cited in require- 
ments (iv) and (v) above corresponds to some distinguished point referred to 
the center of vision on whatever contour is presented, the tangent vectors 
being determined by different connection l-forms. Figure 11 depicts the 
essential features of par&~ transport induced by such a connection in 
th? f&e bunde V and defines the coordinates on the right hand side of the 
expression 8 = dv + Cipi Eli. The association between Figures 11 and 10 
seems clear. 

V, being a vector bundle, must have vector field cross sections consisting 
of linear vector spaces, and the uniqueness and invertibility required by 
axiom (iii) are assured. Any particular realization of a perceptual system is of 
course an associated fibre bundle for some archetypal principal fibre bundle 
that represents such idealized bundle structures as those of Figure 10. Hence 
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(iii) follows; the neuropsychological embodiment of a visual contour y is 
coordinate-free. 

An important instance of the mapping expressed in axiom (iv) is the 
exponential map from the Lie algebra (of a vector field) to a Lie transforma- 
tion group (the corresponding orbitstructure). The significant role of Lie 
transformation groups in the present context will be made clear farther on. 

4. CONTACT BUNDLES AND THE ARGUMENT FOR THE MAIN 
PRINCIPLE 3.1 

Three local structures are defined upon a manifold M: the tangent bundle 
TM; the cotangent bundle T*M, dual to TM; and a family of contact bundles 
WU. The latter are subsumed under the general rubric of cotangent bundles 
but possess more properties than the latter and greater flexibility in their 
definition. A contact bundle is defined as the collection of ordered pairs 

VM= ((m,p)lh~M), (1) 

where p is a line element at m. 
Contact is a weaker notion than tangency. Bo&h are preserved under 

smooth maps but in the contact case the maps, though agreeing in direction, 
need not agree in rate, as would be the case for a vector field. The dimension 
of %?M is also one less than that of TM, which expresses a re!ative degree of 
simplicity. Further, a number of contact bundles can be defined over the 
same manifold, while such is not the case for lYM and T*M. 

The essential point for present purposes is that [ZO] a contact bundle 
singles out those special submanifolds-the integral manifolds-that are 
lifted into WW from the base space M. Though contact elements need not 
necessuriZy be integrable, when they are they generate an integral submani- 
fold. The case for the plane W2 is shown in Figure 12, where the twodimen- 
sional contact elements in the upper part of the figure do not “tile” together 
to generate a surface embedded in &space, while those in the lower part do. 
In such a case a lifted subman&%! is ckzctsrized by the relations 

that govern the fundamental l-form on Iw2: 

8 = df - pdx - qdy. (3) 



FIG. 12. (a) A nonintegrable field of contact Selements. (Such fields are the rule rather than 

the exception, in the real world. After Burke [21].) (b) An 
integrable field of contact elements 

that “tile together” to generate a surface as an integral manifold. 
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THEOREM [21]. For any submanifold in 9 to be a lifi (to V = %9), pi 

VlWSt equal p,i = d y/aXi; in Other Wor&s, a COntaCt stmctwe picks OUt t?wse 

special submanifolds that lij3 as integral cumes of %%P. 

THEOREM [22]. Every compact idntable 3-munifold carries a contact 
structure. 

APPLICATION. T’he visual manifold V is certainly compact and 3dimen- 
sional. It is also orientable, for it carries a Lie transformation group, that of 
the psychological constancies, as discussed below. It follows that V does 
possess a contact structure. 

ARGUMENT FOR PRINCIPLE 3.1. A visual contour, which is a path upon 
the retina 59, is lifted into a principal contact bundle 

v=a%?= (T%@,lz,iZ,G}, (4) 

that is determined by the ORFs on V, regarding the latter as contact forms 

Frc. 13. The geometric pattern of a connection for the lifted curve y. The vector field is 
represented ‘cry a section of the cotangent bundle Tf9T on the retina 9. The local affine 
approximaticn to a section is a contact element Q associated with the line element 8. The 
essence of a connection lies in the specification of a contact element $I for each point in the 
contact bundle ‘SZS = V (the visual manifold). Such a contact element represents at that 
particular point the idea of a constant field. (After Burke [21].) 
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defined by a connection l-form 8 (Figure 13). In local coordinates the 
connection l-form is 

0 5 

and @AdtJ#OinV. 
When the pi do match up with the direction field elements that are locally 

tangent to the visual contour, the latter will lift to the cortical contact bundle. 
The essential point is that the contact transformations involved in %% take 
lifted curves to other lifted curves in diffeomorphic fashion. 

5. LIE TRANSPORT: THE CONTACT BUNDLE IS HOMOGENEOUS 

CmWct trarufmtimu are those that preserve the contact structure of a 
contact bundle. In the present instance the transformations that act are those 
of a Lie group, the cmformal group CO(I,3). We thus have to do with a 

RomogeneQzos contact bundle [23], wherein the Lie group G in (4) acts 
transitively and effectively on 9! and 8. The infinitesimal trzuqsformation of 
such a Lie group is known [24] to be fully determined by its action on a 
function, a vector field, and a differential form. In the present application we 
therefore invoke the concept of a Lie derivative “dragging” these fundamen- 
tal structures along the orbits of the Lie group G. 

DEFXITIOIU 5.1. A function f, a vector field Y, or a differential form 6 is 
said to be Lie transportad or dragged along the jbw of a vector field X that 
defines a Lie derivative 2Px provided that 

SPxf=O, S++Y=O, or P&9, respectively. (6) 

DI~FINIY~I~N 5.2. An infinitesimal contact structure 3 is one for which 

zz$J” = “6, (71 

where 9 is the contact ideal consisting of all absolute and relative invariants 



154 WILLIAM C. HOFFMAN 

of the group of 9’, given by the relations 

JP+u = 0, 9& = f(x)u, 2Pxd9=0, or 64,8=g(x)8. (8) 

The conditions (8) determine the ~~$nitesimaZ synametries of the Lie group. 
All elements of such a differential ideal # pull back to zero on an integral 

submanifold. Any given contact-element field thus determines an ideal that 
consists of all l-forms 8 such that 8. X = 0 for all X belonging to the contact 
element. These l-forms generate the differential ideal. 

Integrability of the contact-element field is of prime importance in the 
present application if visual contours are to somehow arise out of microscopic 
ORE. I?robenius’ theorem asserts that such an integral submanifold will exist 
only if the contact element is co&&ely integrable. This means that fcr YE’; 
two vector fields X and Y in the contact field, their commutator, or Lie 
bracket, is also a member of the contact field. 

A Lie group connection is a connection that, though not linear, is 
compatible with the Lie group structure on V [2!5]. Lie transport of a vector 
field X belonging to the Lie algebra admits two natural transport operations 
along a curve y(u) in V, one for left translations, the other for right 
translations, as shown in Figure 14. Let x(u) in the figure denote any curve 
in V that has X as tangent vector and let x(O) = g. Then the group 

FIG. 14. One of the two natural connections on a Lie transformation group G X V + V, 
with acthn TAX = x’. See the text for details. (After Burke [2P].) 
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multiplication 

v + (u)g-‘x(v) 

determines a tangent vector at y(u) that corresponds to left translation of X. 
Similarly the orbit 

I (9 ) 

determines a tangent vector at y(a) that corresponds to right translation of 
X. Either transport operation can be used to provide a connection. For 
present purposes the important aspect is that the head and tail of a vector X 
will be krried along neighboring integral curves, whenever such exist, and 
they will if the Lie group vector field is completely integrable, i.e., the 
conditions on the Lie product of Frobenius’ theorem do hold. 

PRINCIPLE 5.3. Tramport of perceptual contour dswnts within the 
cortical contact bun& takes pluce via a Lie group connection. 

ARGUMENT. The base vector field on V is generated by the Lie group G, 
of the psychological constancies [4, 24, %-29]-size, shape, motion, color, 
pitch, loudness constancies, etc. The Lie group G, may be readily identified 
by its actions on perceptual contours, in particular by those orbital structures 
that the group action leaves invariant. For the projection of the field of view 
on the frontal plane, these are listed in Table 1. 

In general, G, = CO(1,3), the group of conformal transformations of 
space-time [30, 31, 29, 321. IIere the group CO(1,3) acts on subjective 
space-time S = (R X V, g) with signature (+, -, -, - ). One of the group 
actions is discrete: reflections in the vertical meridian. The remaining con- 
nected components of the identity constitute a 15parameter Lie group 1331: 

(i) the affine group: 0’ = Au + b, A E SO(I,3), b E S, v E V; 
(ii) the group of dilations: v’ = hv, A E R +; 
(ii) special conformal transformations, so-called “accelerations”: 

v + atI2 
VL 

q(a, 0) l 
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TABLE 1 
CONSTANCIES AND LIE TRANSEWlMATION GROUPS 

constancy Lie transformation group Lie derivative(s) 

Shape const~cy: Affine (unimodular) group SL(2) 

location within the translation groups- 
field of view horizontal, vertical 

(form memory) time translations 
orientation rotation group SO(2) 

Afferent binocular 
perception 

PseudoEuclidean (qperbolic) 
rotations 

(Efferent binocular 
function) 

PseudoEuclidean rotations in 
spac&-time 

Size constaxicy 

Perception of moving 
objects 

Dilation group 

Generalized Eoientz group 
of order 2 

( a a a 
a, =- % =- =- 

ax’ ay’ at at 1 
Lx=&, L,=a, 

L, =a, 
L,= - ya,+xa, 

L,=yi?,+xil, 

Lg=xa*-ya, 
L z,g=ta, --era, 
L B2 =tat - Yay 

L,=xa,+ya, 

LSI =xa* + tat 
L s2 = Yay + tat 

L,= -L,, L&fl=xi?,-dx 
L = ya, - 7ay 

Lm = LY, L,, = Tax + xi;, 
L m2 = Tay + Ya7 

The infinitesimal transformations of these Lie group actions are generated 

bY 

translations 
a 

P,i 
=-. 

ax 9 
i 

general Lorentz transformations 
8 a 

Lii = xi- - 
aXj 

rjz; 

i 

dilations 

special confond transformations 

“7 =&, c^= peak cortical signal velocity. 
bSpace here is 2dimensional, viz, the x, y-frontal plane, the projection of physical S-space. 
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On the visual manifold V, translations correspond to invariant recognition 
of any given perceived form wherever it may be in the field of view-right or 
left, up or down. The L,, generate motion constancy as well as other 
components of shape constancy (rotation, obliquity, afferent and efferent 
binocular function) and color constancy. Dilations are of course the transfor- 
mations that generate size constancy-the invariance of perceived forms 
whether close up or distant. The special conformal transformations are also 
involved in size constancy. 

In visual processing the constancy transformations are the first to act on a 
perceived form stimulus, thus generating equivariant perception and so a 
considerable economy in memory storage. A given form does not have to be 
remembered in every one of its possible distortions under the conditions of 
viewing. Hence we take the generating vector fields of the constancy 
transfcrmations as the vector(s) X in (9) or (9’) and “drag” them along the 
visual contour [the y(a) in (9) or (9’)]. A visual stimulus contour is therefore 
traced out within the perceptual cortex as a lift of the visual path on the 
retina. Examination of Figure 10 makes it clear how this comes about. Such a 
connection is known to induce parallel displacement of fibres within the 
associated contact bundle [Ml, thus generating configurations like that of 
Figure 10. 

Contact bundles are preludes to jet bundles [35], and the latter correspond 
to prolongations of a Lie transformation group [36]. Prolongation provides the 
answer to the natural question: integral curves (the orbits) of CO(1,3) may 
suffice for such basic visual patterns as those of the constancies (rectangular 
grids-the so-called “spatial frequency response,” circles, rays, and hyperbo- 
las), but what about higher visual forms, such as those we see all about us at 
this very moment? 

PRINCIPLE 5.4 [i’, 27-291. H&her uisual perception represents invariance 
of higher perceived forms through extension of the contact bundle W? to 
higher jet bundles through prolongation of the Lie derivatives of CO(1,3). 

ARGUMJZNT. The ideal of Equations (7) and (8) is extended to higher 
differential invariants uk by such relations as 

~~k)u, = 8, gk = 1,2,...). (11) 

ntal plane, uk is a function of x and y and the first k derivatives 



158 WILLIAhd C. HOFFMAN 

y’,y”,*.., y l 
w The prolonged Lie derivative takes the form 

d 
2P-$k’=9~+ i X,j)(X, y, y’, y”,**e, yqayo. 

j=l 
02) 

The Xti, are thus determined recursively from the equations involving higher 
and higher order differential forms according to the rule 

@) [ dyti-l) _ y!jj dx] = 0, (j=1,2 ,..., k). 

These last expressions correspond to the extended contact structure and have 
their cortical correlate in the proliferation of the neuronal arborescence, 
regarding the latter as the local phase portrait for the Pfaffian system 
associated with (11) and (12). Compare Figure 5. 

COROLLARY 5.5. Tihe jet bundles in Principle 5.4 are coniact bundles of 
dimension one order lower than the corresponding tangent bundles. 

hGIJMENT. kt a(%, ZJ, y ‘, y”, . . . , ~(~1) denote an nth order differential 
form that is invariant under the group of 9”. Then substitution of the 
canonical variables tl and tcr defined by S’xu = 0 and 9’$)u1(x, y, y’) = 0 
reduces the differential form to one of order n - 1 that is determined by a 

(n - 1)st order differential equation in the canonical variables themselves: 

dn-bl du, dn-2ul 
-= 
dun-’ 

B h”l, du y*“) dun_2 - (13) 

Of course it is well known that any contact bundle is one dimension lower 
than the corresponding tangent bundle [37]; but the important point in the 
present context is the- 

APPLICATION. The kd phase portrait of a dynamical system-or the 
correspon&g %ffian system or the Lie-group-generated flow-represents 
the orbit structure of the Lie transformation group and its prolongations. 
Flows through the neuronal arborescence thus simulate the computations 
involved in the group action. The absolute invariant u and the first differen- 
tial invariant ur are generated not by actualiy solving a Pfaffian system but 
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rather by afferent flows of nerve impulses through an appropriate configura- 
tion of neuronal arborescences. (Compare Figure 5.) Incoming nerve signals 
from the optic radiation are known to terminate at several thousand synaptic 
junctions on both the soma and dendrites of a neuron, but mainly on the 
latter. The complicated morphology of the neuronal arborescence is there- 
after replaced by a single path, that of the emergent axon, along which 
discharges of nerve impulses constitute translations in the arborescencegen- 
erated canonical variables u and ul, in the style of Equation (13). For planar 

FIG. 15. Progressive modification via absolute and differential invariants of a picture face 
that leads eventually to generation of a more or less realistic face. In (a) and (b) the basic figures 
are generated as orbits of the translation group, the rotation group O(2), and linear combinations 
of these two actions. 
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visual stimulus patterns the ur invariant is a differential form in y’, and 
du,/&u represents local curvature [17] in accord with the well-known 
theorem [371 that any plane curve is determined by its intrinsic equation in 
the curvature variable. 

As a somewhat simplified instance of the perceptual use of differential 
invariants, consider Figure 15. Figure 15(a) depicts a picture face, familiar 
from countless posters and advertisements. All the contours of Figure 15(a) 
consist of orbits of either O(2) or the group of horizontal translations. In 
Figure 15(b) the orbits of O(2) are again apparent, but now we also see a 
triangular nose (an invariant of the projective conformal group [38]), curly 
hair (partial orbits of the combined rotation and dilation groups that generate 
spirals), and some mouth lines (orbits of the dilation group, centered at the 
triangular nose). The realistic face of Figure 15(c) superimposes upon these 
basic invariants-the group orbits -the higher differential invariants gener- 
ated by prolongation of the Lie derivatives of the foregoing constancy groups. 
It is these curves that undergo Liegroup transport within the cortical jet 
bundle. 

6. THE ARIWL ASPECT-SYMPLECTIC AND 
CGNTACT STRUCTURE 

Noted above in connection with Figure 7 was the fact that any ORF has 
an areal as well as a directional aspect. The cortical retina is 3dimensional, 
but subjective space-time S = aB x V is 4dimensional. Such an even dimen- 
sional manifold carrying a closed 2fox-m Q of maximal rank is a symplectic 
manifold. Any cotangent bundle T*M is an instance of such, and there 
always exists on any cotangent bundle an invariant l-form. This canonical 
I-fo-rm was taken above to be the connection l-form 8. In local coordinates 

(419 ’ * l 9 9,; p,, n l l 3 p,) on V, the invariant l-form is 

and the 2form on the associated symplectic manifold is 

(15) 

Since d Q = ddt9 = 0, G is in fact closed and of maximal rank (since Q2” f 0 
in S). 
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The corresponding canonical contact form on DB x T*9 = R x Wt is 

It is well known [39] that there exists a symplectization functor that 
associates a symplectic manifold of dimension 2( n -t 1) with a contact mani- 
fold of dimension 2n + 1, and conversely, a contactization functor that takes 
a symplectic manifold of dimension 2n to a contact manifold of dimension 
2n -t 1. Here we invoke the latter and in the static configuration associated 
with the ORFs regard 

t d Pi xi i = 1 
(17) 

as the canonical l-form determined by the local direction field, while 

~ dpi A dxi 
i= 1 

08) 

is the symplectic %form determining the areal nature of the ORF. Both 
directional and areal characteristics of ORFs are thus described in mutually 
consistent terms, terms that lead at once to a coherent means for representing 
visual forms of arbitrary degrees of complexity that are at the same time in 
accord with the essential nature of ORFs, as indicated in Figures 7 and 10. 

7. AXIOMS FOR VISUAL PERCEPTION 

Any mathematical model is an axiom system, whether stated verbally, or in 
terms of equations, or graph-theoretically, or whatever. Here we take this 
opportunity to update the visual system axioms laid down earlier [32]. There, 
although the contact structure was explicitly mentioned, visual contours were 
assumed to be integrals of the Lie-group-generated vector fields. As men- 
tioned above, the ORFs do not line up in proper fashion to be a vector-field- 
generated integral curve. 

AxmM 1. The figure-ground relation and visual contours are equivQlent 
to a path-connected visuul manifold embedded in subjective space-time. 
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PRINCIPLE 7.1, Vkual contours li. akmg the visual pathway from retina 
9 to cortex V into a contact bundle 92% = V possessing a parallel connection. 
The latter represents the directional nature of ORFs. 

ARGUMENT. This is the essential nature of IIubel and Wiesel’s orientation 
response fields (ORF’s) for individual cortical neurons: they are at the same 
time contact elements and symplectic elements that lift visual contours from 
retina to cortex. Visual contours are the “lifts” of retinal contours and are 
generated by contact differential forms. 

AXIOM 2. The dkmtion- free invariant perceptions generated jkm per- 
ceived shapes by the action of the psychological con&an&s (shape, sk, 
motion, color, etc.) comspoud to the action of the conformal group CO( 1,3) 
on subjective space-time S = Iw X V. 

The key word here is “invariance.” Form memory and the constancies 
would be pointless phenbmena in a completely chaotic environment. For the 
expression of invariance of integral curves on a differentiable manifold, Lie 
transformation groups governing these orbits are well known to be the 
natural mathematical structure. Which transformation groups it is that are 
acting can readily be determined by noting which shapes are left invariant by 
the distortion-generating transformations and then making comparison with 
the corresponding orbit structure. It follows that the pamlIe connection of 
Principle 7.1 is a Lie group connection (Principle 5.3). 

PRINCIPLE 7.2. T;he modern version of the neuron doctrine, including 
what is known about the “synaptology” of cortical neurom, implies that the 
neuron is a Lie group genn and that the neuronal arborescences constitute 
local phase portrQits for the corresponding Pfafian systems. 

ARGUMENT. Principle 7.2 is similar to the cell theory of biology in that it 
unifies the “local” (microscopic) and “global” (psychological) levels of neu- 
ropsychological organization. The corresponding Lie group structures are 
infinitesimal transformations at the 1ocaI level and orbit structures at the 
global. The latter part of the proposition follows as an immediate conse- 
quence of Axiom 2, given the well-known relations among the Lie group 
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germ, the (prolonged) Lie derivative, and the associated Pfaffian system 
whose solution yields the invariants of the transformation group, and making 
comparison with the morphology of Golgi-Cox preparations of cortical neu- 

TA V B9 A0 0 A?1 Csn rons t~f, I, 40, WJ, L, %IJ’ Wrnr~~c I, thrnartih R ahnvp. “UU i’r6-V” - ,**,--L&&z; i- u-_--_- - =J- 

P~INCIPZE 7.3. Invariant a.xd programmable newops yc~logical systems 
are fibrations: Serre or Humicz fibre bundles in the case of the postekw 
perceptual systems, und Kan fibrations for the frontal-infwoternporal cogni- 
tive systems. 

AFIGUMENT. Throughout the central nervous system (CNS) the basic 
structure and function appear to be that of fibration: a total space (cortex) -- 
that projects (via efferent nerve pathways) onto a base space (the midbrain 
region). (Compare Figure 1.) @wing to the presence of the ORFs and the 
resultant implication of the polyhedral covering homotopy property (PHCP), 
the cortical contact bundle is a Serre fibration. The cross section map in this 
case consists of the afferent volleys of nerve impulses that transmit visual 
stimuli from retina to brain. Since there is a structure group, viz., CO(1,3), 
the fibration is in fact a Serre fibre bundle. The PHCP is known to imply the 
CHP for arbitrary base spaces, and it therefore follows that the cortical 
contact bundle is a fibre bundle in the sense of Hurwicz as well. Finally [42], 
“the image of a fibration in the sense of Serre under the singular complex 
functor is a fibr,ation in the sense of Kan.” The latter is general enough to 
handle any aspect of information-processing psychology, and the presence in 
cognitive phenomena of the simplicial functor (the category of simplicial 
objects) has been argued at length in [29] and [43]. 

Invariance in the Kan fibration case, which is embodied in such higher 
cognitive faculties as conscious thought, plans, long-term behavioral se- 
quences, etc., apparently corresponds to Freyd’s “The Theorem” [44]: an 
elementary property on categories is invariant up to equivalence types of 
categories iff it is a diagrammatic property.” Thus “ciwing around the 
diagram” in “ trains of thought” is more basic than “logical,” conscious 
thought. Intuition precedes insight and inspiration and certainly the laborious 
processes of conscious thought itself. 

According to dialectical psychology [45, 461, thought processes consist of 
continual transformation of contradictory experience into momentarily stdde 
cognitive structures. The essential feature is sensed contradiction between 
thesis and antithesis that progresses toward synthesis of the commonalities 
present, perhaps at a higher level. It is not an “if. . . then. . . ” kind of 
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reasoning but rather, as Sherlock Holmes himself is supposed to have put it, 

. . . when you hav5 eliminated all which is irqossible, then whatever remains, 
however improbable, must be the truth. 

An appropriate mathematical structure for expressing such dialectical 
thought processes appears to be the set-theoretic operation of symmetric 
difference. The symmetric difference2 A $ B of two sets A and B consists of 
those elements that are in A or B but not both: 

A$B=AuB-(AnB)=(Anii)u(hB). (19) 

Etiegel laid down the following more or less traditional dialectical “laws” 
for dGectiG3l ~~jdi0~0~: 

I. The unity and struggle of opposites. 
II. The transformation of quantitative into qualitative chants. 
III. The negation of the negation. 
Law II is well expressed by such a set operation as (19). For law III we 

require the complement of A $ B: 

-(A$B)=(AnB)u(h&. (20) 

Law I thus consists of the two-stage combination of processes (19) and (20). 
In A n B in (20) we have the commonality-the “synthesis’‘-of A and B. 
In A” n B we have everything else-that which is outside of k ~6 0”. Yke 

second stage (20) thus admits both “convergent thinking” via i? (‘I B ad 
“divergent thinking” in terms of A n B. 

Introduction of the symmetric difference into a paper oriented about 
differential geometry and topology may seem somewhat far afield, but the 
isomorphism between the symmetric difference and mod-2 homology [47,48] 
justifies such a model, once the category of sirnplicial objects has been 
brought in to represent cognitive objects and processes. We thus have- 

PRINCIPLE 7.2. The symmetric difference operation represents the finda- 
mental operations of dialectical psychology. 

which IS at least close to the SLU&D,! qmbol \ for set difference, and besides $ is on the 
typewriter keyboard. 
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~GUMENT. The category of contact bundles is functorial to the category 
of simplicial objects, since the former is included in the category of fibre 
bundles. The category of simplicial objects describes information processing 
psychology nicely [29,49]. Mod-2 homology is isomorphic with the symmet- 
ric difference. The modifications of information processing psychology re- 
quired for the dialectical processes of dialectical psychology are, as indicated 
above, well represented by the symmetric difference and its complement? 
The symmetric difference and its complement can, like the Sheffer stroke, be 
used to generate a Boolean algebra in its entirety. Hence all of “logical” 
thought is accessible via $ even though the simplicial objects and functors 
involved in cognitive processing are more basic. 
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