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This lecture based on

o Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The spectral
action and cosmic topology, Commun.Math.Phys.304 (2011)
125-174, arXiv:1005.2256

o Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The coupling of
topology and inflation in noncommutative cosmology,
arXiv:1012.0780

@ Branimir Cac’ic’, Matilde Marcolli, Kevin Teh, Coupling of
gravity to matter, spectral action and cosmic topology,
arXiv:1106.5473
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The question of Cosmic Topology:

Nontrivial (non-simply-connected) spatial sections of spacetime,
homogeneous spherical or flat spaces: how can this be detected
from cosmological observations?
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Our approach:

@ NCG provides a modified gravity model through the spectral
action

@ The nonperturbative form of the spectral action determines a
slow-roll inflation potential

@ The underlying geometry (spherical/flat) affects the shape of
the potential

@ Different inflation scenarios depending on geometry and
topology of the cosmos

@ Shape of the inflation potential readable from cosmological
data (CMB)
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Cosmic Microwave Background best source of cosmological data
on which to test theoretical models (modified gravity models,
cosmic topology hypothesis, particle physics models)

o COBE satellite (1989)
o WMAP satellite (2001)

@ Planck satellite (2009): new data available now!
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Cosmic topology and the CMB

e Einstein equations determine geometry not topology (don't
distinguish S from S3/I" with round metric)

e Cosmological data (BOOMERanG experiment 1998, WMAP
data 2003): spatial geometry of the universe is flat or slightly
positively curved

@ Homogeneous and isotropic compact case: spherical space
forms S3/T or Bieberbach manifolds T3/

Is cosmic topology detected by the Cosmic Microwave Background
(CMB)? Search for signatures of multiconnected topologies
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CMB sky and spherical harmonics temperature fluctuations
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Yym spherical harmonics

Methods to address cosmic topology problem
@ Statistical search for matching circles in the CMB sky:
identify a nontrivial fundamental domain
@ Anomalies of the CMB: quadrupole suppression, the small
value of the two- point temperature correlation function at
angles above 60 degrees, and the anomalous alignment of the
quadrupole and octupole
@ Residual gravity acceleration: gravitational effects from other
fundamental domains
@ Bayesian analysis of different models of CMB sky for different
candidate topologies
Results: no conclusive evidence of a non-simply, connected topology
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Simulated CMB sky: Laplace spectrum on spherical space forms

(Luminet, Lehoucq, Riazuelo, Weeks, et al.)

Best spherical candidate: Poincaré homology 3-sphere
(dodecahedral cosmology)
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Simulated CMB sky for a flat Bieberbach G6-cosmology

(from Riazuelo, Weeks, Uzan, Lehoucq, Luminet, 2003)
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Slow-roll models of inflation in the early universe
Minkowskian Friedmann metricon Y x R

ds? = —dt? + a(t)?dsy,

accelerated expansion 2 = H?(1 — ¢) Hubble parameter

1 8m
H?(9) (1 - 3e(¢)) = 3z V09)

mp; Planck mass, inflation phase €(¢) < 1

A potential V(¢) for a scalar field ¢ that runs the inflation
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Intlate whils

rolling slowly
here Slow-roll ends
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occurs
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Slow roll parameters
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= measurable quantities
ns>~1—06e+2n, n~—2¢ r=16¢€,

s ~ 16en — 24€> — 26, o ~ den — 8€?

spectral index ng, tensor-to-scalar ratio r, etc.
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Slow roll parameters and the CMB
Friedmann metric (expanding universe)

ds® = —dt® + a(t)?ds?

Separate tensor and scalar perturbation hj; of metric (traceless and
trace part) = Fourier modes: power spectra for scalar and tensor
fluctuations, Ps(k) and P¢(k) satisfy power law

Kk ) 1-ns+5 log(k/ ko)

Ps(k) ~ Ps(ko) (ko

k > ne+5t log(k/ ko)

Pu(k) ~ Py(ko) <k0

Amplitudes and exponents: constrained by observational
parameters and predicted by models of slow roll inflation
(slow roll potential)
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Poisson summation formula: h € S(R) rapidly decaying function
h 2 k InX
S hxct 20k = 2= Y e
ke nez

function f(x) = >,z h(x + 27k) is 2m-periodic with Fourier
coefficients

,\ 1 2w
fn 2/ f(x)e ™dx = — Z/ h(x 4 2mk)e™ ™ dx

keZ

27T(k+1) ) 1 ) 1 .
—InXd - h _InXd — 7h
/ =5 A (x)e =5 (n)
kGZ
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Spectral action and Poisson summation formula

S h(x +an) = Zex <27””X> E(%)

nez neZ

A € R% and x € R with

h(x) = /R h(u) e 2™ dy

Idea: write Tr(f(D/N)) as sums over lattices

- Need explicit spectrum of D with multiplicities

- Need to write as a union of arithmetic progressions A\, ;, n € Z
- Multiplicities polynomial functions m) . = Pi(An,i)

F(D/N) = Pi(Ani)f(Ani/N)

i neZ
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The standard topology S® Dirac spectrum +a= (3 +n) for n€ Z,
with multiplicity n(n + 1)

Tr(f(D/N)) = (Aa)’F?(0) - *(/\a) (0) + O((Aa) ™)
with F@ Fourier transform of v2f(v) 4-dimensional Euclidean S3 x S?
Tr(h(D?/A?)) :77/\4a3ﬁ/oouh( u—7r/\aﬁ/ u) du+O(A=K)
0
g(u, v) = 2P(u) h(u*(Aa) 2 + v*(AB)?)

g(n,m) = / g(u, v)e 2m Ut gy dy
R2

Spectral action in this case computed in

@ Ali Chamseddine, Alain Connes, The uncanny precision of the
spectral action, arXiv:0812.0165

Matilde Marcolli NCG models for particles and cosmology, IV



A slow roll potential: perturbation D? — D? + ¢? gives potential
V(¢) scalar field coupled to gravity

Tr(h((D?+¢%) /%)) = 7A*3a3 /OO uh(u)du—g/\zﬁa /OOO h(u)du

0
+7A*Ba3 V(4% /N?) + %/\25‘3 W($?/N?)

V(x):/ooo u(h(u + x) — h(u))du, W(x):/oxh(u)du

Parameters: a = radius of 3-sphere, 5 = auxiliary inverse
temperature parameter (choice of Euclidean S*-compactification),
N\ = energy scale
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Slow-roll parameters from spectral action: case S = §3

)= (L hb0 2(ha [ b :
167 \ [y h(u)du+2m(Aa)® [;™ u(h(u + x) — h(u))du
= LZ’;‘I h/(X)+27r(Aa)2h(x)

@ In Minkowskian Friedmann metric A(t) ~ 1/a(t)

@ Also independent of 3 (artificial Euclidean compactification)

Slow-roll potential, cases of spherical and flat topologies:

@ Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The spectral
action and cosmic topology, arXiv:1005.2256

e Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The coupling of
topology and inflation in noncommutative cosmology,
arXiv:1012.0780
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The quaternionic space SU(2)/@8 (quaternion units £1, £oy)
Dirac spectrum (Ginoux)

3
5 T4k with multiplicity  2(k + 1)(2k + 1)

3
5 + 4k +2 with multiplicity 4k(k + 1)
Polynomial interpolation of multiplicities
1 3 5
Pl(u) = Zuz + ZU + R
1 3 7
P, =" -u——
2(0) = 30"~ 4V~ 1

Spectral action
TH(A(D/N) = 5(Aa)FO(0) — = (Aa)7(0) + O(A )
(1/8 of action for S3) with gi(u) = P;(u)f(u/N):
T(F(D/A) =  (&(0) + &2(0)) + O(A )

from Poisson summation = Same slow-roll parameters
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Other spherical space forms: method of generating functions to
compute multiplicities (C. Bar)
@ Spin structures on 53/F: homomorphisms
e : I — Spin(4) = SU(2) x SU(2) lifting inclusion I — SO(4)
under double cover Spin(4) — SO(4), (A, B) — AB
@ Dirac spectrum for S3/T subset of spectrum of S3
e Multiplicities given by a generating function: p* and p~ two
half-spin irreducible reps, x* their characters

1 o (e(n) = zxt(e(r)
Fi(z) = m 726; det(

1—2zv)

1 X)) — 2x(e(v)
F(z) = m % det(1 — zv)

Then F(z) and F_(z) generating functions of spectral
multiplicities

Fi(z)=> m(g +kD)Z* F(z2)=)_ m(—(g + k), D)z*
k=0 k=0
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The dodecahedral space Poincaré homology sphere S3/T
binary icosahedral group 120 elements
using generating function method (Bar):

16(710647 + 317811/5)G*(z)
(7 4+ 31/5)3(2207 4 987/5)H*(2)

Fi(z) = -

G (z) = 621 +18213 424215112717 2719 621 0,231 0,254 427 13,29 ;81
Ht(z) = -1 —322 4% 27542781 671040224 9,144 47164718 920
—9722 — 62%* — 222 4 277 4 4730 £ 3732 4 A

~ 1024(5374978561 + 24037634881/5) G~ (2)

F_(z) = (7 4 3v/5)8(2207 + 987+/5)H—(2)

G~ (2) = 14322 +42*422° 22 6210222+ 12714424710 11828 + 62%°
H™(z) = —1-32°—4z*—22°4+ 228+ 620+ 9212+ 921 + 4210 — 478 —9z%°

—97% — 622 —22%0 1277 1 4730 1 373 4 73
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Polynomial interpolation of multiplicities: 60 polynomials P;(u)

/ZP f(u/N)du + O(N5)

by Poisson summation = 1/120 of action for S3
Same slow-roll parameters
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But ... different amplitudes of power spectra:
multiplicative factor of potential V/(¢)

08
06
04r

021

V3
Ps(k) ~ vy’ Pe(k) ~ V
V= AV = Ps(ko) — A\Ps(ko), Pi(ko) — A\Pt(ko)
= distinguish different spherical topologies
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Topological factors (spherical cases):

Theorem (K.Teh): spherical forms Y = S3/T, up to O(A=>):

TH(F(Dy /) = 7 (/\3?<2>(0) - 1/\?(0)) = L Tx(f(Dg/N))

#I
Y spherical Ay
sphere 1
lens N 1/N

binary dihedral 4N | 1/(4N)
binary tetrahedral 1/24
binary octahedral 1/48
binary icosahedral | 1/120

Note: Ay does not distinguish all of them

o Kevin Teh, Nonperturbative Spectral Action of Round Coset
Spaces of SU(2), arXiv:1010.1827.
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The flat tori: Dirac spectrum (Bar)

+ 27 H (m? n, p)+(m01n0>p0) ||7 (]-)

(m, n, p) € Z3 multiplicity 1 and constant vector (mo, no, po)
depending on spin structure

T(F(DIN)) = S 2f (4” ((m + mo) +(7\2+ m0)® + (p + po) ))

(m.n.p)Ez?

Poisson summation

> g(m,n,p) =" &(m,n,p)
73 73

g(m,n,p)= / g(u,v, W)e_27ri(m”+”v+pw)dudvdw
R3

g(m,n,p)=f<

Am2((m+ mo)? + (n+ n)? + (p + p0)2)>
N2
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Spectral action for the flat tori

Tr(f(D3/A?)) = 4/:3/ f(u? + v? 4+ w?)du dv dw + O(AF)

_ T3 1.
X=T ><56.

/\4B£3

(D% /N)) = Z [ ub(u)da-+ O(A)

47 . .
(mm%;)ez‘tz h <(A€)2 ((m + mO) + (n + no) + (P+ P0)2) + W(r " 2)2)

2 ) y2
uviwy) =20 (G @2 42wt 4 )

1 —~
Z g(m+m07n+n05p+p0,r+§): Z (—l)rg(m,n,p,r)
(m,n,p,r)€Z* (m,n,p,r)€Z*
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Different slow-roll potential and parameters Introducing the
perturbation D? — D? + ¢

V(4% /A?)

Tr(h((Dx + ¢*)/A\%)) = Tr(h(Dx /%)) + /\4:;@3

slow-roll potential
N33
V() = =, —V(®*/N\?)
V0 = [ ulh(u+x) - ha) do
0
Slow-roll parameters (different from spherical cases)

B mP, < foo h(u)du )2
- 167 Jo T u(h(u + x) — h(u))du

_ Mh h(x)
87 \ [y~ u(h(u+ x) — h(u))du




Bieberbach manifolds
Quotients of T3 by group actions: G2, G3, G4, G5, G6
spin structures

01 | 2| &3
@ [£1| 1] 1
(b) [£1 | 1] 1
(O [£1] 1] -1
(d) [ £1 ] -1 -1

G2(a), G2(b), G2(c), G2(d), etc.

Dirac spectra known (Pfaffle)

Note: spectra often different for different spin structures
... but spectral action same!
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Bieberbach cosmic topologies (t; = translations by a;)

e G2 = half turn space

lattice a1 = (0,0, H), a» = (L,0,0), and a3 = (T, S,0), with
H,L,ScR} and T € R

a? = t1, atzoz_l = tz_l, at3a_1 =tz

1
e G3 = third turn space
lattice a; = (0,0, H), a = (L,0,0) and a3 = (—1L,%2L,0), for H
and L in RY

P =t, abal=t;, atgal=t1t!
e G4 = quarter turn space
lattice a; = (0,0, H), a2 = (L,0,0), and a3 = (0, L, 0), with
H,L>0

4 1

o = t, atgofl =1t3, atza = = t2_1
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e G5 = sixth turn space
lattice a3 = (0,0, H), a2 = (L,0,0) and a3z = (%L, ?L, 0),

H,L>0
®=1t, abal=t;, atal=t't3

e G6 = Hantzsche-Wendt space (7-twist along each coordinate

axis)

lattice a; = (0,0, H), a2 = (L, 0,0), and a3 = (0, S, 0), with

H,L,S>0
a’ = t1, atya ™l = t2_1, atza~ ! = t;l,
BP=t, fuf =1t pupl=t,
V=1, vy =0t gyt =t

YBa = tits.
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Lattice summation technique for Bieberbach manifolds:
Example G3 case: )\f,m symmetries R : [ — —/,m+— —m,
S:l>mm—I[T:I=>l—mm——m

73 =1UR(NUS(HURS(HU T URT()U{l =m}

{(k,,m)€Z3:1>1,m=0,...,/ -1} and
{

| =
T={(k,,m)eZ3:1>2m=1,...,1—1}
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Topological factors (flat cases):
Theorem [MPT2]: Bieberbach manifolds spectral action

3
Tr(f(D%/N?)) = AvA / f(u? + v? + w?)dudvdw
R3

473

up to oder O(A~*°) with factors

HSL
(5 G2
HL2
a3 @3
Ay = HL?
HLS
LS G6

Note lattice summation technique not immediately suitable for G5,
but expect like G3 up to factor of 2
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Topological factors and inflation slow-roll potential

= Multiplicative factor in amplitude of power spectra
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Adding the coupling to matter Y x F

Not only product but nontrivial fibration

Vector bundle V over 3-manifold Y, fiber H g (fermion content)
Dirac operator Dy twisted with connection on V (bosons)

Spectra of twisted Dirac operators on spherical manifolds
(Cisneros—Molina)

Similar computation with Poisson summation formula [CMT]

Te(f(D§ /%)) =

#'Evr </\3f< )(0) — i/\?(O))

up to order O(A=>°)
representation V' dimension N; spherical form Y = S3/T
= topological factor Ay — Ny
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Conclusion (for now)

A modified gravity model based on the spectral action can
distinguish between the different cosmic topology in terms of the
slow-roll parameters (distinguish spherical and flat cases) and the
amplitudes of the power spectral (distinguish different spherical
space forms and different Bieberbach manifolds).

Different inflation scenarios in different topologies
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