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This lecture based on

Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The spectral
action and cosmic topology, Commun.Math.Phys.304 (2011)
125–174, arXiv:1005.2256

Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The coupling of
topology and inflation in noncommutative cosmology,
arXiv:1012.0780

Branimir Ćaćić, Matilde Marcolli, Kevin Teh, Coupling of
gravity to matter, spectral action and cosmic topology,
arXiv:1106.5473
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The question of Cosmic Topology:

Nontrivial (non-simply-connected) spatial sections of spacetime,
homogeneous spherical or flat spaces: how can this be detected
from cosmological observations?
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Our approach:

NCG provides a modified gravity model through the spectral
action

The nonperturbative form of the spectral action determines a
slow-roll inflation potential

The underlying geometry (spherical/flat) affects the shape of
the potential

Different inflation scenarios depending on geometry and
topology of the cosmos

Shape of the inflation potential readable from cosmological
data (CMB)
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Cosmic Microwave Background best source of cosmological data
on which to test theoretical models (modified gravity models,
cosmic topology hypothesis, particle physics models)

COBE satellite (1989)

WMAP satellite (2001)

Planck satellite (2009): new data available now!
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Cosmic topology and the CMB

Einstein equations determine geometry not topology (don’t
distinguish S3 from S3/Γ with round metric)

Cosmological data (BOOMERanG experiment 1998, WMAP
data 2003): spatial geometry of the universe is flat or slightly
positively curved

Homogeneous and isotropic compact case: spherical space
forms S3/Γ or Bieberbach manifolds T 3/Γ

Is cosmic topology detected by the Cosmic Microwave Background
(CMB)? Search for signatures of multiconnected topologies
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CMB sky and spherical harmonics temperature fluctuations

∆T

T
=
∞∑
`=0

∑̀
m=−`

a`mY`m

Y`m spherical harmonics

Methods to address cosmic topology problem

Statistical search for matching circles in the CMB sky:
identify a nontrivial fundamental domain

Anomalies of the CMB: quadrupole suppression, the small
value of the two- point temperature correlation function at
angles above 60 degrees, and the anomalous alignment of the
quadrupole and octupole

Residual gravity acceleration: gravitational effects from other
fundamental domains

Bayesian analysis of different models of CMB sky for different
candidate topologies

Results: no conclusive evidence of a non-simply connected topology
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Simulated CMB sky: Laplace spectrum on spherical space forms

4 S. Caillerie et al.: A new analysis of the Poincaré dodecahedral space model

out-diameter of the fundamental domain may well be different
from the theoretical k1 expectation, since these scales represent
the physical size of the whole universe, and the observational
arguments for a k1 spectrum at these scales are only valid by
assuming simple connectedness. This can be considered as a
caveat for the interpretation of the following results.

Such a distribution of matter fluctuations generates a temper-
ature distribution on the CMB that results from different physical
effects. If we subtract foreground contamination, it will mainly
be generated by the ordinary Sachs-Wolfe (OSW) effect at large
scales, resulting from the the energy exchanges between the
CMB photons and the time-varying gravitational fields on the
last scattering surface (LSS). At smaller scales, Doppler oscilla-
tions, which arise from the acoustic motion of the baryon-photon
fluid, are also important, as well as the OSW effect. The ISW ef-
fect, important at larger scales, has the same physical origin as
the OSW effect but is integrated along the line of sight rather
than on the LSS. This is summarized in the Sachs-Wolfe for-
mula, which gives the temperature fluctuations in a given direc-
tion n̂ as

δT

T
(n̂) =

(
1

4

δρ

ρ
+ Φ

)
(ηLSS) − n̂.ve(ηLSS) +

∫ η0
ηLSS

(Φ̇ + Ψ̇) dη (22)

where the quantities Φ and Ψ are the usual Bardeen potentials,
and ve is the velocity within the electron fluid; overdots denote
time derivatives. The first terms represent the Sachs-Wolfe and
Doppler contributions, evaluated at the LSS. The last term is
the ISW effect. This formula is independent of the spatial topol-
ogy, and is valid in the limit of an infinitely thin LSS, neglecting
reionization.

The temperature distribution is calculated with a CMBFast–
like software developed by one of us1, under the form of temper-
ature fluctuation maps at the LSS. One such realization is shown
in Fig. 1, where the modes up to k = 230 give an angular res-
olution of about 6◦ (i.e. roughly comparable to the resolution
of COBE map), thus without as fine details as in WMAP data.
However, this suffices for a study of topological effects, which
are dominant at larger scales.

Such maps are the starting point for topological analysis:
firstly, for noise analysis in the search for matched circle pairs,
as described in Sect. 3.2; secondly, through their decompositions
into spherical harmonics, which predict the power spectrum, as
described in Sect. 4. In these two ways, the maps allow direct
comparison between observational data and theory.

3.2. Circles in the sky

A multi-connected space can be seen as a cell (called the fun-
damental domain), copies of which tile the universal cover. If
the radius of the LSS is greater than the typical radius of the
cell, the LSS wraps all the way around the universe and inter-
sects itself along circles. Each circle of self-intersection appears
to the observer as two different circles on different parts of the
sky, but with the same OSW components in their temperature
fluctuations, because the two different circles on the sky are re-
ally the same circle in space. If the LSS is not too much bigger
than the fundamental cell, each circle pair lies in the planes of
two matching faces of the fundamental cell. Figure 2 shows the
intersection of the various translates of the LSS in the universal
cover, as seen by an observer sitting inside one of them.

1 A. Riazuelo developed the program CMBSlow to take into account
numerous fine effects, in particular topological ones.

Fig. 1. Temperature map for a Poincaré dodecahedral space with
Ωtot = 1.02, Ωmat = 0.27 and h = 0.70 (using modes up to
k = 230 for a resolution of 6◦).

Fig. 2. The last scattering surface seen from outside in the uni-
versal covering space of the Poincaré dodecahedral space with
Ωtot = 1.02, Ωmat = 0.27 and h = 0.70 (using modes up to
k = 230 for a resolution of 6◦). Since the volume of the physical
space is about 80% of the volume of the last scattering surface,
the latter intersects itself along six pairs of matching circles.

These circles are generated by a pure Sachs-Wolfe effect; in
reality additional contributions to the CMB temperature fluctua-
tions (Doppler and ISW effects) blur the topological signal. Two

(Luminet, Lehoucq, Riazuelo, Weeks, et al.)

Best spherical candidate: Poincaré homology 3-sphere
(dodecahedral cosmology)
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Simulated CMB sky for a flat Bieberbach G6-cosmology

(from Riazuelo, Weeks, Uzan, Lehoucq, Luminet, 2003)
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Slow-roll models of inflation in the early universe
Minkowskian Friedmann metric on Y × R

ds2 = −dt2 + a(t)2ds2
Y

accelerated expansion ä
a = H2(1− ε) Hubble parameter

H2(φ)

(
1− 1

3
ε(φ)

)
=

8π

3m2
Pl

V (φ)

mPl Planck mass, inflation phase ε(φ) < 1

A potential V (φ) for a scalar field φ that runs the inflation
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Slow roll parameters

ε(φ) =
m2

Pl

16π

(
V ′(φ)

V (φ)

)2

η(φ) =
m2

Pl

8π

V ′′(φ)

V (φ)

ξ(φ) =
m4

Pl

64π2

V ′(φ)V ′′′(φ)

V 2(φ)

⇒ measurable quantities

ns ' 1− 6ε+ 2η, nt ' −2ε, r = 16ε,

αs ' 16εη − 24ε2 − 2ξ, αt ' 4εη − 8ε2

spectral index ns , tensor-to-scalar ratio r , etc.
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Slow roll parameters and the CMB
Friedmann metric (expanding universe)

ds2 = −dt2 + a(t)2ds2
Y

Separate tensor and scalar perturbation hij of metric (traceless and
trace part) ⇒ Fourier modes: power spectra for scalar and tensor
fluctuations, Ps(k) and Pt(k) satisfy power law

Ps(k) ∼ Ps(k0)

(
k

k0

)1−ns+αs
2

log(k/k0)

Pt(k) ∼ Pt(k0)

(
k

k0

)nt+
αt
2

log(k/k0)

Amplitudes and exponents: constrained by observational
parameters and predicted by models of slow roll inflation
(slow roll potential)
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Poisson summation formula: h ∈ S(R) rapidly decaying function∑
k∈Z

h(x + 2πk) =
1

2π

∑
n∈Z

ĥ(n)e inx

function f (x) =
∑

k∈Z h(x + 2πk) is 2π-periodic with Fourier
coefficients

f̂n =
1

2π

∫ 2π

0
f (x)e−inxdx =

1

2π

∑
k∈Z

∫ 2π

0
h(x + 2πk)e−inxdx

=
1

2π

∑
k∈Z

∫ 2π(k+1)

2πk
g(x)e−inxdx =

1

2π

∫
R

h(x)e−inxdx =
1

2π
ĥ(n)
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Spectral action and Poisson summation formula∑
n∈Z

h(x + λn) =
1

λ

∑
n∈Z

exp

(
2πinx

λ

)
ĥ(

n

λ
)

λ ∈ R∗+ and x ∈ R with

ĥ(x) =

∫
R

h(u) e−2πiux du

Idea: write Tr(f (D/Λ)) as sums over lattices
- Need explicit spectrum of D with multiplicities
- Need to write as a union of arithmetic progressions λn,i , n ∈ Z
- Multiplicities polynomial functions mλn,i = Pi (λn,i )

Tr(f (D/Λ)) =
∑
i

∑
n∈Z

Pi (λn,i )f (λn,i/Λ)
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The standard topology S3 Dirac spectrum ±a−1( 1
2 + n) for n ∈ Z,

with multiplicity n(n + 1)

Tr(f (D/Λ)) = (Λa)3f̂ (2)(0)− 1

4
(Λa)f̂ (0) + O((Λa)−k)

with f̂ (2) Fourier transform of v 2f (v) 4-dimensional Euclidean S3× S1

Tr(h(D2/Λ2)) = πΛ4a3β

∫ ∞
0

u h(u) du−1

2
πΛaβ

∫ ∞
0

h(u) du+O(Λ−k)

g(u, v) = 2P(u) h(u2(Λa)−2 + v 2(Λβ)−2)

ĝ(n,m) =

∫
R2

g(u, v)e−2πi(xu+yv) du dv

Spectral action in this case computed in

Ali Chamseddine, Alain Connes, The uncanny precision of the
spectral action, arXiv:0812.0165
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A slow roll potential: perturbation D2 7→ D2 + φ2 gives potential
V (φ) scalar field coupled to gravity

Tr(h((D2+φ2)/Λ2))) = πΛ4βa3

∫ ∞
0

uh(u)du−π
2

Λ2βa

∫ ∞
0

h(u)du

+πΛ4βa3 V(φ2/Λ2) +
1

2
Λ2βaW(φ2/Λ2)

V(x) =

∫ ∞
0

u(h(u + x)− h(u))du, W(x) =

∫ x

0
h(u)du

Parameters: a = radius of 3-sphere, β = auxiliary inverse
temperature parameter (choice of Euclidean S1-compactification),
Λ = energy scale
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Slow-roll parameters from spectral action: case S = S3

ε(x) =
m2

Pl

16π

(
h(x)− 2π(Λa)2

∫∞
x h(u)du∫ x

0 h(u)du + 2π(Λa)2
∫∞

0 u(h(u + x)− h(u))du

)2

η(x) =
m2

Pl

8π

h′(x) + 2π(Λa)2h(x)∫ x
0 h(u)du + 2π(Λa)2

∫∞
0 u(h(u + x)− h(u))du

In Minkowskian Friedmann metric Λ(t) ∼ 1/a(t)

Also independent of β (artificial Euclidean compactification)

Slow-roll potential, cases of spherical and flat topologies:

Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The spectral
action and cosmic topology, arXiv:1005.2256

Matilde Marcolli, Elena Pierpaoli, Kevin Teh, The coupling of
topology and inflation in noncommutative cosmology,
arXiv:1012.0780
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The quaternionic space SU(2)/Q8 (quaternion units ±1,±σk)

Dirac spectrum (Ginoux)

3

2
+ 4k with multiplicity 2(k + 1)(2k + 1)

3

2
+ 4k + 2 with multiplicity 4k(k + 1)

Polynomial interpolation of multiplicities

P1(u) =
1

4
u2 +

3

4
u +

5

16

P2(u) =
1

4
u2 − 3

4
u − 7

16
Spectral action

Tr(f (D/Λ)) =
1

8
(Λa)3f̂ (2)(0)− 1

32
(Λa)f̂ (0) + O(Λ−k)

(1/8 of action for S3) with gi (u) = Pi (u)f (u/Λ):

Tr(f (D/Λ)) =
1

4
(ĝ1(0) + ĝ2(0)) + O(Λ−k)

from Poisson summation ⇒ Same slow-roll parameters
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Other spherical space forms: method of generating functions to
compute multiplicities (C. Bär)

Spin structures on S3/Γ: homomorphisms
ε : Γ→ Spin(4) ∼= SU(2)× SU(2) lifting inclusion Γ ↪→ SO(4)
under double cover Spin(4)→ SO(4), (A,B) 7→ AB
Dirac spectrum for S3/Γ subset of spectrum of S3

Multiplicities given by a generating function: ρ+ and ρ− two
half-spin irreducible reps, χ± their characters

F+(z) =
1

|Γ|
∑
γ∈Γ

χ−(ε(γ))− zχ+(ε(γ))

det(1− zγ)

F−(z) =
1

|Γ|
∑
γ∈Γ

χ+(ε(γ))− zχ−(ε(γ))

det(1− zγ)

Then F+(z) and F−(z) generating functions of spectral
multiplicities

F+(z) =
∞∑
k=0

m(
3

2
+ k ,D)zk F−(z) =

∞∑
k=0

m(−(
3

2
+ k),D)zk
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The dodecahedral space Poincaré homology sphere S3/Γ
binary icosahedral group 120 elements
using generating function method (Bär):

F+(z) = − 16(710647 + 317811
√

5)G +(z)

(7 + 3
√

5)3(2207 + 987
√

5)H+(z)

G +(z) = 6z11+18z13+24z15+12z17−2z19−6z21−2z23+2z25+4z27+3z29+z31

H+(z) = −1−3z2−4z4−2z6+2z8+6z10+9z12+9z14+4z16−4z18−9z20

−9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34

F−(z) = −1024(5374978561 + 2403763488
√

5)G−(z)

(7 + 3
√

5)8(2207 + 987
√

5)H−(z)

G−(z) = 1+3z2+4z4+2z6−2z8−6z10−2z12+12z14+24z16+18z18+6z20

H−(z) = −1−3z2−4z4−2z6+2z8+6z10+9z12+9z14+4z16−4z18−9z20

−9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34
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Polynomial interpolation of multiplicities: 60 polynomials Pi (u)

59∑
j=0

Pj(u) =
1

2
u2 − 1

8

Spectral action: functions gj(u) = Pj(u)f (u/Λ)

Tr(f (D/Λ)) =
1

60

59∑
j=0

ĝj(0) + O(Λ−k)

=
1

60

∫
R

∑
j

Pj(u)f (u/Λ)du + O(Λ−k)

by Poisson summation ⇒ 1/120 of action for S3

Same slow-roll parameters
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But ... different amplitudes of power spectra:
multiplicative factor of potential V (φ)

Ps(k) ∼ V 3

(V ′)2
, Pt(k) ∼ V

V 7→ λV ⇒ Ps(k0) 7→ λPs(k0), Pt(k0) 7→ λPt(k0)

⇒ distinguish different spherical topologies

Matilde Marcolli NCG models for particles and cosmology, IV



Topological factors (spherical cases):

Theorem (K.Teh): spherical forms Y = S3/Γ, up to O(Λ−∞):

Tr(f (DY /Λ)) =
1

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂ (0)

)
=

1

#Γ
Tr(f (DS3/Λ))

Y spherical λY
sphere 1

lens N 1/N

binary dihedral 4N 1/(4N)

binary tetrahedral 1/24

binary octahedral 1/48

binary icosahedral 1/120

Note: λY does not distinguish all of them

Kevin Teh, Nonperturbative Spectral Action of Round Coset
Spaces of SU(2), arXiv:1010.1827.
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The flat tori: Dirac spectrum (Bär)

± 2π ‖ (m, n, p) + (m0, n0, p0) ‖, (1)

(m, n, p) ∈ Z3 multiplicity 1 and constant vector (m0, n0, p0)
depending on spin structure

Tr(f (D2
3/Λ2)) =

∑
(m,n,p)∈Z3

2f

(
4π2((m + m0)2 + (n + n0)2 + (p + p0)2)

Λ2

)

Poisson summation∑
Z3

g(m, n, p) =
∑
Z3

ĝ(m, n, p)

ĝ(m, n, p) =

∫
R3

g(u, v ,w)e−2πi(mu+nv+pw)dudvdw

g(m, n, p) = f

(
4π2((m + m0)2 + (n + n0)2 + (p + p0)2)

Λ2

)
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Spectral action for the flat tori

Tr(f (D2
3/Λ2)) =

Λ3

4π3

∫
R3

f (u2 + v 2 + w 2)du dv dw + O(Λ−k)

X = T 3 × S1
β :

Tr(h(D2
X/Λ2)) =

Λ4β`3

4π

∫ ∞
0

uh(u)du + O(Λ−k)

using∑
(m,n,p,r)∈Z4

2 h

(
4π2

(Λ`)2
((m + m0)2 + (n + n0)2 + (p + p0)2) +

1

(Λβ)2
(r +

1

2
)2

)

g(u, v ,w , y) = 2 h

(
4π2

Λ2
(u2 + v 2 + w 2) +

y 2

(Λβ)2

)
∑

(m,n,p,r)∈Z4

g(m +m0, n +n0, p +p0, r +
1

2
) =

∑
(m,n,p,r)∈Z4

(−1)r ĝ(m, n, p, r)
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Different slow-roll potential and parameters Introducing the
perturbation D2 7→ D2 + φ2:

Tr(h((D2
X + φ2)/Λ2)) = Tr(h(D2

X/Λ2)) +
Λ4β`3

4π
V(φ2/Λ2)

slow-roll potential

V (φ) =
Λ4β`3

4π
V(φ2/Λ2)

V(x) =

∫ ∞
0

u (h(u + x)− h(u)) du

Slow-roll parameters (different from spherical cases)

ε =
m2

Pl

16π

( ∫∞
x

h(u)du∫∞
0

u(h(u + x)− h(u))du

)2

η =
m2

Pl

8π

(
h(x)∫∞

0
u(h(u + x)− h(u))du

)
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Bieberbach manifolds
Quotients of T 3 by group actions: G 2, G 3, G 4, G 5, G 6
spin structures

δ1 δ2 δ3

(a) ±1 1 1

(b) ±1 −1 1

(c) ±1 1 −1

(d) ±1 −1 −1

G 2(a), G 2(b), G 2(c), G 2(d), etc.
Dirac spectra known (Pfäffle)
Note: spectra often different for different spin structures
... but spectral action same!

Matilde Marcolli NCG models for particles and cosmology, IV



Bieberbach cosmic topologies (ti = translations by ai )
• G 2 = half turn space
lattice a1 = (0, 0,H), a2 = (L, 0, 0), and a3 = (T ,S , 0), with
H, L, S ∈ R∗+ and T ∈ R

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3

• G 3 = third turn space

lattice a1 = (0, 0,H), a2 = (L, 0, 0) and a3 = (−1
2 L,

√
3

2 L, 0), for H
and L in R∗+

α3 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t−1

3

• G 4 = quarter turn space
lattice a1 = (0, 0,H), a2 = (L, 0, 0), and a3 = (0, L, 0), with
H, L > 0

α4 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2
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• G 5 = sixth turn space

lattice a1 = (0, 0,H), a2 = (L, 0, 0) and a3 = ( 1
2 L,

√
3

2 L, 0),
H, L > 0

α6 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t3

• G 6 = Hantzsche–Wendt space (π-twist along each coordinate
axis)
lattice a1 = (0, 0,H), a2 = (L, 0, 0), and a3 = (0,S , 0), with
H, L, S > 0

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3 ,

β2 = t2, βt1β
−1 = t−1

1 , βt3β
−1 = t−1

3 ,

γ2 = t3, γt1γ
−1 = t−1

1 , γt2γ
−1 = t−1

2 ,
γβα = t1t3.
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Lattice summation technique for Bieberbach manifolds:
Example G 3 case: λ±klm symmetries R : l 7→ −l ,m 7→ −m,
S : l 7→ m,m 7→ l , T : l 7→ l −m,m 7→ −m

Z3 = I ∪ R(I ) ∪ S(I ) ∪ RS(I ) ∪ T (Ĩ ) ∪ RT (Ĩ ) ∪ {l = m}
I = {(k , l ,m) ∈ Z3 : l ≥ 1,m = 0, . . . , l − 1} and
Ĩ = {(k , l ,m) ∈ Z3 : l ≥ 2,m = 1, . . . , l − 1}

l

m
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Topological factors (flat cases):
Theorem [MPT2]: Bieberbach manifolds spectral action

Tr(f (D2
Y /Λ2)) =

λY Λ3

4π3

∫
R3

f (u2 + v 2 + w 2)dudvdw

up to oder O(Λ−∞) with factors

λY =



HSL
2 G 2

HL2

2
√

3
G 3

HL2

4 G 4

HLS
4 G 6

Note lattice summation technique not immediately suitable for G 5,
but expect like G 3 up to factor of 2
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Topological factors and inflation slow-roll potential

⇒ Multiplicative factor in amplitude of power spectra
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Adding the coupling to matter Y × F
Not only product but nontrivial fibration
Vector bundle V over 3-manifold Y , fiber HF (fermion content)
Dirac operator DY twisted with connection on V (bosons)

Spectra of twisted Dirac operators on spherical manifolds
(Cisneros–Molina)

Similar computation with Poisson summation formula [CMT]

Tr(f (D2
Y /Λ2)) =

N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂ (0)

)
up to order O(Λ−∞)
representation V dimension N; spherical form Y = S3/Γ
⇒ topological factor λY 7→ NλY
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Conclusion (for now)

A modified gravity model based on the spectral action can
distinguish between the different cosmic topology in terms of the
slow-roll parameters (distinguish spherical and flat cases) and the
amplitudes of the power spectral (distinguish different spherical
space forms and different Bieberbach manifolds).
Different inflation scenarios in different topologies
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