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This lecture based on

@ Matilde Marcolli, Elena Pierpaoli, Early universe models from
Noncommutative Geometry, arXiv:0908.3683

@ Daniel Kolodrubetz, Matilde Marcolli, Boundary conditions of
the RGE flow in the noncommutative geometry approach to
particle physics and cosmology, Phys. Lett. B, Vol.693 (2010)
166—174, arXiv:1006.4000

Re-examine RGE flow; gravitational terms in the asymptotic form
of the spectral action; cosmological timeline; running in the very
early universe; inflation and other gravitational phenomena
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Asymptotic expansion of spectral action for large energies
S= ;I%/R\/Ed4x+70/\/§d4x
+ o / Cuvpo CHP7 /g d*x + T / R*R*\/g d*x
+ 5 [ IDHP VEdtx i [ IHE VE dx
— go/ R|H|2\/§d4x+>\o/|H|4\/§d4x

T / (G;iw Guyi + Fﬁu Fre + BAW BMV) \/§d4x

A modified gravity model with non minimal coupling to Higgs and
minimal coupling to gauge theories
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Coefficients and parameters:
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e fy, o, fa free parameters, fy = f(0) and, for k > 0,

fk:/ f(v)vk—Ldv.
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@ a,b,c,0,e functions of Yukawa parameters of vMSM
a= Tr(YJY, + YdYe +3(YiY, + YIV)))
b= Te((YY,)2 + (YdYe)? +3(YIVu)? +3(Y) Va)?)
c= Tr(MMT) o =Tr((MM)?)
e= Tr(MMY)Y,).



Two different perspectives on running: parameters a, b, ¢, 0, ¢ run
with RGE

@ The relation between coefficients kg, Y0, g, 70, to, &0, Ao
and parameters a, b, ¢, 0, ¢ hold only at A,,jr: constraint on
initial conditions; independent running

@ There is a range of energies Apin < A < Aypir where the
running of coefficients kg, 70, @, 70, to, &0, Ao determined

by running of a,b,¢,d, ¢ and relation continues to hold (very
early universe only)

The first perspective requires independent running of gravitational
parameters with given condition at unification; the second
perspective allows for interesting gravitational phenomena in the
very early universe specific to NCG model only
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The first approach followed in

@ Ali Chamseddine, Alain Connes, Matilde Marcolli, Gravity and
the Standard Model with neutrino mixing, ATMP 11 (2007)
991-1090, arXiv:hep-th/0610241

For modified gravity models
/ o G (107 = 2R 4 CROR) /g dx
2n M7 3 7
Running of gravitational parameters (Avramidi, Codello—Percacci,
Donoghue) by

1 133,
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With relations at unification get running like
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Plausible values in low energy limit (near fixed points)

Look then at second point of view: M.M.-E.Pierpaoli (2009)
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Renormalization group equations for SM with right handed
neutrinos and Majorana mass terms, from unification energy
(2 x 101® GeV) down to the electroweak scale (10?2 GeV)

AKLRS S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt
Running neutrino mass parameters in see-saw scenarios, JHEP
03 (2005) 024.

Remark: RGE analysis in [CCM] only done using minimal SM
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1-loop RGE equations: /\% = B¢(N)

. 19 41
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3
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Note: different normalization from [CCM] and 5/3 factor included in g2

1672 By = 6A% — 3\(3g7 +

Matilde Marcolli NCG models for particles and cosmology, Il



Method of AKLRS: non-degenerate spectrum of Majorana masses,
different effective field theories in between the three see-saw scales:

RGE from unification A,p;r down to first see-saw scale (largest
eigenvalue of M)

Introduce YIS3) removing last row of Y}, in basis where M
diagonal and M®) removing last row and column.

Induced RGE down to second see-saw scale
Introduce Y,,(2) and M), matching boundary conditions
Induced RGE down to first see-saw scale

Introduce Yy(l) and M), matching boundary conditions

Induced RGE down to electoweak energy Agy,

Use effective field theories Y,,(N) and M(N) between see-saw scales
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Running of coefficients a, b with RGE
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Coefficients a and b near the top see-saw scale
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Running of coefficient ¢ with RGE
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Effect of the three see-saw scales
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Effect of the three see-saw scales
With default boundary conditions at unification of AKLRS
...but sensitive dependence on the initial conditions = fine tuning
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Changing initial conditions: maximal mixing conditions at

unification
¢ = exp(2mi/3)
1 ¢ ¢
1

Upmins (Aunif) = 3 ¢ 1 ¢

2 ¢ 1
1 12.2 x 107° 0 0
811) = mpm 0 170 x 10 0

246 0 0 15.5 x 103

Y, = U.‘TDMNS d(11) Upmns

@ Daniel Kolodrubetz, Matilde Marcolli, Boundary conditions of
the RGE flow in the noncommutative geometry approach to
particle physics and cosmology, arXiv:1006.4000
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Effect on coefficients running
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Further evidence of sensitive dependence: changing only one
parameter in diagonal matrix Y}, get running of top term:
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Geometric constraints at unification energy

@ )\ parameter constraint

72 b(Aunif)

A /\un/
( f) 2ﬁJ cl(/\unir’)z

@ Higgs vacuum constraint

leb . 2MW

m g

@ See-saw mechanism and ¢ constraint

2HN?
2 <2 unif < (/\unif) <
fo

6f2/\unlf
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@ Mass relation at unification

Z (m2 + m2 +3m? +3m3)|a=n, . = 8M3Z|a=n

generations

unif unif
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Choice of initial conditions at unification:
o Compatibility with low energy values: experimental constraints
o Compatibility with geometric constraints at unification

It is possible to modify boundary conditions to achieve both

compatibilities

Example: using maximal mixing conditions but modify parameters
in the Majorana mass matrix and initial condition of Higgs
parameter to satisfy geometric constraints
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Cosmology timeline

@ Planck epoch: t < 107*3 s after the Big Bang (unification of
forces with gravity, quantum gravity)

@ Grand Unification epoch: 107 s < t < 10730 s (electroweak
and strong forces unified; Higgs)

@ Electroweak epoch: 10730 s<t<107125s (strong and
electroweak forces separated)
o Inflationary epoch: possibly 1073°s < t < 10735
- NCG SM preferred scale at unification; RGE running between
unification and electroweak = info on inflationary epoch.
- Remark: Cannot extrapolate to modern universe, nonperturbative
effects in the spectral action and phase transitions in the RGE flow
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Cosmological implications of the NCG SM

e Linde's hypothesis (antigravity in the early universe)
Primordial black holes and gravitational memory
Gravitational waves in modified gravity
Gravity balls
Varying effective cosmological constant

Higgs based slow-roll inflation

Spontaneously arising Hoyle-Narlikar in EH backgrounds
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Effective gravitational constant

/i% 3
Gef'f =5 —
8 192HA2 — 2foc(/\)

Effective cosmological constant

1
No = m(192f4/\4 — 46M2¢(A) + fO(A))
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Conformal non-minimal coupling of Higgs and gravity

1 1
R d4 = 2 4
o [ RvEds— 5 [ RIHPVgd'x

Conformal gravity

—3f vpo
Tors | G €

CHP7 = Weyl curvature tensor (trace free part of Riemann tensor)

1 1
C)\}U/,‘i = R/\;wn - E (g>\l/ R;m —8uv R)\n +g;m R)\u)"’ 6 (g/\ug;m _g)\ng;w)
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An example: Gegr(Aew) = G (at electroweak phase transition Gug is
already modern universe Newton constant)

1/v/G = 1.22086 x 10 GeV = f, = 7.31647 x 10%?

96,2
—-1 2
Gogr (M) ~ 2472

Term ¢/a lower order
Dominant terms in the spectral action:

/\2< /R\fd4x—/1(2)/|H|2\/§d4x>

Ro = Nko and fig = po/N, where /LO

2f2/\
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Detectable by gravitational waves:
Einstein equations R* — %gWR = m% T+

gu = a(t)? < _01 5ij +37ij(x) )

trace and traceless part of hjj = Friedmann equation

A2 (e -
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A(t) = 1/a(t) (£ large) Inflationary epoch: a(t) ~ et
NCG model solutions:
37T2 Too 2at 3

A 2
—t 7 2at B
1006a2¢ Tttt T

h(t) =
Ordinary cosmology:

4mGToo | 30y, A 2ae 4

( « 2) 2

Radiation dominated epoch: a(t) ~ t'/2
NCG model solutions:

47T2T00 3 3 2
=——t°+ B+ Al + = log(t
() = et + B+ Alog(t) + 5 log(1)
Ordinary cosmology:
3
h(t) = 2rGToot? + B 4 Alog(t) + g log(t)?
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Same example, special case:

22 fi2af
Rw%wl and H~/afy/w

™

Leaves conformally coupled matter and gravity
Se= ao/cwg C’“’""\/éd“x—&—%/ |DH|? \/g d*x
—§O/R|H|2\/§d4x+)\0/|H\4\/§d4x
+% / (G, G"' + FS, F*™ + By, B*) /g d*x.

A Hoyle-Narlikar type cosmology, normally suppressed by
dominant Einstein—Hilbert term, arises when R ~ 1 and H ~ v,
near see-saw scale.
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Cosmological term controlled by additional parameter f4, vanishing

condition:

(4HNc — f5d)

fn =
4 10204

Example: vanishing at unification yo(Aunir) = 0
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Running of «(A): possible inflationary mechanism

Matilde Marcolli
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The A\g-ansatz

7T2b(/\unif)

NolAchy = AP unif) ——gertnil).

0|/\—/\un/f ( f) an2(/\unif)

@ Run like A(A) but change boundary condition to Ag|a=p,,;

@ Run like 26(A)
mb(A
A(A) = AAN)—+—=
0( ) ( )f()a2(/\)

For most of our cosmological estimates no serious difference
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The running of Ag(A) near the top see-saw scale
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Tongue-in-cheek remark:
@ Higgs mass estimate in [CCM] from low energy limit of A
(running with RGE of minimal SM)
—2M

Higgs vacuum 2M /g ~ 246 GeV
e Estimate using the ansatz for Ag(A):

2M
vV 2)\0? < 158 GeV

Tevatron collaboration: projected window of exclusion for the
Higgs starts at 158 GeV
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Linde's hypothesis antigravity in the early universe

@ A.D. Linde, Gauge theories, time-dependence of the
gravitational constant and antigravity in the early universe,
Phys. Letters B, Vol.93 (1980) N.4, 394-396

Based on a conformal coupling

1 4 1 2 4
167TG/R\/§dX 12/R¢ ved'x

giving an effective
4
3™

In the NCG SM model two sources of negative gravity
@ Running of Gg(N)
@ Conformal coupling to the Higgs field

G =G =
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Example of effective Ge_ﬂl(/\, f) near the top see-saw scale

Example: fixing Geg(Aunir) = G gives a phase of negative gravity
with conformal gravity becoming dominant near sign change of
Get(N) 71 at ~ 10'2 GeV
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Gravity balls
Geft

G _ . en

T G| P

combines running of Gg with Linde mechanism

Suppose f such that Geg(A) >0
3

Ge 0 for |[H? > ———,

i <0 for IH"> M)
3

G for |H|? < —— .

ot >0 for [H|* < 47 G (M)

Unstable and stable equilibrium for H:

HA\? ¢(N)
(A fy) = 1B (py = 26 e _ (2BA%a(A) — foc(A))a(A)
HB 27700 A(A)jg )) 72 A(N)b(A)
a

(with A\g-ansatz)

Negative gravity regime where
3

hAR) > —— >
H(A £) > 27 G (N )
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An example of transition to negative gravity

2.0x10% 1
15x10%

1.0x10% -

5.0x10%°

E—IXT0% 2x104 3x104 4x104 5x10 etm“ 7x 10"

Gravity balls: regions where |H|? ~ 0 unstable equilibrium (positive
gravity) surrounded by region with |H|2 ~ £(A, f,) stable
(negative gravity): possible model of dark energy
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Primordial black holes (Zeldovich—-Novikov, 1967)

@ |.D. Novikov, A.G. Polnarev, A.A. Starobinsky,
Ya.B. Zeldovich, Primordial black holes, Astron. Astrophys.
80 (1979) 104-109

o J.D. Barrow, Gravitational memory? Phys. Rev. D Vol.46
(1992) N.8 R3227, 4pp.

Caused by: collapse of overdense regions, phase transitions in the
early universe, cosmic loops and strings, inflationary reheating, etc

Gravitational memory: if gravity balls with different Geg y
primordial black holes can evolve with different Geg p from
surrounding space
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Evaporation of PBHs by Hawking radiation

dM(t)
dt

~ —(Ger(t)M(t)) 2

with Hawking temperature T = (87 G (t)M(t))~L.
In terms of energy:

1
M? dM = ——5———dN
N2GZ (N, )

With or without gravitational memory depending on G.g behavior

Evaporation of PBHs linked to ~y-ray bursts

Matilde Marcolli NCG models for particles and cosmology, Il



Higgs based slow-roll inflation

dSHW A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation
in the Standard Model, hep-ph/0812.4946v2

Minimal SM and non-minimal coupling of Higgs and gravity.

& / RIHI2Ed*x

Non-conformal coupling & # 1/12, running of &
Effective Higgs potential: inflation parameter ¢ = \/Eoko| H|

101

'

06 /

041 /

0.2

2 . s s 10
inflationary period ¢ >> 1, end of inflation ¢ ~ 1, low energy
regime ¢ << 1



In the NCG SM have &, = 1/12 but same Higgs based slow-roll
inflation due to kg running (say xo > 0)

V(M) = VENro(M)H| = \/ s

Einstein metric g%, = f(H)gy., for f(H) = 1+ &oro| H|?
Higgs potential A
Ve(H) = %
(1 + orp|H[?)
For v >> 1 approaches constant; usual quartic potential for
P <<1
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Conclusion:

Various possible inflation scenarios in the very early universe from
running of coefficients of the spectral action according to the
relation to Yukawa parameters: phases and regions of negative
gravity, variable gravitational and cosmological constants, inflation
potential from nonmininal coupling of Higgs to gravity

Main problem: these effects depend on choice of initial conditions
at unification (sensitive dependence) and several of these scenarios
are ruled out when moving boundary conditions
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Next episode

@ The problem of cosmic topology
@ The Poisson summation formula

@ Nonperturbative computation of the spectral action on
3-dimensional space forms

@ Slow-roll inflation: potential, slow-roll coefficients, power
spectra

@ Slow-roll inflation from the nonperturbative spectral action
and cosmic topology
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