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This lecture based on

Matilde Marcolli, Elena Pierpaoli, Early universe models from
Noncommutative Geometry, arXiv:0908.3683

Daniel Kolodrubetz, Matilde Marcolli, Boundary conditions of
the RGE flow in the noncommutative geometry approach to
particle physics and cosmology, Phys. Lett. B, Vol.693 (2010)
166–174, arXiv:1006.4000

Re-examine RGE flow; gravitational terms in the asymptotic form
of the spectral action; cosmological timeline; running in the very
early universe; inflation and other gravitational phenomena
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Asymptotic expansion of spectral action for large energies

S =
1

2κ2
0

∫
R
√

g d4x + γ0

∫ √
g d4x

+ α0

∫
Cµνρσ Cµνρσ√g d4x + τ0

∫
R∗R∗

√
g d4x

+
1

2

∫
|DH|2√g d4x − µ2

0

∫
|H|2√g d4x

− ξ0

∫
R |H|2√g d4x + λ0

∫
|H|4√g d4x

+
1

4

∫
(G i

µν Gµνi + Fα
µν Fµνα + Bµν Bµν)

√
g d4x

A modified gravity model with non minimal coupling to Higgs and
minimal coupling to gauge theories
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Coefficients and parameters:

1
2κ2

0
=

96f2Λ2 − f0c

24π2
γ0 =

1

π2
(48f4Λ4 − f2Λ2c +

f0

4
d)

α0 = − 3f0

10π2
τ0 =

11f0

60π2

µ2
0 = 2

f2Λ2

f0
− e

a
ξ0 = 1

12 λ0 =
π2b

2f0a2

f0, f2, f4 free parameters, f0 = f (0) and, for k > 0,

fk =

∫ ∞
0

f (v)vk−1dv .

a, b, c, d, e functions of Yukawa parameters of νMSM

a = Tr(Y †νYν + Y †e Ye + 3(Y †u Yu + Y †d Yd))

b = Tr((Y †νYν)2 + (Y †e Ye)2 + 3(Y †u Yu)2 + 3(Y †d Yd)2)

c = Tr(MM†) d = Tr((MM†)2)

e = Tr(MM†Y †νYν).
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Two different perspectives on running: parameters a, b, c, d, e run
with RGE

The relation between coefficients κ0, γ0, α0, τ0, µ0, ξ0, λ0

and parameters a, b, c, d, e hold only at Λunif : constraint on
initial conditions; independent running

There is a range of energies Λmin ≤ Λ ≤ Λunif where the
running of coefficients κ0, γ0, α0, τ0, µ0, ξ0, λ0 determined
by running of a, b, c, d, e and relation continues to hold (very
early universe only)

The first perspective requires independent running of gravitational
parameters with given condition at unification; the second
perspective allows for interesting gravitational phenomena in the
very early universe specific to NCG model only
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The first approach followed in

Ali Chamseddine, Alain Connes, Matilde Marcolli, Gravity and
the Standard Model with neutrino mixing, ATMP 11 (2007)
991–1090, arXiv:hep-th/0610241

For modified gravity models∫ (
1

2η
CµνρσCµνρσ − ω

3η
R2 +

θ

η
R∗R∗

)
√

g d4x

Running of gravitational parameters (Avramidi, Codello–Percacci,
Donoghue) by

βη = − 1

(4π)2

133

10
η2

βω = − 1

(4π)2

25 + 1098ω + 200ω2

60
η

βθ =
1

(4π)2

7(56− 171 θ)

90
η.
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With relations at unification get running like
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Plausible values in low energy limit (near fixed points)

Look then at second point of view: M.M.-E.Pierpaoli (2009)
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Renormalization group equations for SM with right handed
neutrinos and Majorana mass terms, from unification energy
(2× 1016 GeV) down to the electroweak scale (102 GeV)

AKLRS S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt
Running neutrino mass parameters in see-saw scenarios, JHEP
03 (2005) 024.

Remark: RGE analysis in [CCM] only done using minimal SM
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1-loop RGE equations: Λ df
dΛ = βf (Λ)

16π2 βgi = bi g 3
i with (bSU(3), bSU(2), bU(1)) = (−7,−19

6
,

41

10
)

16π2 βYu = Yu(
3

2
Y †u Yu −

3

2
Y †d Yd + a− 17

20
g 2

1 −
9

4
g 2

2 − 8g 2
3 )

16π2 βYd
= Yd(

3

2
Y †d Yd −

3

2
Y †u Yu + a− 1

4
g 2

1 −
9

4
g 2

2 − 8g 2
3 )

16π2 βYν
= Yν(

3

2
Y †ν Yν −

3

2
Y †e Ye + a− 9

20
g 2

1 −
9

4
g 2

2 )

16π2 βYe = Ye(
3

2
Y †e Ye −

3

2
Y †ν Yν + a− 9

4
g 2

1 −
9

4
g 2

2 )

16π2 βM = YνY †ν M + M(YνY †ν )T

16π2 βλ = 6λ2 − 3λ(3g 2
2 +

3

5
g 2

1 ) + 3g 4
2 +

3

2
(

3

5
g 2

1 + g 2
2 )2 + 4λa− 8b

Note: different normalization from [CCM] and 5/3 factor included in g 2
1
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Method of AKLRS: non-degenerate spectrum of Majorana masses,
different effective field theories in between the three see-saw scales:

RGE from unification Λunif down to first see-saw scale (largest
eigenvalue of M)

Introduce Y
(3)
ν removing last row of Yν in basis where M

diagonal and M(3) removing last row and column.

Induced RGE down to second see-saw scale

Introduce Y
(2)
ν and M(2), matching boundary conditions

Induced RGE down to first see-saw scale

Introduce Y
(1)
ν and M(1), matching boundary conditions

Induced RGE down to electoweak energy Λew

Use effective field theories Y
(N)
ν and M(N) between see-saw scales
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Running of coefficients a, b with RGE

2 ´ 1014 4 ´ 1014 6 ´ 1014 8 ´ 1014 1 ´ 1015

1.88

1.89

1.90

2 ´ 1014 4 ´ 1014 6 ´ 1014 8 ´ 1014 1 ´ 1015

1.04

1.05

1.06

1.07

Coefficients a and b near the top see-saw scale
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Running of coefficient c with RGE

2 ´ 1014 4 ´ 1014 6 ´ 1014 8 ´ 1014 1 ´ 1015

3.47 ´ 1029

3.48 ´ 1029

3.49 ´ 1029

1.05 ´ 10141.10 ´ 10141.15 ´ 10141.20 ´ 10141.25 ´ 10141.30 ´ 1014

3.45386 ´ 1029

3.45388 ´ 1029

3.45390 ´ 1029

3.45392 ´ 1029

4.1 ´ 1012 4.2 ´ 1012 4.3 ´ 1012 4.4 ´ 1012 4.5 ´ 1012

3.45383 ´ 1029

3.45383 ´ 1029

3.45383 ´ 1029

Running of coefficient d with RGE

1 ´ 1014 2 ´ 1014 3 ´ 1014 4 ´ 1014 5 ´ 1014

1.10558 ´ 1059

1.10559 ´ 1059

1.10560 ´ 1059

1.10560 ´ 1059

1.10560 ´ 1059

1.05 ´ 10141.10 ´ 10141.15 ´ 10141.20 ´ 10141.25 ´ 10141.30 ´ 1014

1.10558 ´ 1059

1.10558 ´ 1059

1.10558 ´ 1059

1.10558 ´ 1059

3.5 ´ 1012 4.0 ´ 1012 4.5 ´ 1012 5.0 ´ 1012

1.10558 ´ 1059

1.10558 ´ 1059

1.10558 ´ 1059

1.10558 ´ 1059

1.10558 ´ 1059

Effect of the three see-saw scales
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Running of coefficient e with RGE

2 ´ 1014 4 ´ 1014 6 ´ 1014 8 ´ 1014 1 ´ 1015

5.0 ´ 1028

1.0 ´ 1029

1.5 ´ 1029

2.0 ´ 1029

2.5 ´ 1029

3.0 ´ 1029

5.0 ´ 1013 1.0 ´ 1014 1.5 ´ 1014 2.0 ´ 1014

6.190 ´ 1027

6.195 ´ 1027

6.200 ´ 1027

6.205 ´ 1027

6.210 ´ 1027

6.215 ´ 1027

2 ´ 1012 4 ´ 1012 6 ´ 1012 8 ´ 1012 1 ´ 1013

6.1860 ´ 1027

6.1865 ´ 1027

Effect of the three see-saw scales
With default boundary conditions at unification of AKLRS
...but sensitive dependence on the initial conditions ⇒ fine tuning
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Changing initial conditions: maximal mixing conditions at
unification

ζ = exp(2πi/3)

UPMNS(Λunif ) =
1

3

 1 ζ ζ2

ζ 1 ζ
ζ2 ζ 1


δ(↑1) =

1

246

 12.2× 10−9 0 0
0 170× 10−6 0
0 0 15.5× 10−3


Yν = U†PMNSδ(↑1)UPMNS

Daniel Kolodrubetz, Matilde Marcolli, Boundary conditions of
the RGE flow in the noncommutative geometry approach to
particle physics and cosmology, arXiv:1006.4000
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Effect on coefficients running
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Further evidence of sensitive dependence: changing only one
parameter in diagonal matrix Yν get running of top term:
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Geometric constraints at unification energy

λ parameter constraint

λ(Λunif ) =
π2

2f0

b(Λunif )

a(Λunif )2

Higgs vacuum constraint

√
af0

π
=

2MW

g

See-saw mechanism and c constraint

2f2Λ2
unif

f0
≤ c(Λunif ) ≤

6f2Λ2
unif

f0

Mass relation at unification∑
generations

(m2
ν + m2

e + 3m2
u + 3m2

d)|Λ=Λunif
= 8M2

W |Λ=Λunif
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Choice of initial conditions at unification:

Compatibility with low energy values: experimental constraints

Compatibility with geometric constraints at unification

It is possible to modify boundary conditions to achieve both
compatibilities

Example: using maximal mixing conditions but modify parameters
in the Majorana mass matrix and initial condition of Higgs
parameter to satisfy geometric constraints
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Cosmology timeline

Planck epoch: t ≤ 10−43 s after the Big Bang (unification of
forces with gravity, quantum gravity)

Grand Unification epoch: 10−43 s ≤ t ≤ 10−36 s (electroweak
and strong forces unified; Higgs)

Electroweak epoch: 10−36 s ≤ t ≤ 10−12 s (strong and
electroweak forces separated)

Inflationary epoch: possibly 10−36 s ≤ t ≤ 10−32 s

- NCG SM preferred scale at unification; RGE running between
unification and electroweak ⇒ info on inflationary epoch.
- Remark: Cannot extrapolate to modern universe, nonperturbative
effects in the spectral action and phase transitions in the RGE flow
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Cosmological implications of the NCG SM

Linde’s hypothesis (antigravity in the early universe)

Primordial black holes and gravitational memory

Gravitational waves in modified gravity

Gravity balls

Varying effective cosmological constant

Higgs based slow-roll inflation

Spontaneously arising Hoyle-Narlikar in EH backgrounds
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Effective gravitational constant

Geff =
κ2

0

8π
=

3π

192f2Λ2 − 2f0c(Λ)

Effective cosmological constant

γ0 =
1

4π2
(192f4Λ4 − 4f2Λ2c(Λ) + f0d(Λ))
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Conformal non-minimal coupling of Higgs and gravity

1

16πGeff

∫
R
√

gd4x − 1

12

∫
R |H|2√gd4x

Conformal gravity

−3f0

10π2

∫
CµνρσCµνρσ√gd4x

Cµνρσ = Weyl curvature tensor (trace free part of Riemann tensor)

Cλµνκ = Rλµνκ−
1

2
(gλνRµκ−gµνRλκ+gµκRλν)+

1

6
(gλνgµκ−gλκgµν)
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An example: Geff(Λew ) = G (at electroweak phase transition Geff is

already modern universe Newton constant)

1/
√

G = 1.22086× 1019 GeV ⇒ f2 = 7.31647× 1032

G−1
eff (Λ) ∼ 96f2Λ2

24π2

Term e/a lower order

Dominant terms in the spectral action:

Λ2

(
1

2κ̃2
0

∫
R
√

gd4x − µ̃2
0

∫
|H|2√gd4x

)
κ̃0 = Λκ0 and µ̃0 = µ0/Λ, where µ2

0 ∼
2f2Λ2

f0
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Detectable by gravitational waves:
Einstein equations Rµν − 1

2 gµνR = κ2
0Tµν

gµν = a(t)2

(
−1 0
0 δij + hij(x)

)
trace and traceless part of hij ⇒ Friedmann equation

−3

(
ȧ

a

)2

+
1

2

(
4

(
ȧ

a

)
ḣ + 2ḧ

)
=
κ̃2

0

Λ2
T00
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Λ(t) = 1/a(t) (f2 large) Inflationary epoch: a(t) ∼ eαt

NCG model solutions:

h(t) =
3π2T00

192f2α2
e2αt +

3α

2
t +

A

2α
e−2αt + B

Ordinary cosmology:

(
4πGT00

α
+

3α

2
)t +

A

2α
e−2αt + B

Radiation dominated epoch: a(t) ∼ t1/2

NCG model solutions:

h(t) =
4π2T00

288f2
t3 + B + A log(t) +

3

8
log(t)2

Ordinary cosmology:

h(t) = 2πGT00t2 + B + A log(t) +
3

8
log(t)2
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Same example, special case:

R ∼ 2κ̃2
0µ̃

2
0af0

π2
∼ 1 and H ∼

√
af0/π

Leaves conformally coupled matter and gravity

Sc = α0

∫
Cµνρσ Cµνρσ√g d4x +

1

2

∫
|DH|2√g d4x

−ξ0

∫
R |H|2√g d4x + λ0

∫
|H|4√g d4x

+
1

4

∫
(G i

µν Gµνi + Fα
µν Fµνα + Bµν Bµν)

√
g d4x .

A Hoyle-Narlikar type cosmology, normally suppressed by
dominant Einstein–Hilbert term, arises when R ∼ 1 and H ∼ v ,
near see-saw scale.
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Cosmological term controlled by additional parameter f4, vanishing
condition:

f4 =
(4f2Λ2c− f0d)

192Λ4

Example: vanishing at unification γ0(Λunif ) = 0

5.0 ´ 1015 1.0 ´ 1016 1.5 ´ 1016 2.0 ´ 1016

-2.5 ´ 1093

-2.0 ´ 1093

-1.5 ´ 1093

-1.0 ´ 1093

-5.0 ´ 1092

Running of γ0(Λ): possible inflationary mechanism
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The λ0-ansatz

λ0|Λ=Λunif
= λ(Λunif )

π2b(Λunif )

f0a2(Λunif )
,

Run like λ(Λ) but change boundary condition to λ0|Λ=Λunif

Run like

λ0(Λ) = λ(Λ)
π2b(Λ)

f0a2(Λ)

For most of our cosmological estimates no serious difference
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The running of λ0(Λ) near the top see-saw scale

2 ´ 1014 4 ´ 1014 6 ´ 1014 8 ´ 1014 1 ´ 1015

0.192

0.194

0.196

0.198

0.200

0.202

Matilde Marcolli NCG models for particles and cosmology, III



Tongue-in-cheek remark:

Higgs mass estimate in [CCM] from low energy limit of λ
(running with RGE of minimal SM)

√
2λ

2M

g
∼ 170GeV

Higgs vacuum 2M/g ∼ 246 GeV

Estimate using the ansatz for λ0(Λ):√
2λ0

2M

g
< 158GeV

Tevatron collaboration: projected window of exclusion for the
Higgs starts at 158 GeV
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Linde’s hypothesis antigravity in the early universe

A.D. Linde, Gauge theories, time-dependence of the
gravitational constant and antigravity in the early universe,
Phys. Letters B, Vol.93 (1980) N.4, 394–396

Based on a conformal coupling

1

16πG

∫
R
√

gd4x − 1

12

∫
R φ2√gd4x

giving an effective

G−1
eff = G−1 − 4

3
πφ2

In the NCG SM model two sources of negative gravity

Running of Geff(Λ)

Conformal coupling to the Higgs field
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Example of effective G−1
eff (Λ, f2) near the top see-saw scale

0

5 ´ 1014

1 ´ 1015
0.0000

0.00005

0.0001

-6.32 ´ 1029

-6.30 ´ 1029

-6.28 ´ 1029

-6.26 ´ 1029

Example: fixing Geff(Λunif ) = G gives a phase of negative gravity
with conformal gravity becoming dominant near sign change of
Geff(Λ)−1 at ∼ 1012 GeV

Matilde Marcolli NCG models for particles and cosmology, III



Gravity balls

Geff,H =
Geff

1− 4π
3 Geff |H|2

combines running of Geff with Linde mechanism
Suppose f2 such that Geff(Λ) > 0

Geff,H < 0 for |H|2 > 3

4πGeff(Λ)
,

Geff,H > 0 for |H|2 < 3

4πGeff(Λ)
.

Unstable and stable equilibrium for H:

`H(Λ, f2) :=
µ2

0

2λ0
(Λ) =

2 f2Λ2

f0
− e(Λ)

a(Λ)

λ(Λ) π
2b(Λ)

f0a2(Λ)

=
(2f2Λ2a(Λ)− f0e(Λ))a(Λ)

π2λ(Λ)b(Λ)

(with λ0-ansatz)

Negative gravity regime where

`H(Λ, f2) >
3

4πGeff(Λ, f2)
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An example of transition to negative gravity

1 ´ 1014 2 ´ 1014 3 ´ 1014 4 ´ 1014 5 ´ 1014 6 ´ 1014 7 ´ 1014

5.0 ´ 1029

1.0 ´ 1030

1.5 ´ 1030

2.0 ´ 1030

Gravity balls: regions where |H|2 ∼ 0 unstable equilibrium (positive
gravity) surrounded by region with |H|2 ∼ `H(Λ, f2) stable
(negative gravity): possible model of dark energy
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Primordial black holes (Zeldovich–Novikov, 1967)

I.D. Novikov, A.G. Polnarev, A.A. Starobinsky,
Ya.B. Zeldovich, Primordial black holes, Astron. Astrophys.
80 (1979) 104–109

J.D. Barrow, Gravitational memory? Phys. Rev. D Vol.46
(1992) N.8 R3227, 4pp.

Caused by: collapse of overdense regions, phase transitions in the
early universe, cosmic loops and strings, inflationary reheating, etc

Gravitational memory: if gravity balls with different Geff,H

primordial black holes can evolve with different Geff,H from
surrounding space
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Evaporation of PBHs by Hawking radiation

dM(t)

dt
∼ −(Geff(t)M(t))−2

with Hawking temperature T = (8πGeff(t)M(t))−1.
In terms of energy:

M2 dM =
1

Λ2G 2
eff(Λ, f2)

dΛ

With or without gravitational memory depending on Geff behavior

Evaporation of PBHs linked to γ-ray bursts
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Higgs based slow-roll inflation

dSHW A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation
in the Standard Model, hep-ph/0812.4946v2

Minimal SM and non-minimal coupling of Higgs and gravity.

ξ0

∫
R |H|2√gd4x

Non-conformal coupling ξ0 6= 1/12, running of ξ0

Effective Higgs potential: inflation parameter ψ =
√
ξ0κ0|H|

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

inflationary period ψ >> 1, end of inflation ψ ∼ 1, low energy
regime ψ << 1
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In the NCG SM have ξ0 = 1/12 but same Higgs based slow-roll
inflation due to κ0 running (say κ0 > 0)

ψ(Λ) =
√
ξ0(Λ)κ0(Λ)|H| =

√
π2

96f2Λ2 − f0c(Λ)
|H|

Einstein metric gE
µν = f (H)gµν , for f (H) = 1 + ξ0κ0|H|2

Higgs potential

VE (H) =
λ0|H|4

(1 + ξ0κ2
0|H|2)2

For ψ >> 1 approaches constant; usual quartic potential for
ψ << 1
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Conclusion:
Various possible inflation scenarios in the very early universe from
running of coefficients of the spectral action according to the
relation to Yukawa parameters: phases and regions of negative
gravity, variable gravitational and cosmological constants, inflation
potential from nonmininal coupling of Higgs to gravity

Main problem: these effects depend on choice of initial conditions
at unification (sensitive dependence) and several of these scenarios
are ruled out when moving boundary conditions
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Next episode

The problem of cosmic topology

The Poisson summation formula

Nonperturbative computation of the spectral action on
3-dimensional space forms

Slow-roll inflation: potential, slow-roll coefficients, power
spectra

Slow-roll inflation from the nonperturbative spectral action
and cosmic topology
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