Noncommutative Geometry models for Particle

Physics and Cosmology, Lecture Il

Matilde Marcolli

Villa de Leyva school, July 2011

Matilde Marcolli NCG models for particles and cosmology, |1



This lecture based on

@ Ali Chamseddine, Alain Connes, Matilde Marcolli, Gravity and
the Standard Model with neutrino mixing, ATMP 11 (2007)
991-1090, arXiv:hep-th/0610241

Symmetries and NCG

Symmetries of gravity coupled to matter:
G = U(1) x SU(2) x SU(3)

G = Map(M, G) x Diff(M)

Is it G = Diff(X)? Not for a manifold, yes for an NC space
Example: A= C>*(M,M,(C)) G = PSU(n)

1 — Inn(A) — Aut(A) — Out(A) — 1

1 — Map(M, G) — G — Diff(M) — 1.
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@ Symmetries viewpoint: can think of X = M x F
noncommutative with G = Diff(X) pure gravity symmetries
for X combining gravity and gauge symmetries together (no a
priori distinction between “base” and “fiber” directions)

@ Want same with action functional for pure gravity on NC
space X = M x F giving gravity coupled to matter on M
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Product geometry M x F
Two spectral triples (A;, H;, Di,~i, Ji) of KO-dim 4 and 6:
A=A10 A H=H1®H
D=D1®1+4v ® Dy
TY=N®Y J=h®Lh
Case of 4-dimensional spin manifold M and finite NC geometry F:
A= COO(M) ®AF = COO(M,AF)
H=1*(M,S)®Hr = L*(M,S @ HF)

D=9du®@1+ ®DF

Dfg chosen in the moduli space described last time
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Dimension of NC spaces: different notions of dimension for a
spectral triple (A, H, D)
@ Metric dimension: growth of eigenvalues of Dirac operator
@ KO-dimension (mod 8): sign commutation relations of J, v, D
@ Dimension spectrum: poles of zeta functions
Ca,p(s) = Tr(a| D|™*)
For manifolds first two agree and third contains usual dim; for NC

spaces not same: DimSp C C can have non-integer and non-real
points, KO not always metric dim mod 8, see F case

X = M x F metrically four dim 4 =4 + 0; KO-dimis 10=446
(equal 2 mod 8); DimSp k € Z>¢ with k <4
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Variant: almost commutative geometries

(C®(M,&),L3(M,£ ® S),Ds)

@ M smooth manifold, £ algebra bundle: fiber &, finite
dimensional algebra Af

e C°°(M, &) smooth sections of a algebra bundle £

e Dirac operator Dg = co (V€ ® 1+ 1® V?) with spin
connection V° and hermitian connection on bundle

@ Compatible grading and real structure
An equivalent intrinsic (abstract) characterization in:

@ Branimir Cac’ic’, A reconstruction theorem for
almost-commutative spectral triples, arXiv:1101.5908

Here on assume for simplicity product M x F
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Inner fluctuations and gauge fields
Setup:

@ Right A-module structure on H
Eb=b¢ E€M, beA
e Unitary group, adjoint representation:
EeH —>Ad(v)E{=ulu™ el
Inner fluctuations:
D—Da=D+A+eJAJ!
with A = A* self-adjoint operator of the form

A= Z aj[D, bj], aj,bj e A

Note: not an equivalence relation (finite geometry, can fluctuate D
to zero) but like “self Morita equivalences”
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Properties of inner fluctuations (A, H, D, J)

o Gauge potential A€ Q}, A= A*
@ Unitary u € A, then

Ad(u)(D+ A+ JAJTHAA(uY) =

D + vu(A) + & Jyu(A) S
where v,(A) = u[D,u*]+ vAu*
o D'=D+ A (with A€ Q}, A= A*) then

D'+B=D+A, A=A+BecQ}

VB € QlD, B = B*
e D'=D+A+¢ JAJ T then

D+B+eJBJ =D+ A+ JA T A=A+BcQ}
VB € Q} B=B*
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Gauge bosons and Higgs boson
e Unitary UA) ={uvue A | uw* =uvu*u=1}
@ Special unitary

SU(AF) = {u € U(AF) | det(u) =1}

det of action of v on Hfg

@ Up to a finite abelian group
SU(AfF) ~ U(1) x SU(2) x SU(3)

e Unimod subgr of U(.A) adjoint rep Ad(u) on H is gauge
group of SM

e Unimodular inner fluctuations (in M directions) = gauge
bosons of SM: U(1), SU(2) and SU(3) gauge bosons

@ Inner fluctuations in F direction = Higgs field
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More on Gauge bosons
Inner fluctuations A0 =3~ 3;[@m ® 1, a'] with with
ai = (A\i,qi,m;), a- = (N, g, m) in A= C®(M, AF)

o U(1) gauge field A =>"; A\jdX, =", Ai[dm © 1, X]

o SU(2) gauge field Q = ", qi dq}, with g = o+, if,o® and
Q=2 faldm®1,if0°]

o U(3) gauge field V' =5, midm. =", mj[§m ® 1, m]

e reduce the gauge field V' to SU(3) passing to unimodular
subgroup SU(AF) and unimodular gauge potential Tr(A) =0

Vi—_v_1

1
— _V—ZAl
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o o >
o > o
> o o
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Gauge bosons and hypercharges
The (1,0) part of A+ JAJ™! acts on quarks and leptons by

INFV 0 0 0
0 —3A+V 0 0
0 0 Qu+3iN+V Q12
0 0 @21 Q22 + %/\ +V
0 0 0 0
0 —2A 0 0
0 0 Qu—-AN Q

0 0 Q@21 Qo — A

= correct hypercharges!
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More on Higgs boson
Inner fluctuations A1) in the F-space direction

D ails @ Dr, (), =75 (AT + AY)

i

o1y (0 X (0.1) _ 0 Y
Aq (x'o>®13 A (Y’O

xo((Tin Tim) e o ( T, To)

Thoo Ther —Tups TaP)

Tior  Theo ) / < Topi  Teph >
Y = vr and Y = Z i
( Te902 Tep1 =T,y Tep)

o1 =Y Ailaf — X)), g2 = YN} 0 = 3 (A — f) + B3] and
7 = S (—aif + (N, — &), for 2i(x) = (Ai. gy m;) and
() = (X %MMqu(j§§
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More on Higgs boson
Discrete part of inner fluctuations: quaternion valued function

H = @1+ ¢2j or ¢ = (¢1,¢2)

DA (Dl 0) 4 ® (DO’1)2 — 5 [Dl,O7 1, ® DO,l]
[0, 14 @ D°’1] = V=19 [(V}, + Ay), 1 ® D]
This gives D2 = V*V — E where V*V Laplacian of V = V* + A

1
—E = Zs@id—i— E ’y“’y”@FW—i’y5’y“®M(Du<p)+l4®(D0’l)2
p<v

with s = —R scalar curvature and IF,,, curvature of A
i
= Oup + g2W — 581Buy
SU(2) and U(1) gauge potentials
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The spectral action functional

@ Ali Chamseddine, Alain Connes, The spectral action principle,
Comm. Math. Phys. 186 (1997), no. 3, 731-750.

A good action functional for noncommutative geometries

Tr(F(D/N))

D Dirac, A mass scale, f > 0 even smooth function (cutoff approx)
Simple dimension spectrum = expansion for A — oo

(/M) ~ X i ][ D%+ £(0)¢p(0) + o(1),

with f = [;° f(v) vK~! dv momenta of f
where DimSp(A, H, D) = poles of (, p(s) = Tr(b|D|~%)
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Asymptotic expansion of the spectral action

e tA) Z ag t (t—0)
and the ¢ function
¢p(s) = Tr(A™*/?)
@ Non-zero term a, with a < 0 = pole of {p at —2« with

2 a,
M(—a)

@ No logt terms = regularity at 0 for {p with {p(0) = ap

Ress— 24 (p(s) =
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@ Get first statement from

1 00
‘D‘—s _ A_S/2 _ / e—tA t5/2_1 dt
0

r(s)
with [i t9ts/2-1dt = (a +5/2)7 1.
@ Second statement from

as s—0

contrib to (p(0) from pole part at s = 0 of

/ Tr(e ™) t5/271 dt
0

given by ag fol t5/2- 1 gt = a0
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Spectral action with fermionic terms

S = Tx(f(Da/N) + 5 (JEDA), ey,
D4 = Dirac with unimodular inner fluctuations, J = real structure,
7—[2“, = classical spinors, Grassmann variables
Fermionic terms 1. )
5 (€. Dad)

antisymmetric bilinear form 24(¢) on

H ={¢eHal|r¢=¢}
= nonzero on Grassmann variables

Euclidean functional integral = Pfaffian
pr(x) = [ e #ODIg

avoids Fermion doubling problem of previous models based on
symmetric (£, Da&) for NC space with KO-dim=0
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Grassmann variables
Anticommuting variables with basic integration rule

/§d§:1

An antisymmetric bilinear form 20(&1, &): if ordinary commuting
variables 24(£, &) = 0 but not on Grassmann variables

Example: 2-dim case (&', &) = a(&1&2 — &£5&1), if & and &
anticommute, with integration rule as above

/eém(&f)D[g] — /e35152d§1d§2 — 3
Pfaffian as functional integral: antisymmetric quadratic form
pr(x) = [ & #%¢9 pig

Method to treat Majorana fermions in the Euclidean setting
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Fermionic part of SM Lagrangian
Explicit computation of

1 . .
5('/57 DA§>

gives part of SM Larangian with

e Lyr = coupling of Higgs to fermions

e Lgr = coupling of gauge bosons to fermions
e L = fermion terms
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Bosonic part of the spectral action

1
S = —2(48f4A47f2/\2c+—0)/fd4
965N —fyc 4

fo 11 * ¥ Ly po 4
+ W/(KRR73CNVPUC )\/ng

—2ah N+ ef
v 2R LR [1op g

T2

fa
P LS /ID;API VEd'x

foa

- W/RM Ve d*x

fob 4 4
+ ﬁ/lwl Ve dix

f
4 70/(g32 GI G;,Ll/l+ Fa Fuua+

5 1%
5.7 =~ g B B") /g d*x,

3
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Parameters:

e fy, fr, fa free parameters, fy = f(0) and, for k > 0,

o0
fx = / f(v)vk—Ldv.
0
@ a,b,c,0,e functions of Yukawa parameters of vMSM

a= Tr(YJY, + YdYe +3(YiY, + YIVy))

(YIY0)? + (YEYe)? + 3(YEYa)? +3(Y] Ya)?)

—_ o~
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Gilkey's theorem using D3 = V*V — E
Differential operator P = — (g"1 0,0, + A*0,, + B) with A, B
bundle endomorphisms, m = dim M

e / an(x, P) dv(x)

n>0
P=V*V— Eand E /= V,V'E

1
V= 0u+wy, w,= QgW(AV + 7 -id)
E=B-g" (0w, —i—w;wl’, - I'Zl,w;,)

Q/u/ = au wllx — 0y w:l, + [w;u wlll]
Seeley-DeWitt coefficients
a(x,P) = (477)_'"/2Tr(id)

a(x,P) = (47)""2Tr (—&id + E)

aa(x.P) = (4m) ™2 T(— 12R, * + 5R? — 2R, R
+ 2Ryup0 RUP7 — 60 RE + 180 E2 + 60 E,
+ 309, Q)
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Normalization and coefficients
@ Rescale Higgs field H = @gp to normalize kinetic term
[LDH?? /g d*x
@ Normalize Yang-Mills terms

loi 7M1 1pa TV | 1 BRIV
26,6 +3FLF +4BuB

Normalized form:
S = ;%/Rﬁd4x+70/ﬁd4x
+ @ / Covpo CHP7 /g d*x + 19 / R*R*\/g d*x
5 [ 10HE VEd - i [ IHE VEd
— go/ R|H|2\/§d4x+>\o/|H|4\/§d4x
+ g [ (Gl 6 F Pk B, B) VE 'S

where R*R* = 2e"P7¢q5,5R% R}, integrates to the Euler

characteristic x(M) and C**P° Weyl curvature



Coefficients

96HLNA% — f; 1 fo
1 _27“ 70:72(4851/\4*IC2A2C+4 )

2k 2472
3f 111
aof—ﬁ TOZW
1y = % - 2 bo=15
B 72b
°7 2ha?

Energy scale: Unification (10%° — 1017 GeV)

gy 1

272 4

Preferred energy scale, unification of coupling constants
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Renormalization group flow

@ The coefficients a, b, ¢,d, ¢ (depend on Yukawa parameters)
run with the RGE flow

@ Initial conditions at unification energy: compatibility with
physics at low energies

RGE in the MSM case
Running of coupling constants at one loop: «; = g?/(4)

41 19

By = (4m) 2 big?, with b= (€7 6 =),
41 A
—1 _ -1 _ -
Qy (/\) - Qy (MZ) 127 |Og MZ
19 A
-1 A = —1 M — |
Oé2 ( ) Oé2 ( Z)+ 127T og MZ
42 A
A = st (My) 4+ —Z log -
a3~ (A) o3 ( Z)+127T 8 Mz

Mz ~ 91.188 GeV mass of Z° boson



At one loop RGE for coupling constants decouples from Yukawa
parameters (not at 2 loops!)

\
0.09 \
Y\ Couplings
\

0.08 \ 5/3 o

\

\

\ o
0.07 \

\
N a3
0.06 N
N
N
0.05 N
0.04 Sl
0.03 \\\\‘
0.02 - T
- logy, (1/GeV)
2.5 5 7.5 10 12.5 15 17.5

Well known triangle problem: with known low energy values
constants don't meet at unification g% = gz = 5g2/3
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Geometry point of view

@ At one loop coupling constants decouple from Yukawa
parameters

@ Solving for coupling constants, RGE flow defines a vector field
on moduli space C3 x C; of Dirac operators on the finite NC
space F

@ Subvarieties invariant under flow are relations between the SM
parameters that hold at all energies

@ At two loops or higher, RGE flow on a rank three vector
bundle (fiber = coupling constants) over the moduli space
C3 X Cl

@ Geometric problem: studying the flow and the geometry of
invariant subvarieties on the moduli space
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Constraints at unification
The geometry of the model imposes conditions at unification
energy: specific to this NCG model

@ )\ parameter constraint
A Aunif) = 7 O0unir)
2fo a(Aunir)?
@ Higgs vacuum constraint

T g
@ See-saw mechanism and ¢ constraint
2f N2
fun/f < (Aunif) <
0
@ Mass relation at unification
Z (m? + m2 +3m>? + 3m3)|a=n

generations

le() N QMW

67(2/\unlf
fo

_ 2
unif 8I\”W’/\:/\unif

Need to have compatibility with low energy behavior
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Mass relation at unification Y2(S) = 4g?

Yo=Y () + (v +3(v0)* +3(¥5)?

(k(T3))an = 2Mm oy

(k(s))on = 21 Mg Con 0 G
(k))ow = mm dg

(k(il))mf — 2M me Ulep 5ﬂulepT

5{ = Kronecker delta, then constraint:

Tr(kiynkn + Kinkan + 3(Kiakas) + Kz kus)) = 267

=- mass matrices satisfy

S (M) + (m2)? +3(m])? +3(m3)2 = 8M?

[
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See-saw mechanism: D = D(Y') Dirac

0 M; Mp 0
M, 0 0 0
Mg O O i

0o 0 M, o0

on subspace (vg, vy, Ur,7L): largest eigenvalue of Mg ~ A
unification scale. Take Mg = x kg in flat space, Higgs vacuum v
small (w/resp to unif scale) 9, Tr(f(Da/N) =0 u= x>
22 f N2 Tr(k}kR)
fo Tr((kxkr)?)

Dirac mass M,, ~ Fermi energy v

1
E(imR +\/m% +4v2)

. 2
two eigenvalues ~ +=mg and two ~ j:r‘r’,—R
Compare with estimates

(mR)l > 107GeV, (mR)2 > 1012GeV, (mR)3 > 1016GeV



Low energy limit: compatibilities and predictions
Running of top Yukawa coupling (dominant term):

dy 1 9
(Ttt: o5 | ¥~ (agi +bgi +cgf) v .

17 9
b = (—. —
(a,b,c) = (3501

= value of top quark mass agrees with known (1.04 times if
neglect other Yukawa couplings)

8)
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Top quark running using mass relation at unification

¥1-0.596
y1-0.516
1.1 \
log,, (1/GeV)
0 2 s 7.5 10 12.5 15 17.5
0.9
0.8
~_
~__
0.7 ~.
~
0.6 T
0.5

correction to MSM flow by y? for 7 neutrino (allowed to be
comparably large by see-saw) lowers value
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Higgs mass prediction using RGE for MSM
Higgs scattering parameter:

fo ‘g T b 4z gt
ooz [ blel vEdtx = T o [ M vEd's

= relation at unification (X is |H|* coupling)

. b
AN = &3

Running of Higgs scattering parameter:

d\
—Z = —12)\2 B

3
3gs + 2g1 gz +g7) =3y}

(12y7 — 9g7 —3gf) B= 16

BT
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Higgs estimate (in MSM approximation for RGE flow)

M?2 2M
my=8\—, my=v2A—
g g
—— A(log(u/Mg)) /’/

A(Mz) ~ 0.241 and Higgs mass ~ 170 GeV (w/correction from
see-saw ~ 168 GeV) ... Heavy Higgs! ... exclusion zones
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Next time

@ RGE flow for yMSM and see-saw scales

@ Sensitive dependence on initial condition and constraints
@ RGE scales and the cosmology timeline

@ Gravitational terms and RGE running

@ Models of the Very Early Universe
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