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Plan of lectures

@ Noncommutative geometry approach to elementary particle
physics; Noncommutative Riemannian geometry; finite
noncommutative geometries; moduli spaces; the finite
geometry of the Standard Model

@ The product geometry; the spectral action functional and its
asymptotic expansion; bosons and fermions; the Standard
Model Lagrangian; renormalization group flow, geometric
constraints and low energy limits

© Parameters: relations at unification and running; running of
the gravitational terms; the RGE flow with right handed
neutrinos; cosmological timeline and the inflation epoch;
effective gravitational and cosmological constants and models
of inflation

@ The spectral action and the problem of cosmic topology;
cosmic topology and the CMB; slow-roll inflation; Poisson
summation formula and the nonperturbative spectral action;
spherical and flat space forms
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Geometrization of physics
o Kaluza-Klein theory: electromagnetism described by circle
bundle over spacetime manifold, connection = EM potential;

@ Yang-Mills gauge theories: bundle geometry over spacetime,
connections = gauge potentials, sections = fermions;

@ String theory: 6 extra dimensions (Calabi-Yau) over
spacetime, strings vibrations = types of particles

@ NCG models: extra dimensions are NC spaces, pure gravity on
product space becomes gravity + matter on spacetime

Matilde Marcolli NCG models for particles and cosmology, |



Why a geometrization of physics?
The standard model of elementary particles
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Standard model Lagrangian: can compute from simpler data?
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Standard model parameters: are there relations? why these values?
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Building mathematical models: essential requirements
e Conceptualize: complicated things (SM Lagrangian) should
follow from simple things (geometry)
@ Enrich: extend existing models with new features
o Predict: Higgs mass? new particles? new parameter relations?
new phenomena?
The elephant in the room: Gravity!

Coupling gravity to matter: the good: better conceptual
structure, links particle physics to cosmology; the bad: worse
chances of passing from classical to quantum theory

In NCG models: “all forces become gravity” (on an NC space)
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What the NCG model provides:
@ Einstein—Hilbert action:

1
SEH(g;w) = 167‘(‘G/M R\/E d4X

@ Gravity minimally coupled to matter: S = Sgy + Ssy with
Ssp = particle physics = Standard Model Lagrangian

@ Right handed neutrinos with Majorana masses

e Modified gravity model f(R, R*”, Cyu) with conformal
gravity: Weyl curvature tensor

1
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@ Non-minimal coupling of Higgs to gravity
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What is Noncommutative Geometry?
e X compact Hausdorff topological space < C(X) abelian
C*-algebra of continuous functions (Gelfand—Naimark)

@ Noncommutative C*-algebra A: think of as “continuous
functions on an NC space”

@ Describe geometry in terms of algebra C(X) and dense
subalgebras like C*°(X) if X manifold

o Differential forms, bundles, connections, cohomology: all
continue to make sense without commutativity (NC geometry)

@ Can describe “bad quotients” as good spaces: functions on
the graph of the equivalence relation with convolution product

To do physics: need the analog of Riemannian geometry
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Spectral triples and NC Riemannian manifolds (A, H, D)

@ involutive algebra A

e representation 7 : A — L(H)

@ self adjoint operator D on H, dense domain
@ compact resolvent (1 + D?)"Y/2 ¢ K

@ [a, D] bounded Va € A

e even if Z/2- grading v on ‘H

[v,a] =0, Vae A, Dy=—D

Main example (C>®(M), L>(M, S), @) with chirality s in 4-dim
e Alain Connes, Geometry from the spectral point of view, Lett.
Math. Phys. 34 (1995), no. 3, 203-238.

Note: to apply spectral triples methods need to work with M
compact and Euclidean signature (Euclidean gravity)
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Real structure KO-dimension n € Z /87
antilinear isometry J: H — H

F2=¢, JUD=¢DJ, and Jy=¢e"~J

InJ0O 1 2 3 4 5 6 7|
1 1 1 -1 -1 -1 11
/111 1 1 -1 11

e |1 -1 1 -1

Commutation: [a,b%] =0 Va,be A
where B0 = Jp*J1 Vbe A
Order one condition:

[[D,a],b’]=0 Vabc A
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Spectral triples in NCG need not be manifolds:

@ Quantum groups
o Fractals
o NC tori

For particle physics models M x F, product of a 4-dimensional
spacetime manifold M by a “finite NC space” F (extra dimensions)

@ Alain Connes, Gravity coupled with matter and the foundation
of non-commutative geometry, Comm. Math. Phys. 182
(1996), no. 1, 155-176.

Almost commutative geometries: more general form, fibration (not
product) over manifold, fiber finite NC space

@ Branimir Cac’ic’, A reconstruction theorem for
almost-commutative spectral triples, arXiv:1101.5908

o Jord Boeijink, Walter D. van Suijlekom, The noncommutative
geometry of Yang-Mills fields, arXiv:1008.5101.
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Finite real spectral triples: F = (Ag, Hg, Df)

e A finite dimensional (real) C*-algebra
A= @lN:ani(Ki)

K; =R or C or H quaternions (Wedderburn)

@ Representation on finite dimensional Hilbert space H, with
bimodule structure given by J (condition [a, b°] = 0)

@ D* = D with order one condition
[[D,a],°] =0

= Moduli spaces (under unitary equivalence)

@ Ali Chamseddine, Alain Connes, Matilde Marcolli, Gravity and
the standard model with neutrino mixing,
arXiv:hep-th /0610241

o Branimir Caédi¢, Moduli spaces of Dirac operators for finite
spectral triples, arXiv:0902.2068
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Building a particle physics model ...this lecture based on:

@ Ali Chamseddine, Alain Connes, Matilde Marcolli, Gravity and
the standard model with neutrino mixing,
arXiv:hep-th /0610241
Minimal input ansatz:

@ left-right symmetric algebra
Air=CaoH; @ Hg ® M3(C)

e involution (\, gz, qr, m) — (\, G, Gr, m*)

@ subalgebra C @ Mj3(C) integer spin C-alg

@ subalgebra H; @ Hg half-integer spin R-alg
More general choices of initial ansatz:

@ A.Chamseddine, A.Connes, Why the Standard Model,
J.Geom.Phys. 58 (2008) 38-47

Slogan: algebras better than Lie algebras, more constraints on reps
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Comment: associative algebras versus Lie algebras

@ In geometry of gauge theories: bundle over spacetime,
connections and sections, automorphisms gauge group:
Lie group

@ Decomposing composite particles into elementary particles:
Lie group representations (hadrons and quarks)

o If want only elementary particles: associative algebras have
very few representations (very constrained choice)

o Get gauge groups later from inner automorphisms
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Adjoint action:
M bimodule over A, u € U(.A) unitary

Ad(v)¢ = u€u™ VEe M

Odd bimodule: M bimodule for A;r odd iff
s=(1,-1,-1,1) acts by Ad(s) = -1

& Rep of B = (ALr ®r A[R)p as C-algebra
p=13(1-5s®s%), with A% = A

B = @4_timesM2((C) D Mﬁ(@)
Contragredient bimodule of M

MO ={E; e M}, afb= b*€a
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The bimodule Mg
Mg = sum of all inequivalent irreducible odd A; g-bimodules

@ dimg Mg =32
o Mr=E&°

£E=22192;21°92, ®3° 92z 3°
o Mg = MY by antilinear J£(&,7) = (n,€) for &, n€ €
B2=1, tb=Jrb"JFE Ec€Mp, be A
@ Sum irreducible representations of B
2,1°92%®1°92,©3° 02 3°
212200122%303229322%
e Grading: vg = ¢ — JpcJrp with ¢ =(0,1,-1,0) € Ar
JF=1, Jryr=—7rJF

Grading and KO-dimension: commutations = KO-dim 6 mod 8
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Interpretation as particles (Fermions)

o= (5 3) A=A =T

e 2; ®1°: neutrinos v, € | 1), ® 1° and charged leptons
e < ‘ \L>L & 10

o 2z ® 19: right-handed neutrinos vg € | 1) ® 1° and charged
leptons er € | |)gr @ 1°

e 2; ® 3% (color indices): u/c/t quarks u; € | 1), ® 3% and
d/s/b quarks d; € | }); ® 3°

@ 2 ® 3% (color indices): u/c/t quarks ug € | 1)r ® 3° and
d/s/b quarks dg € | |)g ® 3°

°e1® 2?7,?: antineutrinos 7, g € 1® T)(L”R, and charged
antileptons g r € 1® | )] ¢

® 3® 2}  (color indices): antiquarks ;g € 3® | 1)? £ and
dir€3® |1} R
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Subalgebra and order one condition:
N = 3 generations (input): Hg = Mg ® Mg ® Mp
Left action of A, r sum of representations 7|, @ 7'|3;; with

He=EDEDE and Hy = E0p 9 £9 and with no equivalent
subrepresentations (disjoint)

If D mixes H¢ and Hz = no order one condition for A; g
Problem for coupled pair: A C A;r and D with off diagonal terms
maximal A where order one condition holds

Ar ={(\ qu.A\,m) | A€ C, g € H, me Ms(C)}

~ Cao He Ms(C).

unique up to Aut(ALR)
= spontaneous breaking of LR symmetry
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Subalgebras with off diagonal Dirac and order one condition
Operator T : Hf — Hp

A(T)={be Ar | ©'(b)T = Tr(b),

7'(b*)T = Tr(b*)}

involutive unital subalgebra of A;g
A C Ay involutive unital subalgebra of A;r

@ restriction of m and 7’ to A disjoint = no off diag D for A

e 3 off diag D for A = pair e, ¢ min proj in commutants of
m(Arr) and 7'(ALr) and operator T

e€Te=T+#0 and AC A(T)

@ Then case by case analysis to identify max dimensional
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Symmetries
Up to a finite abelian group

SU(AF) ~ U(1) x SU(2) x SU(3)

Adjoint action of U(1) (in powers of A € U(1))
121° | 219 +23° | 230
2, -1 ~1 : 1

2R 0 -2

Wl

= correct hypercharges of fermions (confirms identification of Hg
basis with fermions)
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Classifying Dirac operators for (Ar, Hg,7vF, Jr) all possible D
self adjoint on Hg, commuting with Jg, anticommuting with g
and [[D, a],b°] =0, Va,b € Af

Input conditions (massless photon): commuting with subalgebra

CFC.AF, (CF:{()\,)\,O),)\E(C}

then D( <S T > with S=5 & (53 ® 13)

0 0 Y 0

(O
s5=]0 0 0 Yy
Y 0 0

0 Y(u) 0 0
same for Ss, with Y(il)' Y(Tl)! Y(J,g,), Y(T3) S GL3((C) and Yg

symmetric:
T:Er =tr ®1° = Jr Eg
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Moduli space  C3 x C1  C3 = pairs (Y(;3), Y{13)) modulo
Y(/¢3) = W1 Y3 Wi, Y(/Ts) = Wa Y43 W3
Wi, unitary matrices
C3 = (K x K)\(G x G)/K

G =GL3(C)and K =U(3) dimgC3=10=3+3+4
(3 + 3 eigenvalues, 3 angles, 1 phase)

C1 = triplets (Y{j1), Y{11), Yr) with Yr symmetric modulo
Yin=YiYu)Vs, Yoy =VeYayVs, Ye=VaYrs

7 : C1 — C3 surjection forgets Yg fiber symmetric matrices mod
Yr — A%Yg  dimg(C3 x C1) = 31 (dim fiber 12-1=11)
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Physical interpretation: Yukawa parameters and Majorana masses
Representatives in C3 x Ci:

Yas) =0¢s) Y3y = Uckm 0(13) Ukm

Yir) = Upuins 311y Upmns Y1) = 1)

¢, 0, diagonal: Dirac masses

a1 —S51C3 —S5153
U= | sicc cicc3 — 5365 C10283 + $2C365
515 C15C3 + CS3€5 (€15253 — C2C3€5

angles and phase ¢; = cosf;, s; = sin6;, es = exp(id)
Ucknm = Cabibbo—Kobayashi—-Maskawa

Uppns = Pontecorvo—Maki—Nakagawa—Sakata

= neutrino mixing

Yr = Majorana mass terms for right-handed neutrinos

Matilde Marcolli NCG models for particles and cosmology, |



CKM matrix very strict experimental constraints (SM compatible)
15 T T T
excluded area has CL >0.95 ‘3%
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Geometric point of view:
o CKM and PMNS matrices data: coordinates on moduli space
of Dirac operators

@ Experimental constraints define subvarieties in the moduli
space

@ Symmetric spaces (K x K)\(G x G)/K interesting geometry

@ Get parameter relations from “interesting subvarieties” ?
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Summary: matter content of the NCG model

vMSM: Minimal Standard Model with additional right handed
neutrinos with Majorana mass terms

Free parameters in the model:

@ 3 coupling constants
@ 6 quark masses, 3 mixing angles, 1 complex phase

@ 3 charged lepton masses, 3 lepton mixing angles, 1 complex
phase

@ 3 neutrino masses
@ 11 Majorana mass matrix parameters
@ 1 QCD vacuum angle

Moduli space of Dirac operators on the finite NC space F: all
masses, mixing angles, phases, Majorana mass terms
Other parameters:

@ coupling constants: product geometry and action functional

@ vacuum angle not there (but quantum corrections...?)
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Other particle models

Changing the finite geometry produces other particle models:
@ Minimal Standard Model
@ Supersymmetric QCD
e QED

Respecively:

@ Alain Connes, Gravity coupled with matter and the foundation
of non-commutative geometry, Comm. Math. Phys. 182
(1996), no. 1, 155-176

@ Thijs van den Broek, Walter D. van Suijlekom,
Supersymmetric QCD and noncommutative geometry,
arXiv:1003.3788

@ Koen van den Dungen, Walter D. van Suijlekom,
Electrodynamics from Noncommutative Geometry,
arXiv:1103.2928
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Next episode:

Product geometries

Almost commutative geometries

The spectral action

Asymptotic expansion at large energies

The Lagrangian

Renormalization group equations and low energy limit
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