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References for this lecture:
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Deep Networks, MIT Press, 2016

F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001)
N.1, 1–49.
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Modeling Ventral Visual Stream via Deep Neural Networks

• Ventral Visual Stream considered responsible for object
recognition abilities

dorsal (green) and ventral (purple) visual streams

• responsible for first ∼ 100msc time of processing visual
information from initial visual stimulus to activation of inferior
temporal cortex neurons
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• mathematical model describing learning of invariant
representations in the Ventral Visual Stream

• working hypothesis: main computational goal of the Ventral
Visual Stream is compute neural representations of images that are
invariant with respect to certain groups of transformations (mostly
affine transformations: translations, rotations, scaling)

• model based on unsupervised learning

• far fewer examples are needed to train a classifier for recognition
if using an invariant representation

• Gabor functions and frames optimal templates for simultaneously
maximizing invariance with respect to translations and scaling

• architecture: hierarchy of Hubel–Wiesel modules
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• a significant difference between (supervised) learning algorithms
and functioning of the brain is that learning in the brain seems to
require a very small number of labelled examples

• conjecture: key to reducing sample complexity of object
recognition is invariance under transformations

• two aspects: recognition and categorization

• for recognition it is clear that complexity is greatly increased by
transformations (same objects seen from different perspectives, in
different light conditions, etc.)

• for categorizations also (distinguishing between different classes
of objects: cats/dogs, etc.) transformations can hide intrinsic
characteristics of an object

• empirical evidence: accuracy of a classifier per number of
examples greatly improved in the presence of an oracle that factors
out transformations (solid curve, rectified; dashed, non-rectified)
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• order of magnitude for number of different object categorizations
(e.g. distinguishable different types of dogs) smaller than
magnitude for different viewpoints generated by group actions

• reducing the variability by transformations makes greatly reduces
the learning task complexity

• refer to sample complexity as number of examples needed for
estimating a target function within an assigned error rate

• transform problem of distinguishing images into problem of
distinguishing orbits under a given group action
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Feedforward architecture in the ventral stream

• two main stages

1 retinotopic areas computing a representation that is invariant
under affine transformations

2 approximate invariance to other object-specific dependencies,
not described by group actions (parallel pathways)

• first stage realized through Gabor frames analysis

• overall model relies on a mathematical model of learning
(Cucker-Smale)
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• architecture layers: red circle = vector computed by one of the
modules, double arrow = its receptive field; image at level zero
(bottom), vector computed at top layer consists of invariant
features (fed as input to a supervised learning classifier)
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biologically plausible algorithm (Hubel–Wiesel modules)

• two types of neurons roles:

simple cells: perform an operation of inner product with a
template t ∈ H Hilbert space; a further non-linear operation
(a threshold) is also applied

complex cells: aggregate the outputs of several simple cells

• steps: (assume G finite subgroup of affine transformations)

1 unsupervised learning of group G by storing memory of orbit
G · t = {gt : g ∈ G} of a set of templates t ∈ H

2 computation of invariant representation: new image I ∈ H
compute 〈gtk , I〉 for g ∈ G and tk , k = 1, . . . ,K templates
and

µkh(I) =
1

#G

∑
g∈G

σh(〈gtk , I〉)

σh a set of nonlinear functions (e.g. threshold functions)
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• computed µkh(I) called signature of I
• signature µkh(I) clearly G -invariant

• Selectivity Question: how well does µkh(I) distinguish different
objects? different meaning G · I 6= G · I ′

• Main Selectivity Result (Poggio-Anselmi)

want to be able to distinguish images within a given set of N
images I, with an error of at most a given ε > 0

the signatures µkh(I) can ε-approximate the distance between
pairs among the N images with probability 1− δ
provided that the number of templates used is at least

K >
c

ε2
log

N

δ

• more detailed discussion of this statement below; main point:
need of the order of log(N) templates to distinguish N images
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• General problem: when two sets of random variables x , y are
probabilistically related

relation described by probability distribution P(x , y)

some square loss problem (minimization problem)

E (f ) =

∫
(y − f (x))2 P(x , y) dx dy

distribution itself unknown, but minimize empirical error

EN(f ) =
1

N

N∑
i=1

(yi − f (xi ))2

over a set of random sampled data points {(xi , yi )}i=1,...,N

if fN minimizes empirical error, want that the probability

P(‖E (fN)− EN(fN)‖ > ε)

is sufficiently small

Problem depends on the function space where fN lives
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General setting

• F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001) N.1,
1–49.

X compact manifold, Y = Rk (for simplicity k = 1),
Z = X × Y with Borel measure ρ

ξ random variable (real valued) on probability space (Z , ρ)

expectation value and variance

E(ξ) =

∫
Z
ξ dρ, σ2(ξ) = E((ξ − E(ξ))2) = E(ξ2)− E(ξ)2

function f : X → Y , least squares error of f

E(f ) =

∫
Z

(f (x)− y)2 dρ

measures average error incurred in using f (x) as a model of
the dependence between y and x

Problem: how to minimize the error?
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conditional probability ρ(y |x) (probability measure on Y )

marginal probability ρX (S) = ρ(π−1(S)) on X , with
projection π : Z = X × Y → X

relation between these measures∫
Z
φ(x , y) dρ =

∫
X

(∫
Y
φ(x , y) dρ(y |x)

)
dρX

breaking of ρ(x , y) into ρ(y |x) and ρX (S) is breaking of Z
into input X and output Y
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regression function fρ : X → Y

fρ(x) =

∫
Y
y dρ(y |x)

assumption: fρ is bounded

for fixed x ∈ X map Y to R via

y 7→ y − fρ(x)

expectation value is zero so variance

σ2(x) =

∫
Y

(y − fρ(x))2 dρ(y |x)

averaged variance

σ2ρ =

∫
X
σ2(x) dρX = E(fρ)

measures how “well conditioned” ρ is

Note: in general ρ and fρ not known but ρX known
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error, regression, and variance:

E(f ) =

∫
X

((f (x)− fρ(x))2 + σ2ρ) dρX

What this says: σ2ρ is a lower bound for the error E(f ) for all
f , and f = fρ has the smallest possible error (which depends
only on ρ)

why identity holds:
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Goal: “learn” (= find a good approximation for) fρ given random
samples of Z

ZN 3 z = ((x1, y1), . . . , (xN , yN)) sample set of points (xi , yi )
independently drawn with probability ρ

empirical error

Ez(f ) =
1

N

N∑
i=1

(f (xi )− yi )
2

for random variable ξ empirical mean

Ez(ξ) =
1

N

N∑
i=1

ξ(zi , yi )

given f : X → Y take fY : Z → Y to be
fY : (x , y) 7→ f (x)− y

E(f ) = E(f 2Y ), Ez(f ) = Ez(f 2Y )
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Facts of Probability Theory
(quantitative versions of law of large numbers)

• ξ random variable on probability space Z with mean E(ξ) = µ
and variance σ2(ξ)− σ2

• Chebyshev: for all ε > 0

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ σ2

mε2

• Bernstein: if |ξ(z)− E(ξ)| ≤ M for almost all z ∈ Z then ∀ε > 0

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

(
− mε2

2(σ2 + 1
3Mε)

)

• Hoeffding:

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

(
−mε2

2M2

)
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Defect Function of f : X → Y

Lz(f ) := E(f )− Ez(f )

discrepancy between error and empirical error (only Ez(f )
measured directly)

• estimate of defect if |f (x)− y | ≤ M almost everywhere, then
∀ε > 0, with σ2 variance of f 2Y

P{z ∈ Zm : |Lz(f )| ≤ ε} ≥ 1− 2ε exp

(
− mε2

2(σ2 + 1
3M

2ε)

)

• from previous Bernstein estimate taking ξ = f 2Y
• when is |f (x)− y | ≤ M a.e. satisfied? e.g. for M = Mρ + P

Mρ = inf{M̄ : {(x , y) ∈ Z : |y − fρ(x)| ≥ M̄} measure zero }

P ≥ sup
x∈X
|f (x)− fρ(x)|
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Hypothesis Space

• a learning process requires a datum of a class of functions
(hypothesis space) within which the best approximation for fρ

• C (X ) algebra of continuous functions on topological space X

• H ⊂ C (X ) compact subset (not necessarily subalgebra)

• look for minimizer (not necessarily unique)

fH = argminf ∈H

∫
Z

(f (x)− y)2

because E(f ) =
∫
X (f − fρ)2 + σ2ρ also minimizer

fH = argminf ∈H

∫
X

(f − fρ)2

• continuity: if for f ∈ H have |f (x)− y | ≤ M a.e., bounds

|E(f1)− E(f2)| ≤ 2M‖f1 − f2‖∞
and for Ez also, so E and Ez continuous

• compactness of H ensures existence of minimizer but not
uniqueness (a uniqueness result when H convex)

Matilde Marcolli and Doris Tsao Ventral Visual Stream and Deep Networks



Empirical target function fH,z

• minimizer (non unique in general)

fH,z = argminf ∈H
1

m

m∑
i=1

(f (xi )− yi )
2

Normalized Error
EH(f ) = E(f )− E(fH)

EH(f ) ≥ 0 vanishing at fH

Sample Error EH(fH,z)

E(fH,z) = EH(fH,z) + E(fH) =

∫
X

(fH,z − fρ)2 + σ2ρ

estimating E(fH,z) by estimating sample and approximation errors,
EH(fH,z) and E(fH) one on H the other independent of sample z
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bias-variance trade-off

• bias = approximation error; variance = sample error

fix H: sample error EH(fH,z) decreases by increasing number
m of samples

fix m: approximation error E(fH) decreases when enlarging H

• procedure:

1 estimate how close fH,z and fH depending on m

2 how to choose dimH when m is fixed

• first problem: how many examples need to draw to say with
confidence ≥ 1− δ that

∫
X (fH,z − fH)2 ≤ ε ?
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Uniformity Estimate (Vapnik’s Statistical Learning Theory)

• covering number: S metric space, s > 0, number N (S , s)
minimal ` ∈ N so that ∃ disks in S radii s covering S ; for S
compact N (S , s) finite

• uniform estimate: H ⊂ C (X ) compact, if for all f ∈ H have
|f (x)− y | ≤ M a.e., then ∀ε > 0

P{z ∈ Zm : sup
f∈H
|Lz(f )| ≤ ε} ≥ 1−N (H, ε

8M
)2 exp

(
− mε2

4(2σ2 + 1
3M

2ε)

)

with σ2 = supf ∈H σ
2(f 2Y )

• main idea: like previous “estimate of defect” but passing from a
single function to a family of functions, using a uniformity based
on “covering number”
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Estimate of Sample Error

• H ⊂ C (X ) compact, with |f (x)− y | ≤ M a.e. for all f ∈ H, and
σ2 = supf ∈H σ

2(f 2Y ), then ∀ε > 0

P{z ∈ Zm : EH(fz) ≤ ε} ≥ 1−N (H, ε

16M
)2 exp

(
− mε2

8(4σ4 + 1
3M

2ε)

)
• obtained from previous estimate using Lz(f ) = E(f )− Ez(f )

• so answer to first question: to ensure probability above ≥ 1− δ
need to take at least

m ≥
8(4σ4 + 1

3M
2ε)

ε2

(
log(2N (H, ε

16M
)) + log(

1

δ
)

)
obtained by setting

δ = N (H, ε

16M
)2 exp

(
− mε2

8(4σ4 + 1
3M

2ε)

)

• need various techniques for estimating covering numbers
N (H, s) depending on the choice of the compact set H
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Second Question: Estimating the Approximation Error

E(fH,z) = EH(fH,z) + E(fH)

focus on E(fH), which depends on H and ρ∫
X

(fH − fρ)2 + σ2ρ

second term independent of H so focus on first; fρ bounded, but
not in H nor necessarily in C (X )

• Main idea: use finite dimensional hypothesis space H; estimate
in terms of growth of eigenvalues of an operator

• Main technique: Fourier analysis; Hilbert spaces
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Fourier Series: start with case of X = T n = (S1)n torus

• Hilbert space L2(X ) Lebesgue measure with complete
orthonormal system

φα(x) = (2π)−n/2 exp(iα · x), α = (α1, . . . , αn) ∈ Zn

Fourier series expansion

f =
∑
α∈Zn

cα φα

• finite dimensional subspaces HN ⊂ L2(X ) spanned by φα with
‖α‖ ≤ B, dimension N(B) number of lattice points in ball radius
B in Rn

N(B) ≤ (2B)n/2

• H hypothesis space: ball HN,R of radius R in ‖ · ‖∞ norm in HN
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Laplacian

• on torus X = T n Laplacian ∆ : C∞(X )→ C∞(X )

∆(f ) =
n∑

i=1

∂2f

∂x2i

Fourier series basis φα are eigenfunctions of −∆ with eigenvalue
‖α‖2

• more general X : bounded domain X ⊂ Rn with smooth
boundary ∂X and a complete orthonormal system φk of L2(X )
(Lebesgue measure) of eigenfunctions of Laplacian with

−∆(φk) = ζk φk , φk |∂X ≡ 0, ∀k ≥ 1

0 < ζ1 ≤ ζ2 ≤ · · · ≤ ζk ≤ · · ·

• subspace HN of L2(X ) generated by {φ1, . . . , φN}
• hypothesis space H = HN,R ball of radius R for ‖ · ‖∞ in HN
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Construction of fH

• Lebesgue measure µ on X and measure ρ (marginal probability
ρX induced by ρ on Z = X × Y )

• consider regression function

fρ(x) =

∫
Y
y dρ(y |x)

• assumption fρ bounded on X so in L2ρ(X ) and in L2µ(X )

• choice of R: assume also that R ≥ ‖fρ‖∞, which implies
R ≥ ‖fρ‖ρ
• then fH is orthogonal projection of fρ onto HN using inner
product in L2ρ(X )

• goal: estimate approximation error E(fH) for this fH
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Distorsion factor:

• identity function on bounded functions extends to

J : L2µ(X )→ L2ρ(X )

• distorsion of ρ with respect to µ

Dρµ = ‖J‖

operator norm: how much ρ distorts the ambient measure µ

• reasonable assumption: distorsion is finite

• in general ρ not known, but ρX is known, so Dρµ can be
computed
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Weyl Law

• Weyl law on rate of growth of eigenvalues of the Laplacian
(acting on functions vanishing on boundary of domain X ⊂ Rn)

lim
λ→∞

N(λ)

λn/2
= (2π)−nBnVol(X )

Bn volume of unit ball in Rn; N(λ) number of eigenvalues (with
multiplicity) up to λ

• Weyl law: Li–Yau version

ζk ≥
n

n + 2
4π2

(
k

Bn Vol(X )

)2/n

P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator,

Acta Math. 156 (1986), 153–201

• from this get a weaker estimate, using explicit volume Bn

ζk ≥
(

k

Vol(X )

)2/n
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Approximation Error and Weyl Law

• norm ‖ · ‖K : for f =
∑∞

k=1 ck φk with φk eigenfunctions of −∆

‖f ‖K :=

( ∞∑
k=1

c2k ζk

)1/2

like L2-norm but weighted by eigenvalues of Laplacian in `2

measure of c = (ck)

• Approximation Error Estimate: for H and fH as above

E(fH) ≤ D2
ρµ

(
k

Vol(X )

)2/n

‖fρ‖2K + σ2ρ

• proved using Weyl law and estimates

‖fρ − fH‖ρ = dρ(fρ,HN) ≤ ‖J‖ dµ(fρ,HN)

dµ(fρ,HN)2 = ‖
∞∑

k=N+1

ckφk‖2µ =
∞∑

k=N+1

c2k =
∞∑

k=N+1

c2k ζk
1

ζk
≤ 1

ζN+1
‖fρ‖2K

where fρ =
∑

k ckφk
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Solution of the bias-variance problem

• mimimize E(fH,z) by minimizing both sample error and
approximation error

• minimization as a function of N ∈ N (for the choice of
hypothesis space H = HN,R)

• select integer N ∈ N that minimizes A(N) + ε(N) where
ε = ε(N) as in previous estimate of sample error and

A(N) = D2
ρµ

(
k

Vol(X )

)2/n

‖fρ‖2K + σ2
ρ

• from previous relation between m, R = ‖fρ‖∞, δ and ε obtain

ε− 288M2

m

(
N log(

96RM

ε
) + 1 + log(

1

δ
)

)
≥ 0

find N that minimizes ε with this constraint

• no explicit closed form solution for N minimizing A(N) + ε(N)
but can be estimated numerically in specific cases
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back to the visual cortex modeling (Poggio-Anselmi)

• stored templates tk , k = 1, . . . ,K and new images I in some
finite dimensional approximation HN to a Hilbert space

• simple cells perform inner products 〈gtk , I〉 in HN

• estimate in terms of 1D-projections: I ∈ Rd some in general
large d ; projections 〈tk , I〉 for a set of normalized vectors
tk ∈ Sd−1 (unit sphere)

Z : Sd−1 → R+, Z (t) =
∣∣µt(I)− µt(I ′)

∣∣
• distance between images d(I, I ′) think of as a distance between
two probability distributions PI , PI′ on Rd

• measure distance in terms of

d(PI ,PI′) ∼
∫
Sd−1

Z (t) dvol(t)
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• model this in terms of

d̂(PI ,PI′) :=
1

K

K∑
k=1

Z (tk)

want to evaluate the error incurred in using d̂(PI ,PcI ′) (1D
projections and templates) to estimate d(PI ,PI′)

• as in the Cucker-Smale setting, evaluate the error and the
probability of error in terms of the Hoeffding estimate∣∣∣d(PI ,PI′)− d̂(PI ,PcI ′)

∣∣∣ =

∣∣∣∣∣ 1

K

K∑
k=1

Z (tk)− E(Z )

∣∣∣∣∣
• probability of error

P

(∣∣∣∣∣ 1

K

K∑
k=1

Z (tk)− E(Z )

∣∣∣∣∣ > ε

)
≤ 2e−

Kε2

2M2

if a.e. bound |Z (t)− E(Z )| ≤ M
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• want this estimate to hold uniformly over a set of N images:
want same bound to hold over each pair so error probability is at
most

N(N − 1) exp

(
− Kε2

2M2
min

)
∼ N2 exp

(
− Kε2

2M2
min

)
≤ δ2

with Mmin the smallest M over all pairs

• This is at most a given δ2 whenever

K ≥
4M2

min

ε2
log

N

δ
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Group Actions and Orbits

• {tk}k=1,...,K given templates

• G finite subgroup of the affine group
(translations, rotations, scaling)

• G acts on set of images I: orbit GI
• projection P : Rd → RK of images I onto span of templates tk

• Johnson–Lindenstrauss lemma: low distorsion embeddings of sets
of points from a high-dimensional to a low-dimensional Euclidean
space (special case with map an orthogonal projection)

given 0 < ε < 1; given finite set X of n points in Rd

take K > 8 log(n)/ε2

then there is a linear map f given by a multiple of an
orthogonal projection onto a (random) subspace of dimension
K such that, for all u, v ∈ X

(1− ε)‖u − v‖2Rd ≤ ‖f (u)− f (v)‖2RK ≤ (1 + ε)‖u − v‖2Rd

• result depends on concentration of measure phenomenon
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• up to a scaling, for a good choice of subspace spanned by
templates, can take P to satisfy Johnson-Lindenstrauss lemma

• starting from finite set X = {u} of images, can generate another
set by including all group translates XG = {g · u : g ∈ G , u ∈ X}
• then for Johnson-Lindenstrauss lemma required accuracy for XG

K > 8
log(n ·#G )

ε2

• so can estimate sufficiently well the distance between images in
Rd using the distance between projections 〈tk , gI〉 of their group
orbits onto the space of templates

• by 〈tk , gI〉 = 〈g−1tk , I〉 for unitary representations it would
seem one needs to increase by K 7→ #G · K the number of
templates to distinguish orbits, but in fact by argument above need
an increase K 7→ K + 8 log(#G )/ε2
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• given 〈tk , gI〉 = 〈g−1tk , I〉 computed by the simple cells,
pooling by complex cells by computing

µkh(I) =
1

#G

∑
g∈G

σh(〈gtk , I〉)

σh a set of nonlinear functions: examples

µkaverage(I) = 1
#G

∑
g∈G

∣∣〈gtk , I〉∣∣
µkenergy(I) = 1

#G

∑
g∈G 〈gtk , I〉2

µkmax(I) = maxg∈G
∣∣〈gtk , I〉∣∣

other nonlinear functions: especially useful case, when
σh : R→ R+ is injective

• Note: stored knowledge of gtk for g ∈ G allows the system to be
automatically invariant wrt G action on images I
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Localization and uncertainty principle

would like templates t(x) to be localized in x : small outside
of some interval ∆x

would also like t̂ to be localized in frequency: small outside an
interval ∆ω

but... uncertainty principle: localized in x / delocalized in ω

∆x ·∆ω ≥ 1
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Optimal localization

• optimal possible localization when ∆x ·∆ω = 1

• realized by the Gabor functions

t(x) = e iω0xe−
x2

2σ2
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each cell applies a Gabor filter; plotted ny/nx anisotropy ratios
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