Ventral Visual Stream and Deep Networks

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017 Geometry of Neuroscience

- ∢ ⊒ ⊳

References for this lecture:

- Tomaso A. Poggio and Fabio Anselmi, *Visual Cortex and Deep Networks*, MIT Press, 2016
- F. Cucker, S. Smale, *On the mathematical foundations of learning*, Bulletin of the American Math. Society 39 (2001) N.1, 1–49.

伺 とう ヨン うちょう

Modeling Ventral Visual Stream via Deep Neural Networks

• Ventral Visual Stream considered responsible for object recognition abilities

dorsal (green) and ventral (purple) visual streams

• responsible for first \sim 100msc time of processing visual information from initial visual stimulus to activation of inferior temporal cortex neurons

• mathematical model describing learning of *invariant representations* in the Ventral Visual Stream

• working hypothesis: main computational goal of the Ventral Visual Stream is compute neural representations of images that are invariant with respect to certain groups of transformations (mostly affine transformations: translations, rotations, scaling)

• model based on unsupervised learning

• far fewer examples are needed to train a classifier for recognition if using an *invariant representation*

• Gabor functions and frames optimal templates for simultaneously maximizing invariance with respect to translations and scaling

• architecture: hierarchy of Hubel-Wiesel modules

向下 イヨト イヨト

• a significant difference between (supervised) learning algorithms and functioning of the brain is that learning in the brain seems to require a very small number of labelled examples

• conjecture: key to reducing sample complexity of object recognition is invariance under transformations

• two aspects: recognition and categorization

• for recognition it is clear that complexity is greatly increased by transformations (same objects seen from different perspectives, in different light conditions, etc.)

• for categorizations also (distinguishing between different classes of objects: cats/dogs, etc.) transformations can hide intrinsic characteristics of an object

• empirical evidence: accuracy of a classifier per number of examples greatly improved in the presence of an oracle that factors out transformations (solid curve, rectified; dashed, non-rectified)

・ 同 ト ・ ヨ ト ・ ヨ ト

Matilde Marcolli and Doris Tsao

Ventral Visual Stream and Deep Networks

æ

• order of magnitude for number of different object categorizations (e.g. distinguishable different types of dogs) smaller than magnitude for different viewpoints generated by group actions

• reducing the variability by transformations makes greatly reduces the learning task complexity

• refer to sample complexity as number of examples needed for estimating a target function within an assigned error rate

• transform problem of distinguishing images into problem of distinguishing orbits under a given group action

向下 イヨト イヨト

Feedforward architecture in the ventral stream

- two main stages
 - retinotopic areas computing a representation that is invariant under affine transformations
 - approximate invariance to other object-specific dependencies, not described by group actions (parallel pathways)
- first stage realized through Gabor frames analysis
- overall model relies on a mathematical model of learning (Cucker-Smale)

• architecture layers: red circle = vector computed by one of the modules, double arrow = its receptive field; image at level zero (bottom), vector computed at top layer consists of invariant features (fed as input to a supervised learning classifier)

biologically plausible algorithm (Hubel–Wiesel modules)

- two types of neurons roles:
 - simple cells: perform an operation of inner product with a template t ∈ H Hilbert space; a further non-linear operation (a threshold) is also applied
 - complex cells: aggregate the outputs of several simple cells
- steps: (assume G finite subgroup of affine transformations)
 - unsupervised learning of group G by storing memory of orbit $G \cdot t = \{gt : g \in G\}$ of a set of templates $t \in \mathcal{H}$
 - ② computation of invariant representation: new image *I* ∈ *H* compute $\langle gt^k, I \rangle$ for $g \in G$ and t^k , $k = 1, \ldots, K$ templates and

$$\mu_h^k(\mathcal{I}) = \frac{1}{\#G} \sum_{g \in G} \sigma_h(\langle gt^k, \mathcal{I} \rangle)$$

 σ_h a set of nonlinear functions (e.g. threshold functions)

(ロ) (同) (E) (E) (E)

- computed $\mu_h^k(\mathcal{I})$ called signature of \mathcal{I}
- signature $\mu_h^k(\mathcal{I})$ clearly *G*-invariant

• Selectivity Question: how well does $\mu_h^k(\mathcal{I})$ distinguish different objects? different meaning $G \cdot \mathcal{I} \neq G \cdot \mathcal{I}'$

- Main Selectivity Result (Poggio-Anselmi)
 - want to be able to distinguish images within a given set of N images I, with an error of at most a given $\epsilon > 0$
 - the signatures $\mu_h^k(\mathcal{I})$ can ϵ -approximate the distance between pairs among the N images with probability 1δ
 - provided that the number of templates used is at least

$$K > rac{c}{\epsilon^2}\lograc{N}{\delta}$$

• more detailed discussion of this statement below; main point: need of the order of log(N) templates to distinguish N images

・ロン ・回と ・ヨン ・ヨン

• General problem: when two sets of random variables x, y are probabilistically related

- relation described by probability distribution P(x, y)
- some square loss problem (minimization problem)

$$E(f) = \int (y - f(x))^2 P(x, y) \, dx \, dy$$

• distribution itself unknown, but minimize empirical error

$$E_N(f) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

over a set of random sampled data points $\{(x_i, y_i)\}_{i=1,...,N}$ • if f_N minimizes empirical error, want that the probability

$$\mathbb{P}(\|E(f_N) - E_N(f_N)\| > \epsilon)$$

is sufficiently small

• Problem depends on the function space where f_N lives

General setting

• F. Cucker, S. Smale, *On the mathematical foundations of learning*, Bulletin of the American Math. Society 39 (2001) N.1, 1–49.

- X compact manifold, $Y = \mathbb{R}^k$ (for simplicity k = 1), $Z = X \times Y$ with Borel measure ρ
- ξ random variable (real valued) on probability space (Z, ρ)
- expectation value and variance

$$\mathbb{E}(\xi) = \int_{Z} \xi \, d\rho, \quad \sigma^{2}(\xi) = \mathbb{E}((\xi - \mathbb{E}(\xi))^{2}) = \mathbb{E}(\xi^{2}) - \mathbb{E}(\xi)^{2}$$

• function $f: X \to Y$, least squares error of f

$$\mathcal{E}(f) = \int_Z (f(x) - y)^2 \, d\rho$$

measures average error incurred in using f(x) as a model of the dependence between y and x

• Problem: how to minimize the error?

- conditional probability $\rho(y|x)$ (probability measure on Y)
- marginal probability ρ_X(S) = ρ(π⁻¹(S)) on X, with projection π : Z = X × Y → X
- relation between these measures

$$\int_{Z} \phi(x, y) \, d\rho = \int_{X} \left(\int_{Y} \phi(x, y) \, d\rho(y|x) \right) \, d\rho_{X}$$

 breaking of ρ(x, y) into ρ(y|x) and ρ_X(S) is breaking of Z into input X and output Y

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• regression function $f_{\rho}: X \to Y$

$$f_{\rho}(x) = \int_{Y} y \, d\rho(y|x)$$

- assumption: f_{ρ} is bounded
- for fixed $x \in X$ map Y to \mathbb{R} via

$$y\mapsto y-f_{\rho}(x)$$

expectation value is zero so variance

$$\sigma^2(x) = \int_Y (y - f_\rho(x))^2 d\rho(y|x)$$

averaged variance

$$\sigma_{\rho}^2 = \int_X \sigma^2(x) \, d\rho_X = \mathcal{E}(f_{\rho})$$

measures how "well conditioned" ρ is

• Note: in general ρ and f_{ρ} not known but ρ_X known

• error, regression, and variance:

$$\mathcal{E}(f) = \int_X ((f(x) - f_\rho(x))^2 + \sigma_\rho^2) \, d\rho_X$$

- What this says: σ²_ρ is a lower bound for the error E(f) for all f, and f = f_ρ has the smallest possible error (which depends only on ρ)
- why identity holds:

$$egin{array}{rcl} \mathcal{E}(f) &=& \int_Z (f(x)-f_
ho(x)+f_
ho(x)-y)^2 \ &=& \int_X (f(x)-f_
ho(x))^2+\int_X \int_Y (f_
ho(x)-y)^2 \ &+& 2\int_X \int_Y (f(x)-f_
ho(x))(f_
ho(x)-y) \ &=& \int_X (f(x)-f_
ho(x))^2+\sigma_
ho^2. \end{array}$$

ゆ く き と く き と

Goal: "learn" (= find a good approximation for) f_{ρ} given random samples of Z

- Z^N ∋ z = ((x₁, y₁), ..., (x_N, y_N)) sample set of points (x_i, y_i) independently drawn with probability ρ
- empirical error

$$\mathcal{E}_z(f) = \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2$$

• for random variable ξ empirical mean

$$\mathbb{E}_z(\xi) = \frac{1}{N} \sum_{i=1}^N \xi(z_i, y_i)$$

• given $f: X \to Y$ take $f_Y: Z \to Y$ to be $f_Y: (x, y) \mapsto f(x) - y$

$$\mathcal{E}(f) = \mathbb{E}(f_Y^2), \qquad \mathcal{E}_z(f) = \mathbb{E}_z(f_Y^2)$$

伺下 イヨト イヨト

Facts of Probability Theory

(quantitative versions of law of large numbers)

- ξ random variable on probability space Z with mean $\mathbb{E}(\xi)=\mu$ and variance $\sigma^2(\xi)-\sigma^2$
- Chebyshev: for all $\epsilon > 0$

$$\mathbb{P}\left\{z\in Z^m: \left|\frac{1}{m}\sum_{i=1}^m\xi(z_i)-\mu\right|\geq\epsilon\right\}\leq \frac{\sigma^2}{m\epsilon^2}$$

• Bernstein: if $|\xi(z) - \mathbb{E}(\xi)| \le M$ for almost all $z \in Z$ then $orall \epsilon > 0$

$$\mathbb{P}\left\{z\in Z^m : \left|\frac{1}{m}\sum_{i=1}^m \xi(z_i)-\mu\right|\geq \epsilon\right\}\leq 2\exp\left(-\frac{m\epsilon^2}{2(\sigma^2+\frac{1}{3}M\epsilon)}\right)$$

• Hoeffding:

$$\mathbb{P}\left\{z\in Z^m: \left|\frac{1}{m}\sum_{i=1}^m\xi(z_i)-\mu\right|\geq\epsilon\right\}\leq 2\exp\left(-\frac{m\epsilon^2}{2M^2}\right)$$

Defect Function of $f : X \to Y$

$$L_z(f) := \mathcal{E}(f) - \mathcal{E}_z(f)$$

discrepancy between error and empirical error (only $\mathcal{E}_z(f)$ measured directly)

• estimate of defect if $|f(x) - y| \le M$ almost everywhere, then $\forall \epsilon > 0$, with σ^2 variance of f_Y^2

$$\mathbb{P}\{z \in Z^m : |L_z(f)| \le \epsilon\} \ge 1 - 2\epsilon \exp\left(-\frac{m\epsilon^2}{2(\sigma^2 + \frac{1}{3}M^2\epsilon)}\right)$$

- from previous Bernstein estimate taking $\xi = f_Y^2$
- when is $|f(x) y| \le M$ a.e. satisfied? e.g. for $M = M_{
 ho} + P$

 $M_
ho = \inf \{ar{M} \, : \, \{(x,y) \in Z \, : \, |y - f_
ho(x)| \geq ar{M} \}$ measure zero $\}$

$$P \ge \sup_{x \in X} |f(x) - f_{
ho}(x)|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Hypothesis Space

- a learning process requires a datum of a class of functions
- (hypothesis space) within which the best approximation for $f_{
 ho}$
- C(X) algebra of continuous functions on topological space X
- $\mathcal{H} \subset C(X)$ compact subset (not necessarily subalgebra)
- look for minimizer (not necessarily unique)

$$f_{\mathcal{H}} = \operatorname{argmin}_{f \in \mathcal{H}} \int_{Z} (f(x) - y)^2$$

because $\mathcal{E}(f) = \int_X (f - f_\rho)^2 + \sigma_\rho^2$ also minimizer

$$f_{\mathcal{H}} = \operatorname{argmin}_{f \in \mathcal{H}} \int_{X} (f - f_{\rho})^2$$

• continuity: if for $f \in \mathcal{H}$ have $|f(x) - y| \le M$ a.e., bounds $|\mathcal{E}(f_1) - \mathcal{E}(f_2)| \le 2M \|f_1 - f_2\|_{\infty}$

and for \mathcal{E}_z also, so \mathcal{E} and \mathcal{E}_z continuous

• compactness of \mathcal{H} ensures existence of minimizer but not uniqueness (a uniqueness result when \mathcal{H} convex)

Empirical target function $f_{\mathcal{H},z}$

• minimizer (non unique in general)

$$f_{\mathcal{H},z} = \operatorname{argmin}_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

Normalized Error

$$\mathcal{E}_{\mathcal{H}}(f) = \mathcal{E}(f) - \mathcal{E}(f_{\mathcal{H}})$$

 $\mathcal{E}_{\mathcal{H}}(f) \geq 0$ vanishing at $f_{\mathcal{H}}$ Sample Error $\mathcal{E}_{\mathcal{H}}(f_{\mathcal{H},z})$

$$\mathcal{E}(f_{\mathcal{H},z}) = \mathcal{E}_{\mathcal{H}}(f_{\mathcal{H},z}) + \mathcal{E}(f_{\mathcal{H}}) = \int_{X} (f_{\mathcal{H},z} - f_{\rho})^2 + \sigma_{\rho}^2$$

estimating $\mathcal{E}(f_{\mathcal{H},z})$ by estimating sample and approximation errors, $\mathcal{E}_{\mathcal{H}}(f_{\mathcal{H},z})$ and $\mathcal{E}(f_{\mathcal{H}})$ one on \mathcal{H} the other independent of sample z

bias-variance trade-off

- bias = approximation error; variance = sample error
 - fix *H*: sample error *E_H(f_{H,z})* decreases by increasing number *m* of samples
 - fix *m*: approximation error $\mathcal{E}(f_{\mathcal{H}})$ decreases when enlarging \mathcal{H}
- procedure:
 - **()** estimate how close $f_{\mathcal{H},z}$ and $f_{\mathcal{H}}$ depending on m
 - 2 how to choose dim \mathcal{H} when *m* is fixed
- first problem: how many examples need to draw to say with confidence $\geq 1 \delta$ that $\int_X (f_{\mathcal{H},z} f_{\mathcal{H}})^2 \leq \epsilon$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Uniformity Estimate (Vapnik's Statistical Learning Theory)

• covering number: S metric space, s > 0, number $\mathcal{N}(S, s)$ minimal $\ell \in \mathbb{N}$ so that \exists disks in S radii s covering S; for S compact $\mathcal{N}(S, s)$ finite

• uniform estimate: $\mathcal{H} \subset C(X)$ compact, if for all $f \in \mathcal{H}$ have $|f(x) - y| \leq M$ a.e., then $\forall \epsilon > 0$

$$\mathbb{P}\{z \in Z^m : \sup_{f \in \mathcal{H}} |L_z(f)| \le \epsilon\} \ge 1 - \mathcal{N}(\mathcal{H}, \frac{\epsilon}{8M}) 2 \exp\left(-\frac{m\epsilon^2}{4(2\sigma^2 + \frac{1}{3}M^2\epsilon)}\right)$$

with $\sigma^2 = \sup_{f \in \mathcal{H}} \sigma^2(f_Y^2)$

• main idea: like previous "estimate of defect" but passing from a single function to a family of functions, using a uniformity based on "covering number"

・ 同 ト ・ ヨ ト ・ ヨ ト …

Estimate of Sample Error

• $\mathcal{H} \subset C(X)$ compact, with $|f(x) - y| \leq M$ a.e. for all $f \in \mathcal{H}$, and $\sigma^2 = \sup_{f \in \mathcal{H}} \sigma^2(f_Y^2)$, then $\forall \epsilon > 0$

$$\mathbb{P}\{z \in Z^m : \mathcal{E}_{\mathcal{H}}(f_z) \leq \epsilon\} \geq 1 - \mathcal{N}(\mathcal{H}, \frac{\epsilon}{16M}) 2 \exp\left(-\frac{m\epsilon^2}{8(4\sigma^4 + \frac{1}{3}M^2\epsilon)}\right)$$

- obtained from previous estimate using $L_z(f) = \mathcal{E}(f) \mathcal{E}_z(f)$
- \bullet so answer to first question: to ensure probability above $\geq 1-\delta$ need to take at least

$$m \geq rac{8(4\sigma^4 + rac{1}{3}M^2\epsilon)}{\epsilon^2} \left(\log(2\mathcal{N}(\mathcal{H},rac{\epsilon}{16M})) + \log(rac{1}{\delta})
ight)$$

obtained by setting

$$\delta = \mathcal{N}(\mathcal{H}, rac{\epsilon}{16M}) 2 \exp\left(-rac{m\epsilon^2}{8(4\sigma^4 + rac{1}{3}M^2\epsilon)}
ight)$$

• need various techniques for estimating covering numbers $\mathcal{N}(\mathcal{H},s)$ depending on the choice of the compact set \mathcal{H}_{e} .

Second Question: Estimating the Approximation Error

$$\mathcal{E}(f_{\mathcal{H},z}) = \mathcal{E}_{\mathcal{H}}(f_{\mathcal{H},z}) + \mathcal{E}(f_{\mathcal{H}})$$

focus on $\mathcal{E}(f_{\mathcal{H}})$, which depends on \mathcal{H} and ρ

$$\int_X (f_{\mathcal{H}} - f_{\rho})^2 + \sigma_{\rho}^2$$

second term independent of \mathcal{H} so focus on first; f_{ρ} bounded, but not in \mathcal{H} nor necessarily in C(X)

• Main idea: use finite dimensional hypothesis space \mathcal{H} ; estimate in terms of growth of eigenvalues of an operator

• Main technique: Fourier analysis; Hilbert spaces

Fourier Series: start with case of $X = T^n = (S^1)^n$ torus • Hilbert space $L^2(X)$ Lebesgue measure with complete orthonormal system

$$\phi_{\alpha}(x) = (2\pi)^{-n/2} \exp(i\alpha \cdot x), \quad \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$$

Fourier series expansion

$$f = \sum_{\alpha \in \mathbb{Z}^n} c_\alpha \, \phi_\alpha$$

• finite dimensional subspaces $\mathcal{H}_N \subset L^2(X)$ spanned by ϕ_α with $\|\alpha\| \leq B$, dimension N(B) number of lattice points in ball radius B in \mathbb{R}^n

$$N(B) \le (2B)^{n/2}$$

• \mathcal{H} hypothesis space: ball $\mathcal{H}_{N,R}$ of radius R in $\|\cdot\|_{\infty}$ norm in \mathcal{H}_N

・ 同 ト ・ ヨ ト ・ ヨ ト …

Laplacian

• on torus $X = T^n$ Laplacian $\Delta : \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(X)$

$$\Delta(f) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}$$

Fourier series basis ϕ_{α} are eigenfunctions of $-\Delta$ with eigenvalue $\|\alpha\|^2$

• more general X: bounded domain $X \subset \mathbb{R}^n$ with smooth boundary ∂X and a complete orthonormal system ϕ_k of $L^2(X)$ (Lebesgue measure) of eigenfunctions of Laplacian with

$$-\Delta(\phi_k) = \zeta_k \phi_k, \quad \phi_k|_{\partial X} \equiv 0, \quad \forall k \ge 1$$

$$0 < \zeta_1 \leq \zeta_2 \leq \cdots \leq \zeta_k \leq \cdots$$

- subspace \mathcal{H}_N of $L^2(X)$ generated by $\{\phi_1, \ldots, \phi_N\}$
- hypothesis space $\mathcal{H} = \mathcal{H}_{N,R}$ ball of radius R for $\|\cdot\|_{\infty}$ in \mathcal{H}_N

Construction of $f_{\mathcal{H}}$

- Lebesgue measure μ on X and measure ρ (marginal probability ρ_X induced by ρ on $Z = X \times Y$)
- consider regression function

$$f_{
ho}(x) = \int_{Y} y \, d
ho(y|x)$$

- assumption f_{ρ} bounded on X so in $L^2_{\rho}(X)$ and in $L^2_{\mu}(X)$
- choice of *R*: assume also that $R \ge \|f_{\rho}\|_{\infty}$, which implies $R \ge \|f_{\rho}\|_{\rho}$
- then $f_{\mathcal{H}}$ is orthogonal projection of f_{ρ} onto \mathcal{H}_N using inner product in $L^2_{\rho}(X)$
- goal: estimate approximation error $\mathcal{E}(f_{\mathcal{H}})$ for this $f_{\mathcal{H}}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Distorsion factor:

• identity function on bounded functions extends to

$$J: L^2_\mu(X) \to L^2_\rho(X)$$

 \bullet distorsion of ρ with respect to μ

$$D_{
ho\mu} = \|J\|$$

operator norm: how much ρ distorts the ambient measure μ

- reasonable assumption: distorsion is finite
- \bullet in general ρ not known, but ρ_X is known, so $D_{\rho\mu}$ can be computed

伺 とう ヨン うちょう

Weyl Law

• Weyl law on rate of growth of eigenvalues of the Laplacian (acting on functions vanishing on boundary of domain $X \subset \mathbb{R}^n$)

$$\lim_{\lambda\to\infty}\frac{N(\lambda)}{\lambda^{n/2}}=(2\pi)^{-n}B_n\operatorname{Vol}(X)$$

 B_n volume of unit ball in \mathbb{R}^n ; $N(\lambda)$ number of eigenvalues (with multiplicity) up to λ

• Weyl law: Li-Yau version

$$\zeta_k \geq \frac{n}{n+2} 4\pi^2 \left(\frac{k}{B_n \operatorname{Vol}(X)}\right)^{2/n}$$

P. Li and S.-T. Yau, *On the parabolic kernel of the Schrödinger operator*, Acta Math. 156 (1986), 153–201

• from this get a weaker estimate, using explicit volume B_n

$$\zeta_k \ge \left(\frac{k}{Vol(X)}\right)^{2/n}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximation Error and Weyl Law

• norm $\|\cdot\|_{\mathcal{K}}$: for $f = \sum_{k=1}^{\infty} c_k \phi_k$ with ϕ_k eigenfunctions of $-\Delta$

$$\|f\|_{\mathcal{K}} := \left(\sum_{k=1}^{\infty} c_k^2 \zeta_k\right)^{1/2}$$

like L^2 -norm but weighted by eigenvalues of Laplacian in ℓ^2 measure of $c = (c_k)$

• Approximation Error Estimate: for \mathcal{H} and $f_{\mathcal{H}}$ as above

$$\mathcal{E}(f_{\mathcal{H}}) \leq D_{\rho\mu}^2 \left(\frac{k}{Vol(X)}\right)^{2/n} \|f_{\rho}\|_{K}^2 + \sigma_{\rho}^2$$

• proved using Weyl law and estimates

$$\|f_
ho-f_{\mathcal H}\|_
ho=d_
ho(f_
ho,\mathcal H_N)\leq \|J\|\,d_\mu(f_
ho,\mathcal H_N)$$

$$d_{\mu}(f_{\rho}, \mathcal{H}_{N})^{2} = \|\sum_{k=N+1}^{\infty} c_{k}\phi_{k}\|_{\mu}^{2} = \sum_{k=N+1}^{\infty} c_{k}^{2} = \sum_{k=N+1}^{\infty} c_{k}^{2}\zeta_{k}\frac{1}{\zeta_{k}} \le \frac{1}{\zeta_{N+1}}\|f_{\rho}\|_{K}^{2}$$

where $f_{\rho} = \sum_{k} c_{k}\phi_{k}$

Solution of the bias-variance problem

 \bullet mimimize $\mathcal{E}(f_{\mathcal{H},z})$ by minimizing both sample error and approximation error

• minimization as a function of $N \in \mathbb{N}$ (for the choice of hypothesis space $\mathcal{H} = \mathcal{H}_{N,R}$)

• select integer $N \in \mathbb{N}$ that minimizes $\mathcal{A}(N) + \epsilon(N)$ where $\epsilon = \epsilon(N)$ as in previous estimate of sample error and

$$\mathcal{A}(N) = D_{
ho\mu}^2 \left(rac{k}{Vol(X)}
ight)^{2/n} \|f_{
ho}\|_K^2 + \sigma_{
ho}^2$$

• from previous relation between m, $R = \|f_{
ho}\|_{\infty}$, δ and ϵ obtain

$$\epsilon - \frac{288M^2}{m} \left(N \log(\frac{96RM}{\epsilon}) + 1 + \log(\frac{1}{\delta}) \right) \geq 0$$

find N that minimizes ϵ with this constraint

• no explicit closed form solution for N minimizing $\mathcal{A}(N) + \epsilon(N)$ but can be estimated numerically in specific cases

back to the visual cortex modeling (Poggio-Anselmi)

• stored templates t^k , k = 1, ..., K and new images \mathcal{I} in some finite dimensional approximation \mathcal{H}_N to a Hilbert space

- ullet simple cells perform inner products $\langle gt^k, \mathcal{I}
 angle$ in \mathcal{H}_N
- estimate in terms of 1D-projections: $\mathcal{I} \in \mathbb{R}^d$ some in general large d; projections $\langle t^k, \mathcal{I} \rangle$ for a set of normalized vectors $t^k \in S^{d-1}$ (unit sphere)

$$Z: S^{d-1} \to \mathbb{R}_+, \quad Z(t) = \left| \mu^t(\mathcal{I}) - \mu^t(\mathcal{I}') \right|$$

- distance between images $d(\mathcal{I}, \mathcal{I}')$ think of as a distance between two probability distributions $P_{\mathcal{I}}$, $P_{\mathcal{I}'}$ on \mathbb{R}^d
- measure distance in terms of

$$d(P_{\mathcal{I}},P_{\mathcal{I}'})\sim \int_{\mathcal{S}^{d-1}}Z(t)\, d extsf{vol}(t)$$

伺下 イヨト イヨト

model this in terms of

$$\hat{d}(P_{\mathcal{I}}, P_{\mathcal{I}'}) := \frac{1}{K} \sum_{k=1}^{K} Z(t^k)$$

want to evaluate the error incurred in using $\hat{d}(P_{\mathcal{I}}, P_{cl'})$ (1D projections and templates) to estimate $d(P_{\mathcal{I}}, P_{\mathcal{I}'})$

• as in the Cucker-Smale setting, evaluate the error and the probability of error in terms of the Hoeffding estimate

$$\left| d(P_{\mathcal{I}}, P_{\mathcal{I}'}) - \hat{d}(P_{\mathcal{I}}, P_{cl'}) \right| = \left| \frac{1}{K} \sum_{k=1}^{K} Z(t^k) - \mathbb{E}(Z) \right|$$

• probability of error

$$\mathbb{P}\left(\left|\frac{1}{K}\sum_{k=1}^{K}Z(t^{k})-\mathbb{E}(Z)\right|>\epsilon\right)\leq 2e^{-\frac{K\epsilon^{2}}{2M^{2}}}$$

if a.e. bound $|Z(t) - \mathbb{E}(Z)| \leq M$

• want this estimate to hold uniformly over a set of *N* images: want same bound to hold over each pair so error probability is at most

$$N(N-1)\exp\left(-rac{\kappa\epsilon^2}{2M_{\min}^2}
ight) \sim N^2\exp\left(-rac{\kappa\epsilon^2}{2M_{\min}^2}
ight) \leq \delta^2$$

with M_{\min} the smallest M over all pairs

• This is at most a given δ^2 whenever

$$K \geq rac{4M_{\min}^2}{\epsilon^2}\lograc{N}{\delta}$$

Group Actions and Orbits

- $\{t^k\}_{k=1,...,K}$ given templates
- *G* finite subgroup of the affine group (translations, rotations, scaling)
- \bullet G acts on set of images $\mathcal{I}:$ orbit \mathcal{GI}
- projection $P: \mathbb{R}^d \to \mathbb{R}^K$ of images \mathcal{I} onto span of templates t^k

• Johnson–Lindenstrauss lemma: low distorsion embeddings of sets of points from a high-dimensional to a low-dimensional Euclidean space (special case with map an orthogonal projection)

- given $0 < \epsilon < 1$; given finite set X of n points in \mathbb{R}^d
- take $K > 8 \log(n)/\epsilon^2$
- then there is a linear map f given by a multiple of an orthogonal projection onto a (random) subspace of dimension K such that, for all u, v ∈ X

$$(1-\epsilon) \|u-v\|_{\mathbb{R}^d}^2 \le \|f(u)-f(v)\|_{\mathbb{R}^K}^2 \le (1+\epsilon) \|u-v\|_{\mathbb{R}^d}^2$$

• result depends on concentration of measure phenomenon.

• up to a scaling, for a good choice of subspace spanned by templates, can take *P* to satisfy Johnson-Lindenstrauss lemma

• starting from finite set $X = \{u\}$ of images, can generate another set by including all group translates $X_G = \{g \cdot u : g \in G, u \in X\}$

• then for Johnson-Lindenstrauss lemma required accuracy for X_G

$$K > 8 \frac{\log(n \cdot \#G)}{\epsilon^2}$$

• so can estimate sufficiently well the distance between images in \mathbb{R}^d using the distance between projections $\langle t^k, g\mathcal{I} \rangle$ of their group orbits onto the space of templates

• by $\langle t^k, g\mathcal{I} \rangle = \langle g^{-1}t^k, \mathcal{I} \rangle$ for unitary representations it would seem one needs to increase by $K \mapsto \#G \cdot K$ the number of templates to distinguish orbits, but in fact by argument above need an increase $K \mapsto K + 8\log(\#G)/\epsilon^2$

・ 同 ト ・ ヨ ト ・ ヨ ト

• given $\langle t^k, g\mathcal{I} \rangle = \langle g^{-1}t^k, \mathcal{I} \rangle$ computed by the simple cells, pooling by complex cells by computing

$$\mu_h^k(\mathcal{I}) = \frac{1}{\#G} \sum_{g \in G} \sigma_h(\langle gt^k, \mathcal{I} \rangle)$$

 σ_h a set of nonlinear functions: examples

•
$$\mu_{\text{average}}^{k}(\mathcal{I}) = \frac{1}{\#G} \sum_{g \in G} \left| \langle gt^{k}, \mathcal{I} \rangle \right|$$

•
$$\mu_{\text{energy}}^{k}(\mathcal{I}) = \frac{1}{\#G} \sum_{g \in G} \langle gt^{k}, \mathcal{I} \rangle^{2}$$

•
$$\mu_{\max}^k(\mathcal{I}) = \max_{g \in G} \left| \langle gt^k, \mathcal{I} \rangle \right|$$

- other nonlinear functions: especially useful case, when $\sigma_h : \mathbb{R} \to \mathbb{R}^+$ is *injective*
- Note: stored knowledge of gt^k for $g \in G$ allows the system to be automatically invariant wrt G action on images \mathcal{I}

伺 とう ヨン うちょう

Localization and uncertainty principle

- would like templates t(x) to be localized in x: small outside of some interval Δx
- \bullet would also like \hat{t} to be localized in frequency: small outside an interval $\Delta \omega$
- but... uncertainty principle: localized in x / delocalized in ω

 $\Delta x \cdot \Delta \omega \ge 1$

æ

Optimal localization

• optimal possible localization when $\Delta x \cdot \Delta \omega = 1$

• realized by the Gabor functions

$$t(x) = e^{i\omega_0 x} e^{-\frac{x^2}{2\sigma^2}}$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

each cell applies a Gabor filter; plotted n_y/n_x anisotropy ratios

イロン イヨン イヨン イヨン

Э