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A Mathematical Physicist’s adventures in Linguistics

• This talk is in two parts:

Today Linguistics: relations between syntactic parameters via
Kanerva networks, coding theory, and via Belkin–Niyogi heat
kernel dimensional reduction

Continuation of Math Colloquium: persistent topology of
syntax, algebro-geometric historical linguistics, spin glass
models of language evolution

The two parts are largely independent: no need to have seen the
previous one (some small amount of repetition if you have seen it)
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Questions and Motivation

• Broad question: can we use computational (mathematical)
techniques to better understand how the human brain processes
language?

• some of the main questions:

Language acquisition (poverty of the stimulus): how does the
learning brain converge to one grammar?

How is language (in particular syntax) stored in the brain?

How do languages change and evolve in time? quantitative,
predictive modeling?

• focus on the “large scale structure” of language: syntax

• Plan: approach these questions from a mathematical perspective,
using tools from geometry and theoretical physics
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Syntax and Syntactic Parameters

• we work here within the framework of the Principles and
Parameters model (Chomsky, 1981)

principles: general rules of grammar

parameters: binary variables (on/off switches) that distinguish
languages in terms of syntactic structures

• this idea is very appealing for a mathematician: at the level of
syntax a language can be described by a set of coordinates given
by binary variables

• however, surprisingly no mathematical model of Principles and
Parameters formulation of Linguistics has been developed so far
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• Example of parameter: head-directionality
(head-initial versus head-final)
English is head-initial, Japanese is head-final

VP= verb phrase, TP= tense phrase, DP= determiner phrase

• Other examples of parameters:

Subject-side

Pro-drop

Null-subject
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Main Problems

• there is no complete classification of syntactic parameters

• there are hundreds of such binary syntactic variables, but not all
of them are “true” syntactic parameters (conflations of
deep/surface structure)

• Interdependencies between different syntactic parameters are
poorly understood: what is a good independent set of variables, a
good set of coordinates?

• syntactic parameters are dynamical: they change historically over
the course of language change and evolution

• collecting reliable data is hard! (there are thousands of world
languages and analyzing them at the level of syntax is much more
difficult for linguists than collecting lexical data; few ancient
languages have enough written texts)
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Databases of syntactic structures of world languages

1 Syntactic Structures of World Languages (SSWL)
http://sswl.railsplayground.net/

2 TerraLing http://www.terraling.com/

3 World Atlas of Language Structures (WALS)
http://wals.info/

4 another set of data from Longobardi–Guardiano, Lingua 119
(2009) 1679-1706

5 more complete set of data by Longobardi, Linguistic Analysis,
Vol.41 (2017) N.3-4, 517–556.

• First Step: data analysis of syntax of world languages with
various mathematical tools (persistent topology, etc.)

• we used the most extensive database currently available: SSWL
with 116 “variables” (syntactic “parameters”) and 253 world
languages (but... some problems with SSWL)
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Problems of SSWL data

Very non-uniformly mapped across the languages of the
database: some are 100% mapped, while for some only very
few of the 116 parameters are mapped

Linguists criticize the choice of binary variable (not all of
them should count as “true” parameters)

• the data of Longobardi–Guardiano are more reliable, with 62
languages (mostly Indo-European) and 83 parameters

• linguistic question: can languages that are far away in terms of
historical linguistics end up being close in terms of syntactic
parameters?

• Guideline for data use: given what is available at present, use
SSWL and Longobardi data (two independent set of syntactic
features) keeping limitations in mind and comparing structures of
the two datasets
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Parameters from Modularized Global Parameterization Method

G. Longobardi, Methods in parametric linguistics and cognitive
history, Linguistic Variation Yearbook, Vol.3 (2003) 101–138

G. Longobardi, C. Guardiano, Evidence for syntax as a signal
of historical relatedness, Lingua 119 (2009) 1679–1706.

• Determiner Phrase Module:
- syntactic parameters dealing with person, number, gender (1–6)
- parameters of definiteness (7–16)
- parameters of countability (17–24)
- genitive structure (25–31)
- adjectival and relative modification (32–14)
- position and movement of the head noun (42–50)
- demonstratives and other determiners (51–50 and 6–63)
- possessive pronouns (56–59)

• more parameters added in the more recent publication of a more
extensive list of data from Longobardi and collaborators
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What kind of relations exist between syntactic parameters?

• Entailment relations: some explicitly known relations where one
state of a parameter (or more) can make another parameter
undefined

• Example: {p1, p2} = {Strong Deixis, Strong Anaphoricity}

p1 p2

`1 +1 +1

`2 −1 0

`3 +1 +1

`4 +1 −1

{`1, `2, `3, `4} = {English,Welsh,Russian,Bulgarian}

Strong Deixis +1: governs possible positions of demonstratives in the

nominal domain

Strong Anaphoricity +1: obligatory dependence on an antecedent in a

local and asymmetric relation to anaphor
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• several entailment relations are recorded in the data of
Longobardi–Guardiano
• SSWL database does not record relations between parameters

• relations can be detected through methods of data analysis

• goals: identify a good set of independent variables among
syntactic parameters, understand (at least statistically) the
“manifold” determined by the relations

• some methods we consider here:

1 Kanerva networks: sparse distributed memories

2 coding theory: code parameters, position in the space of codes

3 heat kernel dimensional reduction: Laplace eigenfunctions
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Syntactic Parameters in Kanerva Networks

• J.J. Park, R. Boettcher, A. Zhao, A. Mun, K. Yuh, V. Kumar, M.
Marcolli, Prevalence and recoverability of syntactic parameters in
sparse distributed memories, in “Geometric Science of Information.
Third International Conference GSI 2017”, pp. 265–272, Lecture
Notes in Computer Science, Vol.10589, Springer 2017.

• Select a subset of SSWL parameters with properties:

Completely mapped for a large number of languages in the
database

Known to have relations, though not of a simple explicit
entailment form

• Detect which among these parameters are more or less
recoverable from the other ones by testing recoverability in a
sparse distributed memory
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Preliminary considerations: Frequency of Expression

• different syntactic parameters have very different frequency of
expression among world languages

• Example: Word Order: SOV, SVO, VSO, VOS, OVS, OSV

Very unevenly distributed across world languages

• this creates overall effect (using data that record expression of
parameters among world languages): needs to be normalized when
searching for abstract syntactic relations among parameters
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Parameters and frequencies (as classified in SSWL)
01 Subject-Verb (0.64957267)

02 Verb-Subject (0.31623933)

03 Verb-Object (0.61538464)

04 Object-Verb (0.32478634)

05 Subject-Verb-Object (0.56837606)

06 Subject-Object-Verb (0.30769232)

07 Verb-Subject-Object (0.1923077)

08 Verb-Object-Subject (0.15811966)

09 Object-Subject-Verb (0.12393162)

10 Object-Verb-Subject (0.10683761)

11 Adposition-Noun-Phrase (0.58974361)

12 Noun-Phrase-Adposition (0.2905983)

13 Adjective-Noun (0.41025642)

14 Noun-Adjective (0.52564102)

15 Numeral-Noun (0.48290598)

16 Noun-Numeral (0.38034189)

17 Demonstrative-Noun (0.47435898)

18 Noun-Demonstrative (0.38461539)

19 Possessor-Noun (0.38034189)

20 Noun-Possessor (0.49145299)

A01 Attributive-Adjective-Agreement (0.46581197)
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Kanerva networks (sparse distributed memories)
• P. Kanerva, Sparse Distributed Memory, MIT Press, 1988.

• field F2 = {0, 1}, vector space FN
2 large N

• uniform random sample of 2k hard locations with 2k << 2N

• median Hamming distance between hard locations

• Hamming spheres of radius slightly larger than median value
(access sphere)

• writing to network: storing datum X ∈ FN
2 , each hard location in

access sphere of X gets i-th coordinate (initialized at zero)
incremented depending on i-th entry ot X

• reading at a location: i-th entry determined by majority rule of
i-th entries of all stored data in hard locations within access sphere

Kanerva networks are good at reconstructing corrupted data
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Memory items in SDM: most items unrelated but most pairs linked
by few intermediaries

illustration from: Ján Kvak, Creating and Recognizing Visual Words Using Sparse Distributed Memory

proposed as a realistic computational model of how information is
stored and retrieved in human memory

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Procedure

Kanerva Network with Boolean space F21
2

166 data points (fully mapped SSWL languages)

Kanerva network with access sphere of n/4, with n median
Hamming distance between points

optimal: larger n excessive number of hard locations being in
the sphere, computationally intractable

correct data written to the Kanerva network

known language bit-string, with a single corrupted bit, used as
read location

result of the read compared to original bit-string to test bit
recovery

average Hamming distance resulting from corruption of a
given bit (a particular syntactic parameter) computed across
all languages
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Recoverability in Kanerva Networks

need to identify effects due to syntax from overall frequency effect
Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Normalize for frequency effect

• the recoverability data obtained combine two effects

an overall effect depending on the frequency of expression

a finer effect due to actual syntactic relations

• Procedure to separate overall frequency effect:

for each syntactic parameter subset of languages of fixed size
chosen randomly with property that half of the languages
have that parameter expressed

ignore those parameters with too few languages for which this
can be done

use a fixed size of 95 languages

data of these languages written to Kanerva network and
recoverability of corrupted individual parameters tested again

test run again with random data generated with an
approximately similar distribution of bits
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Overall effect related to relative prevalence of a parameter
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More refined effect after normalizing for prelavence
(extracting effect of syntactic dependencies)
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Additional Remarks

• Overall effect relating recoverability in a Kanerva Network to
prevalence of a certain parameter among languages (depends only
on frequencies: see in random data with assigned frequencies)

• Additional effects (that deviate from random case) which detect
possible dependencies among syntactic parameters: increased
recoverability beyond what effect based on frequency

• Possible neuroscience implications? Kanerva Networks as models
of human memory (parameter prevalence linked to neuroscience
models)

• More refined effects if divided by language families?
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Coding Theory to study how syntactic structures differ across the
landscape of human languages

• Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, arXiv:1610.00311

• Matilde Marcolli, Syntactic Parameters and a Coding Theory

Perspective on Entropy and Complexity of Language Families, Entropy

2016, 18(4), 110

select a group of languages L = {`1, . . . , `N}
with the binary strings of n syntactic parameters form a code
C(L) ⊂ Fn

2

compute code parameters (R(C), δ(C)) code rate and relative
minimum distance

analyze position of (R, δ) in space of code parameters

get information about “syntactic complexity” of L

• Note: some overlap with my talk “Codes and Complexity” for
the Centre for Complex Systems Studies
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Codes and code parameters
error correcting codes C ⊂ Fn

2

• transmission rate (encoding)

R(C) =
k

n
, k = log2(#C) = log2(N)

for q-ary codes in Fn
q take k = logq(N)

• relative minimum distance (decoding)

δ(C) =
d

n
, d = min

`1 6=`2

dH(`1, `2)

Hamming distance of binary strings of `1 and `2

• error correcting codes: optimize for maximal R and δ but
constraints that make them inversely correlated

• bounds in the space of code parameters (R, δ)
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Bounds on code parameters

• singleton bound: R + δ ≤ 1

• Gilbert-Varshamov curve (q-ary codes)

R = 1−Hq(δ), Hq(δ) = δ logq(q−1)−δ logq δ−(1−δ) logq(1−δ)

q-ary Shannon entropy: asymptotic behavior of volumes of
Hamming balls for large n

• The Gilbert-Varshamov curve represents the typical behavior of
large random codes (Shannon Random Code Ensemble)

• Note: if syntactic parameters really were identically distributed
independent random variables, subject to an evolution via a
Markov model on a tree (simple assumption of phylogenetic
models) then would expect codes from sets of languages to behave
like Shannon random codes

• distance from SRCE behavior measures presence of relations that
affect distribution of syntactic parameters across languages
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The asymptotic bound

• Yu.I. Manin, What is the maximum number of points on a curve
over F2? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981), 715–720.

• existence proved by spoiling operations on codes

1δ

R

1

R = αq(δ) continuous decreasing function with αq(0) = 1 and
αq(δ) = 0 for δ ∈ [q−1

q , 1]
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Properties of the asymptotic bound
• separates space [0, 1]2 of code parameters into region below
asymptotic bound R = αq(δ) where code points dense and with
infinite multiplicity from region above where code points isolated
and with finite multiplicity

• the function R = αq(δ) may be non-computable, but only as bad
as Kolmogorov complexity (becomes computable given an oracle
that orders codes by their Kolmogorov complexity)

Yu.I. Manin, M. Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science, Vol.5 (2011)
133–170

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91–108
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Estimates on the asymptotic bound

• Plotkin bound:

αq(δ) = 0, δ ≥ q − 1

q

• singleton bound:
αq(δ) ≤ 1− δ

• Hamming bound:

αq(δ) ≤ 1− Hq(
δ

2
)

• Gilbert–Varshamov bound:

αq(δ) ≥ 1− Hq(δ)

• difficult to construct codes above the asymptotic bound:
examples from algebro-geometric codes from curves (but only for
q ≥ 49 otherwise entirely below the GV curve)
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Application to Linguistics: Syntactic Parameters and Coding

M. Marcolli, Principles and Parameters: a coding theory
perspective, arXiv:1407.7169

• idea: assign a (binary or ternary) code to a family of languages
and use position of code parameters with respect to the asymptotic
bound to test relatedness and to test difference in behavior of
syntactic parameters from independent random variables

• N = number of syntactic parameters Π = (Π`)
N
`=1

each Π` with values in F2 = {0, 1}
(or F3 = {−1, 0,+1} if include parameters that are not set in
certain languages)

• F = {Lk}mk=1 a set of natural languages (language “family”)

• Code C = C (F) in FN (FN
2 or FN

3 ) with m code words
wk = Π(Lk) string of syntactic parameters for the language Lk
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Interpretation of Code Parameters

• R = R(C ) measures ratio between logarithmic size of number of
languages in F and total number of parameters: how F
distributed in the ambient FN

• δ = δ(C ) is the minimum, over all pairs of languages Li , Lj in F
of the relative Hamming distance

δ(C (F)) = min
Li 6=Lj∈F

δH(Li , Lj)

δH(Li , Lj) =
1

N

N∑
`=1

|Π`(Li )− Π`(Lj)|

• code parameter δ used in Longobardi’s Parameter Comparison
Method for reconstruction of phylogenetic trees
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Spoiling operations on binary codes

1 C1 = C ?i a associates to a word c = (a1, . . . , an) of C the
word c ?i a = (a1, . . . , ai−1, a, ai , . . . , an)

2 C2 = C?i , which is a projection of the code C in the i-th
direction

3 C3 = C (a, i) code words with same i-th digit equal to a

Interpretation of Spoiling Operations

• first spoiling operation: effect of including one syntactic
parameter in the list which is dependent on the other parameters

• second spoiling operation: forgetting one of the syntactic
parameters

• third spoiling operation: forming subfamilies by considering
languages that have a common value of one of the parameters
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Simple Example:

• group of three languages F = {`1, `2, `3}: Italian, Spanish,
French using first group of 6 parameters

• code C = C (F)

`1 1 1 1 0 1 1
`2 1 1 1 1 1 1
`3 1 1 1 0 1 0

• code parameters: (R = log2(3)/6 = 0.2642, δ = 1/6)

• code parameters satisfy R < 1− H2(δ): below the
Gilbert–Varshamov curve
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Spoiling operations in this example:

• first spoiling operation:
first two parameters same value 1, so
C = C ′ ?1 f1 = (C ′′ ?2 f2) ?1 f1 with f1 and f2 constant equal to 1
and C ′′ ⊂ F4

2 without first two letters

• second spoiling operation:
conversely, C ′′ = C ′?2 and C ′ = C?1

• third spoiling operation:
C (0, 4) = {`1, `3} and C (1, 6) = {`2, `3}
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What if languages are not in the same historical family?

Example: F = {L1, L2, L3}: Arabic, Wolof, Basque

• excluding parameters that are not set, or are entailed by other
parameters, for these languages: left with 25 parameters from
original list (number 1–5, 7, 10, 20–21, 25, 27–29, 31–32, 34, 37,
42, 50–53, 55–57)

• code C = C (F)

• code parameters: δ = 0.52 and R > 0 violates Plotkin bound
⇒ isolated code above the asymptotic bound
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Asymptotic bound and language relatedness

• For binary syntactic parameters: a code C = C (F)
violates the Plotkin bound if any pair Li 6= Lj of languages in F
has δH(Li , Lj) ≥ 1/2

• Li and Lj differ in at least half of the parameters: it would not
happen in a group of historically related languages

• but what about codes above the asymptotic bound that do not
violate the Plotkin bound?

• Expect: C = C (F) above the asymptotic bound
⇒ F not a historical language family
(quantitative test of historical relatedness)
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Why the asymptotic bound?

• Why look at position with respect to asymptotic bound as a test
of historical relatedness? because it is the only true “bound” in the
space of code parameters across which behavior truly changes

• codes below the asymptotic bound are easily deformable
(as long as number of syntactic parameters is large)

• if think of language evolution as a process of parameter change,
expect languages that have evolved in the same family to
determine codes in this zone of the space of code parameters

• codes C = C (F) above the asymptotic bound should be a clear
sign that list of languages in F do not belong to same historical
family

• though there can be codes C = C (F) below the asymptotic
bound that also don’t come from historically related languages:
converse implication does not hold
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Code parameters of language sets

Kevin Shu and Matilde Marcolli, Syntactic structures and
code parameters, Mathematics in Computer Science 11
(2017) no. 1, 79–90.

• take all sets of two and three languages in the SSWL database
and set of parameters completely mapped for languages in the set

• for each pair/triple compute the code parameters of the resulting
code and plot where they lie in the space of code parameters

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



• distribution of code parameters for small sets of languages (pairs
or triples) and SSWL data
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• in lower region of code parameter space a superposition of two
Thomae functions (f (x) = 1/q for x = p/q coprime, zero on
irrationals)

and behaves like the case of random codes with fixed k = log2(N)

(δ =
d

n
,R = k · 1

n
)
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• randomly chosen sets of two or three languages tend to populate
the lower region of the Thomae function graph

uniformly random sets of three languages
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• more interesting what happens in the upper regions of the code
parameter space

• take larger sets of randomly selected languages and syntactic
parameters in the SSWL database

codes better than algebro-geometric above GV, asymptotic, and Plotkin
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Remarks

• construction of binary codes above asymptotic bound through
linguistics

• what are the best codes obtained this way? explicit examples
with languages that are phylogenetically very distant

• these points are rare compared to typical: find explicitly which
languages are involved
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What kind of dynamics of language change can lead to this type of
distribution of syntactic features (and to codes so high above the
GV line)?

• build a simple model of language change based on interaction
between languages (bilingualism, code switching)

• tendency of parameters to align if high interaction (spin glass
model)

• if no relations: independent set of uncoupled Ising models on a
graph, for each syntactic parameter... convergence to most
prevalent configuration in initial condition

• crucial role of relations between parameters in giving interesting
dynamics and interesting equilibrium configurations (not all
parameters aligned)

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Spin Glass Models of Syntax

• Karthik Siva, Jim Tao, Matilde Marcolli, Syntactic Parameters
and Spin Glass Models of Language Change, Linguistic Analysis,
Vol. 41 (2017) N. 3-4, 559–608.

• historical examples: Sanskrit flipped some syntactic parameters
by influence of Dravidian languages...

• physicist viewpoint: binary variables (up/down spins) that flip by
effect of interactions: Spin Glass Model

– focus on linguistic change caused by language interactions

– think of syntactic parameters as spin variables

– spin interaction tends to align (ferromagnet)

– strength of interaction proportional to bilingualism (MediaLab)

– role of temperature parameter: probabilistic interpretation of
parameters & amount of code-switching in bilingual populations

– not all parameters are independent: entailment relations

– Metropolis–Hastings algorithm: simulate evolution
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The Ising Model of spin systems on a graph G

• graph: vertices = languages, edges = language interaction
(strength proportional to bilingual population); over each vertex a
set of spin variables (syntactic parameters)

• configurations of spins s : V (G )→ {±1}
• if only one syntactic parameter, would have an Ising model on
the graph G : configurations s : V (G )→ {±1} set the parameter
at all the locations on the graph

• variable interaction energies along edges (some pairs of
languages interact more than others)

H(s) = −
∑

e∈E(G):∂(e)={v ,v ′}

N∑
i=1

Je sv ,i sv ′,i

• if all N parameters are independent, then it would be like having
N non-interacting copies of same Ising model on the same graph G
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Example: Single parameter dynamics Subject-Verb parameter

Initial configuration: most languages in SSWL have +1 for
Subject-Verb; use interaction energies from MediaLab data

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Equilibrium: low temperature all aligned to +1; high temperature:

Temperature: fluctuations in bilingual users between different
structures (“code-switching” in Linguistics)

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Entailment relations among parameters: toy model example

• Example: {p1, p2} = {Strong Deixis, Strong Anaphoricity}

p1 p2

`1 +1 +1

`2 −1 0

`3 +1 +1

`4 +1 −1

{`1, `2, `3, `4} = {English,Welsh,Russian,Bulgarian}
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Modeling Entailment

• key idea: change the Hamiltonian (which determines the
dynamics) by adding terms that make the configurations
(p1 = 1, p2 = ±1) and (p1 = −1, p2 = 0) energetically favored
over others

• variables: S`,p1 = exp(πiX`,p1 ) ∈ {±1}, S`,p2 ∈ {±1, 0} and
Y`,p2 = |S`,p2 | ∈ {0, 1} and Hamiltonian H = HE + HV

HE = Hp1 + Hp2 = −
∑

`,`′∈languages

J``′
(
δS`,p1

,S`′,p1
+ δS`,p2

,S`′,p2

)

HV =
∑
`

HV ,` =
∑
`

J` δX`,p1
,Y`,p2

if freeze p1 and evolution for p2: Potts model with external magnetic field
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• two parameters: temperature (amount of code switching) and
coupling energy of entailment (how strongly enforced the
entailment relations are)

Equilibrium configuration

(p1, p2) HT/HE HT/LE LT/HE LT/LE

`1 (+1, 0) (+1,−1) (+1,+1) (+1,−1)

`2 (+1,−1) (−1,−1) (+1,+1) (+1,−1)

`3 (−1, 0) (−1,+1) (+1,+1) (−1, 0)

`4 (+1,+1) (−1,−1) (+1,+1) (−1, 0)
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Average value of spin

p1 left and p2 right in low entailment energy case
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• when consider more realistic models (at least the 28 languages
and 63 parameters of Longobardi–Guardiano with all their
entailment relations) very slow convergence of the
Metropolis–Hastings dynamics even for low temperature

• how to get better information on the dynamics? consider set of
languages as codes and an induced dynamics in the space of code
parameters

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Space of Code Parameters and dynamics of syntactic parameters

• Spin Glass Model dynamics for a set of languages L induces
dynamics on codes C(L) and on code parameters (R, δ)

no entailment (independent parameters): fixed R and δ flows
towards zero (spoiling code)
entailment: dynamics can improve code making δ larger (R
fixed)

• for large number of parameters see dynamics more easily on code
parameter than with average magnetization of spin glass model
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Heat Kernel dimensional reduction

• Andrew Ortegaray, Robert C. Berwick, Matilde Marcolli, Heat
Kernel Analysis of Syntactic Structures, arXiv:1803.09832

• Geometric methods of dimensional reduction: Belkin–Niyogi heat
kernel method

• M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Comput. 15 (6) (2003)
1373–1396.

• Question: low dimensional representations of data sampled from
a probability distribution on a manifold

• Want more efficient methods than Principal Component Analysis

• Main Idea: build a graph with neighborhood information, use
Laplacian of graph, obtain low dimensional representation that
maintains the local neighborhood information using eigenfunctions
of the Laplacian
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• setting: data points x1, . . . , xk ∈M ⊂ R` on a manifold; find
points y1, . . . , yk in a low dimensional Rm (m << `) that represent
the data points xi

• Step 1 (a): adjacency graph (ε-neighborhood): an edge eij
between xi and xj if ‖xi − xj‖R` < ε

• Step 1 (b): adjacency graph (n nearest neighborhood): egde eij
between xi and xj if xi is among the n nearest neighbors of xj or
viceversa

• Step 2: weights on edges: heat kernel

Wij = exp

(
−
‖xi − xj‖2

t

)
if edge eij and Wij = 0 otherwise; heat kernel parameter t > 0
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• Step 3: Eigenfunctions for connected graph (or on each
component)

Lψ = λDψ

diagonal matrix of weights Dii =
∑

j Wji ; Laplacian L = D −W
with W = (Wij); eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λk−1 and ψj

eigenfuctions
ψi : {1, . . . , k} → R

defined on set of vertices of graph

• Step 4: Mapping by Laplace eigenfunctions

R` ⊃M 3 xi 7→ (ψ1(i), . . . , ψm(i)) ∈ Rm

map by first m eigenfunctions

• Belkin–Niyogi: optimality of embedding by Laplace
eigenfunctions
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Heat Kernel analysis of Syntactic Parameters

• Connectivity in ε-neighborhood and nearest-neighbor (difference
between SSWL data (json) and Longobardi data (csv)
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Graphs with ε-neighborhood Longobardi data
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Graphs with ε-neighborhood Longobardi data
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Graphs with ε-neighborhood Longobardi data
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Closer look at some of these structures

Examples of parameters in this structure: DMG (def. matching
genitives), GCO (gramm. collective number), GST
(grammaticalised Genitive) ...

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Closer look at some of these structures

The same structure looked at a different ε-scale has acquired
further connections to other parameters
Most vertices in these structures have high centrality in the graph

Matilde Marcolli U. Toronto, Perimeter Institute, Caltech The Geometry of Syntax (Part 2)



Closer look at some of these structures

Another structure in the Longobardi data involving parameters like
EZ2 (non-clausal linker), FGC (gramm. classi- fier), FGT (gramm.
temporality), GSI (grammaticalised inalienability), HMP
(NP-heading modifier) ...
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Graphs with ε-neighborhood SSWL data
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Graphs with ε-neighborhood SSWL data

The ε-neighborhood construction is better suited to gain
connectivity information in the Longobardi data: the SSWL data
remain highly disconnected (only small local structures)
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Closeup of SSWL ε-structure

In SSWL ε-structures only involve closely related parameters
(Neg7,8,9 expressed in some Niger-Congo languages)

More interesting results using the n-neighborhood method
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Graphs with n-neighborhood Longobardi data
Fewer vertices with high centrality: FGM node (gramm. Case)
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Graphs with n-neighborhood Longobardi data
More high centrality vertices: AST (structured APs), CGB
(unbounded sg N), FGP (gramm. person) ...
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Graphs with n-neighborhood SSWL data
Two main components, lower one highest centrality SubjectVerb
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Graphs with n-neighborhood SSWL data
components merge, high centrality SubjectVerb, VerbObject
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Clustering behavior of the ε-graphs
• neighborhood Vi of i-th node of valence di

Ki = #{e ∈ E (G ) : ∂(e) ∩ Vi}

measure of clustering in the region Ci = Ki/
(
di
2

)
• variance of clustering coefficients Ci as function of ε
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ε and n-neighborhood clustering and connectivity
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Regions of ε-t space

• Graphs depend on ε-neighborhood and on t-heat kernel variable

• explore ε-t space: determine regions where high variance in
distribution of each parameter under the heat kernel mapping

• high variance in a parameter suggests it is highly independent
(similar to PCA method)
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Further Questions

• an in depth linguistic analysis of the meaning of these clustering
structures is still needed (ongoing work)

• comparison of the heat kernel technique with other dimensional
reduction techniques (PCA etc.)

• more detailed discussion of different regions of the ε-t space in
the heat kernel model (specific parameters with high independence
measure)

• manifold M reconstruction? Belkin-Niyogi results
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Conclusions (for now)

• import a set of different mathematical techniques (phylogenetic
algebraic geometry, persistent topology, coding theory, statistical
mechanics, geometric models of associative memory) in order to
study natural languages as dynamical objects

• longer term goals: create mathematical and computational
models of

1 how languages are acquired?

2 how languages are stored in the brain?

3 how languages change and evolve dynamically in time?

for human languages viewed at the level of their syntactic
structures
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Further Related Work

• Algebro-Geometric Models of Computational Semantics

Yuri Manin, Matilde Marcolli, Semantic Spaces, Mathematics
in Computer Science, 10 (2016) N.4, 459–477

• Generative Grammars and Renormalization

Matilde Marcolli, Alexander Port, Graph Grammars, Insertion
Lie Algebras, and Quantum Field Theory, arXiv:1502.07796,
Mathematics in Computer Science 9 (2015), no. 4, 391–408

Colleen Delaney, Matilde Marcolli, Dyson-Schwinger equations
in the theory of computation, arXiv:1302.5040, in “Feynman
amplitudes, periods and motives”, pp.79–107, Contemporary
Mathematics, 648, Amer. Math. Soc., 2015

Matilde Marcolli, Linguistic Merge and Dyson–Schwinger
equations in Renormalization, in preparation
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