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This lecture is based on:

@ Yuri I. Manin, Matilde Marcolli, Error-correcting codes and
phase transitions, Mathematics in Computer Science (2011)
5:133-170.

@ Yuri I. Manin, Matilde Marcolli, Kolmogorov complexity and
the asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91-108

@ Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, arXiv:1801.01552
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Error-correcting codes

e Alphabet: finite set A with #A =g > 2.
e Code: subset C C A", length n = n(C) > 1.

e Code words: elements x = (a1,...,a,) € C.

e Code language: W¢ = Um>1Wc m, words w = X1, ..., Xm;
x; € C.

e w-language: A¢, infinite words w = xy,...,Xm,...; x; € C.

e Special case: A= Fg, linear codes: C C Fy linear subspace
e in general: unstructured codes

Matilde Marcolli Codes and Complexity



Code parameters
e k= k(C) :=log, #C and [k] = [k(C)] integer part of k(C)

gl < #C = ¢¥ < g+t

e Hamming distance: x = (a;) and y = (b;) in C

d((ai), (b)) == #{i € (1,...,n)| ai # bi}
e Minimal distance d = d(C) of the code

d(C) :=min{d(a,b)|a,b e C,a# b}
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Code parameters
e R = k/n = transmission rate of the code
e 0 = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding

signal; small §: too many code words close to received one, more

difficult decoding. Optimization problem: increase R and ... how
good are codes?

e M.A. Tsfasman, S.G. Vladut, Algebraic-geometric codes,
Mathematics and its Applications (Soviet Series), Vol. 58,
Kluwer Academic Publishers, 1991.
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The space of code parameters:
o Codes, = set of all codes C on an alphabet #A = g

e function cp : Codesy — [0,1]?> N Q? to code parameters
cp: C— (R(C),0(0))

e the function C — (R(C),d(C)) is a total recursive map
(Turing computable)

e Multiplicity of a code point (R,d) is #cp~Y(R, d)
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Bounds in the space of code parameters
e singleton bound: R+4§ <1
e Gilbert—Varshamov line: R = 3(1 — Hy(4))

Hq(6) = 6 log,(q — 1) — 6 log, 0 — (1 — &) log,(1 —6)

g-ary entropy (for linear codes GV line R =1 — Hy(9))
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Statistics of codes and the Gilbert—Varshamov bound
Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: w-language with alphabet A;
uniform Bernoulli measure on A4; choose code words of C as
independent random variables in this measure

Volume estimate:

d
q(Hq((s)*O( ))n < Vol n d = n(S — Z (n> (q — 1 J < qu(5)n
j=0

Gives probability of parameter § for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

k
F ~ <q2 > Vo/q(n, d)q—n ~ qn(Hq(é)—1+2R)+o(n)
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Spoiling operations on codes: C an [n, k, d]4 code
e Ci:=CxjfC Al

(al,...,anﬂ) e G iff (al,...,a;_l,a;+1,...,a,,+1) S C,

and a; = f(al, ey di—1,d[41 - a,,+1)
Gy an [n+1, k, d]q code (f constant function)

e Co:=Cx; C A1
(a1,...,ap-1) € Giffdb € A, (a1,...,ai-1,b,ai11,...,an-1) € C.

G an [n—1,k, d]q code
e (3:=C(a,i)C CCA"

(a1,...,an) € G iff a; = a.

Gan[n—1,k—-1<k < k,d > d], code
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Asymptotic bound

@ Yu.l.Manin, What is the maximum number of points on a
curve over F»7 J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715-720.

e V, C [0,1]% all code points (R,d) = cp(C), C € Codes,

e Ug: set of limit points of Vj
e Asymptotic bound: Uy all points below graph of a function

Ug = {(R.9) € [0,1 | R < ag(6)}

e Isolated code points: Vg \ (Vg N Uy)
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Method: controlling quadrangles

1
N

8 . 1
R = ag(9) continuous decreasing function with a4(0) =1 and

aq(d) =0foré e [qT_l, 1]; has inverse function on [0, (g — 1)/q];
Ug union of all lower cones of points in [ = {R = aq(d)}
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Characterization of the asymptotic bound

e Code points and multiplicities

e Set of code points of infinite multiplicity
UgN Vg ={(R,8) €[0,1°NQ?| R < ag(J)} below the
asymptotic bound

e Code points of finite multiplicity all above the asymptotic bound
Vg~ (Ug N V4) and isolated (open neighborhood containing (R, d)
as unique code point)

Questions:
e Is there a characterization of the isolated good codes on or above
the asymptotic bound?
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Estimates on the asymptotic bound

e Plotkin bound:

-1
aq(6) =0, &> qT
e singleton bound:
ag(d) <1-9§
e Hamming bound:
0
0g(6) < 1= Hy(3)

e Gilbert—Varshamov bound:

aq(0) = 1 — Hy(9)
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Computability question

e Note: only the asymptotic bound marks a significant change of
behavior of codes across the curve (isolated and finite
multiplicity /accumulation points and infinite multiplicity)

e in this sense it is very different from all the other bounds in the
space of code parameters

e .... but no explicit expression for the curve R = aq(9)

e ... is the function R = a4(d) computable?

e ... a priori no good statistical description of the asymptotic
bound: is there something replacing Shannon entropy
characterizing Gilbert—Varshamov curve?

@ Yu.l. Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246
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The asymptotic bound and Kolmogorov complexity

e while random codes are related to Shannon entropy (through the
GV-bound) good codes and the asymptotic bound are related to
Kolmogorov complexity

e the asymptotoc bound R = a4(d) becomes computable given an
oracle that can list codes by increasing Kolmogorov complexity

e given such an oracle: iterative (algorithmic) procedure for
constructing the asymptotic bound

e ... it is at worst as “non-computable” as Kolmogorov complexity
e asymptotic bound can be realized as phase transition curve of a

statistical mechanical system based on Kolmogorov complexity

@ Yu.l. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91-108
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Complexity
e How does one measure complexity of a physical system?

e Kolmogorov complexity: measures length of a minimal
algorithmic description

. but ... gives very high complexity to completely random things

e Shannon entropy: measures average number of bits, for objects
drawn from a statistical ensemble

e There are other proposals for complexity, but more difficult for
formulate

e Gell-Mann complexity: complexity is high in an intermediate
region between total order and complete randomness
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Kolmogorov complexity

e Let Ty be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

e Given a string w in an alphabet 2, the Kolmogorov complexity

,CTM (W) - P:Tz,rlrzi‘:r’])zwg(P)7

minimal length of a program that outputs w

e universality: given any other Turing machine T
]CT(W) = /CTM(W) +cr

shift by a bounded constant, independent of w; crt is the
Kolmogorov complexity of the program needed to describe T for
Ty to simulate it
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e any program that produces a description of w is an upper bound
on Kolmogorov complexity K7, (w)

e think of Kolmogorov complexity in terms of data compression
e shortest description of w is also its most compressed form

e can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

e finding upper bounds is easy... but NOT lower bounds
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Main problem
Kolmogorov complexity is NOT a computable function

e suppose list programs Py (increasing lengths) and run through
Ty if machine halts on Py with output w then ¢(Py) is an upper
bound on Kr,,(w)

e but... there can be an earlier P; in the list such that T;; has not
yet halted on P;

o if eventually halts and outputs w then £(P;) is a better
approximation to Kr,,(w)

e would be able to compute Kr,,(w) if can tell exactly on which
programs Py the machine Ty, halts

e but... halting problem is unsolvable
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Kolmogorov complexity

X = infinite constructive world: have structural numbering
computable bijections v : Z* — X principal homogeneous space
over group of total recursive permutations Z* — ZT

e Ordering: x € X is generated at the v~!(x)-th step

Optimal partial recursive enumeration v : Z+ — X
(Kolmogorov and Schnorr)

Ku(x) :== min{k € Z" | u(k) = x}

Kolmogorov complexity

e changing u : Z* — X changes K,(x) up to bounded
(multiplicative) constants c1 K, (x) < Ky(x) < 2Ky (x)

e min length of program generating x (by Turing machine)
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Main ldea:

e use characterization of asymptotic bound as separating code
points with finite multiplicity from code points with infinite
multiplicity

e given the function from codes to code parameter, want an
algorithmic procedure that inductively constructs preimage sets
with finite/infinite multiplicity

e choose an ordering of code points: at step m list code points in
order up to some growing size N,

e initialize A;: a set of a preimage for each code point up to Ny;
initialize By = 0

e want to increase at each step A, and B, so that the first set
only contains code points with multiplicity m
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e going from step m to step m+ 1: new code points listed
between N, and N,,;1 are added to A, and then points
(previously in Ap, or added) that do not have an m + 1-st preimage
are moved to By

e as m — oo the sets A, converge to set of code points of infinite
multiplicity and the B, converge to set of code points of finite
multiplicity

e key problem: need to search for the m + 1-st preimage to detect
if a code point stays in Ap41 or is moved to Bp,y1

e ordinarily this would involve an infinite search...

e ordering and complexity: use a relation between ordering and
complexity that shows that only need to search among bounded
complexity codes, so a complexity oracle will render the search
finite
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X, Y infinite constructive worlds, vx, vy structural bijections, u, v
optimal enumerations, K, and K, Kolmogorov complexities

e total recursive function f : X — Y = Vy € f(X), Ix € X,
y = f(x): 3 computable ¢ = ¢(f, u, v,vx,vy) >0

Ku(x) < c- it (y)

Kolmogorov ordering
Ku(x) = order X by growing Kolmogorov complexity K, (x)

a1 Ku(x) < Ku(x) < aaKu(x)

So... if know how to generate elements of X in Kolmogorov
ordering then can generate all elements of f(X) C Y in their
structural ordering
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In fact... take F(x) = (f(x), n(x)) with

n(x) = #{x' [ (x') <vit(x), F(X) = F(x)}

total recursive function = E = F(X) C Y x Z* enumerable
o Xy = {x € X|n(x) =m} and Y, := f(Xy) C Y enumerable

o for x € X1 and y = f(x): complexity K,(x) < c- vy (y) (using
inequalities for complexity under composition)

Multiplicity: mult(y) := #f~1(y)
Yoo C -+ F(Xmg1) C F(Xm) C--- C £(X1) = F(X)

Yoo = Ninf (Xm) and Ysin = F(X) N Yoo

Key Step: y € Yo and m > 1: 3 unique x, € X, y = f(xm),
n(xm) =mand ¢ = ¢(f,u,v,vx,vy) >0

Ku(xm) < ¢ vy () m log(vy ! (y)m)
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Oracle mediated recursive construction of Y, and Yg,

e Choose sequence (N, m), m>1, Ny > Ny,

o Step 1. A; = list y € f(X) with vy, ' (y) < Ny; By =0

e Step m+ 1: Given Ap, and By, list y € f(X) with

u;l(y) < Nmi1; Amy1 = elements in this list for which 3 x € X,
y = f(x), n(x) = m+1; Bpny1 = remaining elements in the list
e oracle: search for x € X, y = f(x), n(x) = m+ 1 only among
those x with complexity bounded by function of V;l(y) as above
¢ AmU B C Amt1 U By, union is all f(X); By C Bpy1 and
Yﬁn = UmBm, while Yoo = Umzl(ﬂnzoAern)

e from A, to Apy1 first add all new y with N, < y;l(y) < Nyt
then subtract those that have no more elements in the fiber
f~1(y): these will be in By, i1
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Structural numbering for codes

e X = Codes,, Y =[0,1]°NQ?% and f: X — Y is

cp: C+— (R(C),d(C)) code parameters map

e A={0,...,q9 — 1} ordered, A" lexicographically; computable
total order vx:

(i) if np < ny all C C A™ before all C' C A™;

(i) k1 < ko all [n, k1, d]4-codes before [n, ky, d']4-codes;
(iii) fixed n and g*: lexicographic order of code words,
concatenated into single word w(C) (determines code):
order all the w(C) lexicographically

e total recursive map cp : Codes, — [0, 1]* N Q?

e fixed enumeration vy of rational points in [0,1]?

. inductively building the asymptotic bound using the described
oracle mediated procedure

e Question: is there a statistical view of this procedure?
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Partition function for code complexity
Z(X,0) =Y Kulx)™”
xeX

weights elements in constructive world X by inverse complexity;
B = inverse temperature, thermodynamic parameter

Convergence properties

e Kolmogorov complexity and Kolmogorov ordering
c1 Ku(x) < Ku(x) < e Ky(x)

e convergence of Z(X, 3) controlled by series

> Kux) =3 7 =(()

xeX n>1

e Partition function Z(X, ) convergence for 3 > 1; phase
transition at pole 8 =1
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Asymptotic bound as a phase transition

e X’ C X infinite decidable subset of a constructive world

e i : X’ — X total recursive function; also j : X — X’ identity on
X’ constant on complement

Ky(i(x") < aK,(x') and K, ((x)) < caKu(x)
e § = (4(R) inverse of ag(d) on R €[0,1—1/q]
e Fix Re QN (0,1) and A € QN (0,1)

Z2(R. ;) = ) Ko(C) ()1
C:R(C)=R;1-A<§(C)<1

Phase transition at the asymptotic bound

e 1 — A > ,(R): partition function Z(R, A; 3) real analytic in 3
e 1 — A < fB4(R): partition function Z(R, A; 3) real analytic for
B > Bq(R) and divergence for § — B4(R)+
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Another view of the asymptotic bound as a phase transition

@ Yuri I. Manin, Matilde Marcolli, Error-correcting codes and
phase transitions, Mathematics in Computer Science (2011)
5:133-170.

e when constructing random codes (Shannon Random Code
Ensemble): choose code words as equally distributed independent
random variables

e imagine passing from classical to quantum systems, where the
code words remain the fundamental degrees of freedom

e the basic quantum system of this kind is a system of independent
harmonic oscillators: creation/annihilation operators associated to
the basic independent degrees of freedom
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Single Code: algebra of creation/annihilation operators
e for a single code C: code words are degrees of freedom
e Algebra of observable of a single code: Toeplitz algebra on code
words
Tc: Ty, xe€C, T;Tx=1
T« T; mutually orthogonal projectors
e Fock space representation H ¢ spanned by €,, words
W = X1,...,Xy in code language W¢

Txew = &xw
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Quantum Statistical Mechanics of a single code

e algebra of observables 7¢; time evolution o : R — Aut(7¢)
oe(Te) = Ku(O)" T
e Hamiltonian 7(0¢(T)) = ¢ (T)g~*"
Hew = {(w) loggKu(C) €w

in Fock representation, ¢(w) length of word (# of code words)

e Partition function

Z(C,0,8) = Tr(e ) = > (#Wem)Ku(C) 77

_ Z qm(nR—B logg Ku(C)) — !
. 1— anKu(C)*ﬁ

e Convergence: 3 > nr/log, K,(C)



QSM system at a code point (R, )

e Different codes C € cp~1(R, ) as independent subsystems
e Tensor product of Toeplitz algebras T(r 5y = @ceccp-1(r,5)TC
e Shift on single code temperature so that

Z(C,o,n(B—6+1)) < (1 — K,(C) P

by singleton bound on codes R+§ —1<0
e Fock space H (g 5) = @Hc; time evolution o = Qo€
e Partition function (variable temperature)

Z(ecp M (R0),0:8)= [ 2Z(C,on(B—5+1))

Cecp~1(R,9)

e Convergence controlled by [T(1 — K,(C)™#)71; in turned
controlled by the classical zeta function

Z(cp ™ (R.0), ) = X ceep-1(ris) Ku(C) ™’



first versus second quantization

e Bosonic second quantization: example of primes p and integers
n € N; independent degrees of freedom (primes) quantized by
isometries 7,7, = 1; tensor product of Toeplitz algebras

®pTp = C*(N) semigroup algebra; o+(7,) = p't7p, partition
function ((3) = [[,(1 — p~?)~1 prod of partition functions
individual systems

e Infinite tensor product: second quantization; finite tensor
product: quantum mechanical (finitely many degrees of freedom)
first quantization

® (7(r,5), ) is quantum mechanical above the asymptotic bound;
bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization
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Asymptotic bound as a phase transition (QSM point of view)
e Variable temperature partition function: A = ®sc5.As,

0 = Qs0s; B 'S — R+; Z(Aa 0—76) = Hs Z(A5a0575(5))
e fix a code point (R, d); partition function (variable j3)

Z((R,0),0:8) =[] (@—qR eyt

Cecp~1(R,5)

e if (R, ) above bound finite product; if below bound convergence
governed by >~ g(R=9)nc for g > R.

e change of behavior of the system at R = a4(d) asymptotic bound
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Spherical Codes

@ Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, arXiv:1801.01552

e spherical code: finite set X of points on unit sphere S"~1 C R”

e spherical code X has minimal angle ¢ if Yx #y € X

(x,y) < cos¢

e A(n, $) = max number of points on S"~! with minimal angle ¢
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Relation to sphere packings and kissing number

example of sphere configuration with kissing nunber 12
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Spherical codes from binary codes
e C binary [n, k, d]»-code

e identifying Z /27 = {+£1}: code words as subset of the vertices
of n-cube centered at origin in R” inscribed in sphere S"~!
(normalization factor)

e binary code C gives spherical code X¢ with parameters

2d

cos¢p=1— - < (C) = % = sin%(¢/2) = 1-cosé

2

_ log, #Xc
n

R(C)
with maximum (for fixed n and d)

R(C)max(n7 d) = |Og2 A(n”fs(n’ d))

e Question: is there an asymptotic bound for spherical codes?

Matilde Marcolli Codes and Complexity



Space of code parameters
e binary codes: [0, 1]?> N Q coordinates (6, R)
e spherical codes:

e code rate R = n~!log, #Xc

e minimum angle ¢ = ¢x,. (or cos ¢)

e unbounded: ¢ smaller maximal number of points A(n, ¢) grows,
so R unbounded near ¢ — 0

e space Ry x [0, 7]
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Regions in the space of code parameters
@ code points of some spherical code X
P ={P=(R0)|3X C 5" : (R.6) = (R(X) = ~logs #X, 6x)}
@ accumulation points of set of code parameters
A={P=(R.9)[3(Ri,¢1) € P : (R,¢) = lim(R;, &), (Ri, ¢1) # (R, 9)}
@ points surrounded by a 2-ball densely filled by code parameters

U={P=(R,¢)|Te>0: B(P,e)C A}

e asymptotic bound:
F={(R=a(9),9)|a(¢) =sup{R € Ry : (R, ¢) €U} }
with a(¢) =0if {ReR, : (R,¢) €U} =10
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New phenomena with respect to binary codes
e the two regions A and U/ do not coincide
e asymptotic bound is the boundary of the region U (not of A)

e the part of the region A that is not in U consists of sequences of
horizontal segments not contained in U/ UT

e also the asymptotic bound is only non-trivial in a “small angle
region”

e small angles region: 0 < ¢ < 7/2

@ large angle region: m/2 < ¢ <
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Large angle region 7w/2< ¢ <
e Rankin bound: for 7/2 < ¢ <7

A(n, ¢) < (cos¢ —1)/ cos ¢
e bound realized for —1 < cos ¢ < —1/n while for
—1/n < cos¢ < 0 one has A(n,¢) =n+1
e code points lie below the curve

cos¢p — 1

1
R="| ' 1 2P
p ogy(min{n+ 1, o5

)

e large n — oo behavior

_ log, #X < log, A(’% ¢) _
n - n

R 0, 7w/2<¢<m

=> no interesting asymptotic bound in this region

e still contains code points in A~ U and P~ A
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Plots for n=1,...,10

0.7

U&K
0.5
0.4
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Estimates in the small angle region

e Kabatiansky—Levenshtein bound: large n — oo

log, A(n, @) _ 14sing 14+sing, 1—sing 1—sing
R< n = 2sin ¢ 2( 2sin ¢ )- 2sin ¢ 2( 2sin ¢ )

for minimum angle 0 < ¢ < /2
e for large n — oo code parameter in the undergraph
S={(R.¢) Ry x [0,7] : R < H(6)}

_1+sing 1+sing _l—singb 1—sing
H(o) = 2sin ¢ 82 2sin ¢ ) 2sin ¢ o8 2sin ¢ )
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Graph of H(¢):

2

3n
8

ST

U E
8 4

e either cutoff on minimum angle ¢ > ¢ (e.g. case of sphere
packings) or cutoff on R = % log, #X < T (more natural for
spoiling operations)
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Spoiling operations for spherical codes

O first spoiling operations:
e binary codes: C; = C %; a associates to a word ¢ = (a1, ..., a,)
of C the word cx; a=(a1,...,3i-1,a,ai,...,an)
o spherical codes: take code X¢ C S"~! and inserts S"7! as
hyperplane section of S"

@ second spoiling operation:

e binary codes: G, = Cx;, which is a projection of the code C in
the i-th direction

o spherical codes: cosf = (v, v,) angle between two points of
code Xc¢: orthogonal projection along x;-axis

cosf =

() = —(cos 0 — (v vr,)
© third spoiling operation:
o binary codes: G3 = C(a,i) code words with i-th digit a
e spherical codes: line ¢ and orthogonal hyperplane L through
origin of R", with X3 := Xf =XnN 5;;1 intersection with one
of the two hemispheres
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Main differences: continuous parameters in spoiling operations

o first spoiling operation extends with continuous parameters
(choice of a hyperplane H): scaling the sphere S"~1 and identifying
it with the section HN S"” to embed new code X; = X« H in S”

e parameters: k(X1) = k(X), n(X1) = n(X)+1 and
cos ¢x, = p3cosdx + (1 — p2))

py radius of scaled sphere ngl =HNS"

e second spoiling operation: L hyperplane through origin in R”
with orthogonal ¢ not containing code points; orthogonal projection
P, :R" — L ~ R"1 and normalize vectors: X, = Xx; C §"2

e code parameters: k(X2) = k(X) and n(X2) = n(X) —1
cosgx, = (L+u)cosox +u,  u=(1-&)/&.
with &x o = dist(X, ¢)



e third spoiling operation also continuous choice of ¢, L with
X3 = XjE XN SZn:I: one hemisphere

e code parameters: 3¢ with k(X) — 1 < k(X3) < k(X) and
minimum angle ¢(X3) > ¢(X)

controlling cones: starting with X with code parameters

[n, k, cos ¢]

e use spoling operations to obtain code parameters to obtain
Q [n+1,kAcosp+1— )], forall A €[0,1];
Q@ [n—1,k (14 u)cos¢ £ u] for u=(1— fX,L)2/f)2<,L?
© [n—1,k—a,cos¢], for 0 < a< k.

for0< ¢ <m7/2

e consequence: if (R,gb) code point all line segment
enkcosd)-{( R)\COS¢+1— ))\E[O,l]}

also made of code points: in A not always in U
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Example of segments in A not in U

e Rankin examples of spherical codes realizing bound (large angles)
R(X) = Llog,(<2-1) for —1 < cos¢ < —1/n and

~n cos ¢

R(X) = Ylogy(n+1) for —1/n < cos¢ < 0

~n

e apply first spoiling:
0.5
Mi
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Existence of the asymptotic bound

e construct controlling regions R; (P), Rr.c(P), Ru.c(P),
Rp,c(P) in a cutoff of undergraph of H(¢)

e use these to constrain position of the asymptotic bound: I graph
of continuous decreasing R = a(¢) with a(¢) — oo for ¢ — 0 and
a(r/2) =0.

e set I/ is undergraph of this function
U={(R,¢) : R<a(¢)}
union of all the lower controlling regions R (P) of all points P € T

e code point P = (R, ¢) ¢ I in region U iff infinite multiplicity and
3 sequence X of spherical codes with (R(X;), ¢x.) = (R, ¢) and
n; — oo and #X; — oc.
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Questions

e applications to sphere packings? (maximal density sphere
packings)

e interplay between classical binary (g-ary?) codes and spherical
codes

e asymptotic bound and complexity: spherical codes and
complexity

e classical to quantum codes (for binary and g-ary: CSSR
algorithm): what about spherical codes?

e for binary codes: strange examples of codea above the
asymptotic bound coming from linguistics (see my talk in the
Linguistics and Al seminar)
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