Codes and Complexity

Matilde Marcolli

Centre for Complex Systems Studies
Utrecht, April 2018

This lecture is based on:

- Yuri I. Manin, Matilde Marcolli, Error-correcting codes and phase transitions, Mathematics in Computer Science (2011) 5:133-170.
- Yuri I. Manin, Matilde Marcolli, Kolmogorov complexity and the asymptotic bound for error-correcting codes, Journal of Differential Geometry, Vol. 97 (2014) 91-108
- Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for spherical codes, arXiv:1801.01552

Error-correcting codes

- Alphabet: finite set A with $\# A=q \geq 2$.
- Code: subset $C \subset A^{n}$, length $n=n(C) \geq 1$.
- Code words: elements $x=\left(a_{1}, \ldots, a_{n}\right) \in C$.
- Code language: $\mathcal{W}_{C}=\cup_{m \geq 1} \mathcal{W}_{C, m}$, words $w=x_{1}, \ldots, x_{m}$; $x_{i} \in C$.
- ω-language: Λ_{C}, infinite words $w=x_{1}, \ldots, x_{m}, \ldots ; x_{i} \in C$.
- Special case: $A=\mathbb{F}_{q}$, linear codes: $C \subset \mathbb{F}_{q}^{n}$ linear subspace
- in general: unstructured codes

Code parameters

- $k=k(C):=\log _{q} \# C$ and $[k]=[k(C)]$ integer part of $k(C)$

$$
q^{[k]} \leq \# C=q^{k}<q^{[k]+1}
$$

- Hamming distance: $x=\left(a_{i}\right)$ and $y=\left(b_{i}\right)$ in C

$$
d\left(\left(a_{i}\right),\left(b_{i}\right)\right):=\#\left\{i \in(1, \ldots, n) \mid a_{i} \neq b_{i}\right\}
$$

- Minimal distance $d=d(C)$ of the code

$$
d(C):=\min \{d(a, b) \mid a, b \in C, a \neq b\}
$$

Code parameters

- $R=k / n=$ transmission rate of the code
- $\delta=d / n=$ relative minimum distance of the code

Small R : fewer code words, easier decoding, but longer encoding signal; small δ : too many code words close to received one, more difficult decoding. Optimization problem: increase R and $\delta \ldots$ how good are codes?

- M.A. Tsfasman, S.G. Vladut, Algebraic-geometric codes, Mathematics and its Applications (Soviet Series), Vol. 58, Kluwer Academic Publishers, 1991.

The space of code parameters:

- Codes $_{q}=$ set of all codes C on an alphabet $\# A=q$
- function $c p:$ Codes $_{q} \rightarrow[0,1]^{2} \cap \mathbb{Q}^{2}$ to code parameters $c p: C \mapsto(R(C), \delta(C))$
- the function $C \mapsto(R(C), \delta(C))$ is a total recursive map (Turing computable)
- Multiplicity of a code point (R, δ) is $\# c p^{-1}(R, \delta)$

Bounds in the space of code parameters

- singleton bound: $R+\delta \leq 1$
- Gilbert-Varshamov line: $R=\frac{1}{2}\left(1-H_{q}(\delta)\right)$

$$
H_{q}(\delta)=\delta \log _{q}(q-1)-\delta \log _{q} \delta-(1-\delta) \log _{q}(1-\delta)
$$

q-ary entropy (for linear codes GV line $R=1-H_{q}(\delta)$)

Statistics of codes and the Gilbert-Varshamov bound
Known statistical approach to the GV bound: random codes
Shannon Random Code Ensemble: ω-language with alphabet A; uniform Bernoulli measure on Λ_{A}; choose code words of C as independent random variables in this measure

Volume estimate:

$$
q^{\left(H_{q}(\delta)-o(1)\right) n} \leq \operatorname{Vol}_{q}(n, d=n \delta)=\sum_{j=0}^{d}\binom{n}{j}(q-1)^{j} \leq q^{H_{q}(\delta) n}
$$

Gives probability of parameter δ for SRCE meets the GV bound with probability exponentially (in n) near 1: expectation

$$
\mathbb{E} \sim\binom{q^{k}}{2} \operatorname{Vol}_{q}(n, d) q^{-n} \sim q^{n\left(H_{q}(\delta)-1+2 R\right)+o(n)}
$$

Spoiling operations on codes: C an $[n, k, d]_{q}$ code

- $C_{1}:=C *_{i} f \subset A^{n+1}$

$$
\left(a_{1}, \ldots, a_{n+1}\right) \in C_{1} \text { iff }\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1}\right) \in C
$$

and $a_{i}=f\left(a_{1}, \ldots, a_{i-1}, a_{i+1} \ldots, a_{n+1}\right)$
C_{1} an $[n+1, k, d]_{q}$ code (f constant function)

- $C_{2}:=C *_{i} \subset A^{n-1}$
$\left(a_{1}, \ldots, a_{n-1}\right) \in C_{2}$ iff $\exists b \in A,\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n-1}\right) \in C$.
C_{2} an $[n-1, k, d]_{q}$ code
- $C_{3}:=C(a, i) \subset C \subset A^{n}$

$$
\left(a_{1}, \ldots, a_{n}\right) \in C_{3} \text { iff } a_{i}=a
$$

C_{3} an $\left[n-1, k-1 \leq k^{\prime}<k, d^{\prime} \geq d\right]_{q}$ code

Asymptotic bound

- Yu.l.Manin, What is the maximum number of points on a curve over \mathbb{F}_{2} ? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981), 715-720.
- $V_{q} \subset[0,1]^{2}$: all code points $(R, \delta)=c p(C), C \in \operatorname{Codes}_{q}$
- U_{q} : set of limit points of V_{q}
- Asymptotic bound: U_{q} all points below graph of a function

$$
U_{q}=\left\{(R, \delta) \in[0,1]^{2} \mid R \leq \alpha_{q}(\delta)\right\}
$$

- Isolated code points: $V_{q} \backslash\left(V_{q} \cap U_{q}\right)$

Method: controlling quadrangles

$R=\alpha_{q}(\delta)$ continuous decreasing function with $\alpha_{q}(0)=1$ and $\alpha_{q}(\delta)=0$ for $\delta \in\left[\frac{q-1}{q}, 1\right]$; has inverse function on $[0,(q-1) / q]$; U_{q} union of all lower cones of points in $\Gamma_{q}=\left\{R=\alpha_{q}(\delta)\right\}$

Characterization of the asymptotic bound

- Code points and multiplicities
- Set of code points of infinite multiplicity
$U_{q} \cap V_{q}=\left\{(R, \delta) \in[0,1]^{2} \cap \mathbb{Q}^{2} \mid R \leq \alpha_{q}(\delta)\right\}$ below the asymptotic bound
- Code points of finite multiplicity all above the asymptotic bound $V_{q} \backslash\left(U_{q} \cap V_{q}\right)$ and isolated (open neighborhood containing (R, δ) as unique code point)

Questions:

- Is there a characterization of the isolated good codes on or above the asymptotic bound?

Estimates on the asymptotic bound

- Plotkin bound:

$$
\alpha_{q}(\delta)=0, \quad \delta \geq \frac{q-1}{q}
$$

- singleton bound:

$$
\alpha_{q}(\delta) \leq 1-\delta
$$

- Hamming bound:

$$
\alpha_{q}(\delta) \leq 1-H_{q}\left(\frac{\delta}{2}\right)
$$

- Gilbert-Varshamov bound:

$$
\alpha_{q}(\delta) \geq 1-H_{q}(\delta)
$$

Computability question

- Note: only the asymptotic bound marks a significant change of behavior of codes across the curve (isolated and finite multiplicity/accumulation points and infinite multiplicity)
- in this sense it is very different from all the other bounds in the space of code parameters
- but no explicit expression for the curve $R=\alpha_{q}(\delta)$
- ... is the function $R=\alpha_{q}(\delta)$ computable?
- ... a priori no good statistical description of the asymptotic bound: is there something replacing Shannon entropy characterizing Gilbert-Varshamov curve?
- Yu.I. Manin, A computability challenge: asymptotic bounds and isolated error-correcting codes, arXiv:1107.4246

The asymptotic bound and Kolmogorov complexity

- while random codes are related to Shannon entropy (through the GV-bound) good codes and the asymptotic bound are related to Kolmogorov complexity
- the asymptotoc bound $R=\alpha_{q}(\delta)$ becomes computable given an oracle that can list codes by increasing Kolmogorov complexity
- given such an oracle: iterative (algorithmic) procedure for constructing the asymptotic bound
- ... it is at worst as "non-computable" as Kolmogorov complexity
- asymptotic bound can be realized as phase transition curve of a statistical mechanical system based on Kolmogorov complexity
- Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the asymptotic bound for error-correcting codes, Journal of Differential Geometry, Vol. 97 (2014) 91-108

Complexity

- How does one measure complexity of a physical system?
- Kolmogorov complexity: measures length of a minimal algorithmic description
... but ... gives very high complexity to completely random things
- Shannon entropy: measures average number of bits, for objects drawn from a statistical ensemble
- There are other proposals for complexity, but more difficult for formulate
- Gell-Mann complexity: complexity is high in an intermediate region between total order and complete randomness

Kolmogorov complexity

- Let $T_{\mathcal{U}}$ be a universal Turing machine (a Turing machine that can simulate any other arbitrary Turing machine: reads on tape both the input and the description of the Turing machine it should simulate)
- Given a string w in an alphabet \mathfrak{A}, the Kolmogorov complexity

$$
\mathcal{K}_{T_{\mathcal{U}}}(w)=\min _{P: T_{\mathcal{U}}(P)=w} \ell(P)
$$

minimal length of a program that outputs w

- universality: given any other Turing machine T

$$
\mathcal{K}_{T}(w)=\mathcal{K}_{T_{\mathcal{U}}}(w)+c_{T}
$$

shift by a bounded constant, independent of $w ; c_{T}$ is the Kolmogorov complexity of the program needed to describe T for $T_{\mathcal{U}}$ to simulate it

- any program that produces a description of w is an upper bound on Kolmogorov complexity $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- think of Kolmogorov complexity in terms of data compression
- shortest description of w is also its most compressed form
- can obtain upper bounds on Kolmogorov complexity using data compression algorithms
- finding upper bounds is easy... but NOT lower bounds

Main problem

Kolmogorov complexity is NOT a computable function

- suppose list programs P_{k} (increasing lengths) and run through $T_{\mathcal{U}}$: if machine halts on P_{k} with output w then $\ell\left(P_{k}\right)$ is an upper bound on $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- but... there can be an earlier P_{j} in the list such that $T_{\mathcal{U}}$ has not yet halted on P_{j}
- if eventually halts and outputs w then $\ell\left(P_{j}\right)$ is a better approximation to $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- would be able to compute $\mathcal{K}_{T_{\mathcal{U}}}(w)$ if can tell exactly on which programs P_{k} the machine $T_{\mathcal{U}}$ halts
- but... halting problem is unsolvable

with $m(x)=\min _{y \geq x} \mathcal{K}(y)$

Kolmogorov complexity

$X=$ infinite constructive world: have structural numbering computable bijections $\nu: \mathbb{Z}^{+} \rightarrow X$ principal homogeneous space over group of total recursive permutations $\mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$

- Ordering: $x \in X$ is generated at the $\nu^{-1}(x)$-th step

Optimal partial recursive enumeration $u: \mathbb{Z}^{+} \rightarrow X$
(Kolmogorov and Schnorr)

$$
K_{u}(x):=\min \left\{k \in \mathbb{Z}^{+} \mid u(k)=x\right\}
$$

Kolmogorov complexity

- changing $u: \mathbb{Z}^{+} \rightarrow X$ changes $K_{u}(x)$ up to bounded (multiplicative) constants $c_{1} K_{v}(x) \leq K_{u}(x) \leq c_{2} K_{v}(x)$
- min length of program generating x (by Turing machine)

Main Idea:

- use characterization of asymptotic bound as separating code points with finite multiplicity from code points with infinite multiplicity
- given the function from codes to code parameter, want an algorithmic procedure that inductively constructs preimage sets with finite/infinite multiplicity
- choose an ordering of code points: at step m list code points in order up to some growing size N_{m}
- initialize A_{1} : a set of a preimage for each code point up to N_{1}; initialize $B_{1}=\emptyset$
- want to increase at each step A_{m} and B_{m} so that the first set only contains code points with multiplicity m
- going from step m to step $m+1$: new code points listed between N_{m} and N_{m+1} are added to A_{m}, and then points (previously in A_{m} or added) that do not have an $m+1$-st preimage are moved to B_{m+1}
- as $m \rightarrow \infty$ the sets A_{m} converge to set of code points of infinite multiplicity and the B_{m} converge to set of code points of finite multiplicity
- key problem: need to search for the $m+1$-st preimage to detect if a code point stays in A_{m+1} or is moved to B_{m+1}
- ordinarily this would involve an infinite search...
- ordering and complexity: use a relation between ordering and complexity that shows that only need to search among bounded complexity codes, so a complexity oracle will render the search finite
X, Y infinite constructive worlds, ν_{X}, ν_{Y} structural bijections, u, v optimal enumerations, K_{u} and K_{V} Kolmogorov complexities
- total recursive function $f: X \rightarrow Y \Rightarrow \forall y \in f(X), \exists x \in X$, $y=f(x)$: \exists computable $c=c\left(f, u, v, \nu_{X}, \nu_{Y}\right)>0$

$$
K_{u}(x) \leq c \cdot \nu_{Y}^{-1}(y)
$$

Kolmogorov ordering
$\mathbf{K}_{u}(x)=$ order X by growing Kolmogorov complexity $K_{u}(x)$

$$
c_{1} K_{u}(x) \leq \mathbf{K}_{u}(x) \leq c_{2} K_{u}(x)
$$

So... if know how to generate elements of X in Kolmogorov ordering then can generate all elements of $f(X) \subset Y$ in their structural ordering

In fact... take $F(x)=(f(x), n(x))$ with

$$
n(x)=\#\left\{x^{\prime} \mid \nu_{X}^{-1}\left(x^{\prime}\right) \leq \nu_{X}^{-1}(x), f\left(x^{\prime}\right)=f(x)\right\}
$$

total recursive function $\Rightarrow E=F(X) \subset Y \times \mathbb{Z}^{+}$enumerable

- $X_{m}:=\{x \in X \mid n(x)=m\}$ and $Y_{m}:=f\left(X_{m}\right) \subset Y$ enumerable
- for $x \in X_{1}$ and $y=f(x)$: complexity $K_{u}(x) \leq c \cdot \nu_{Y}^{-1}(y)$ (using inequalities for complexity under composition)
Multiplicity: mult $(y):=\# f^{-1}(y)$

$$
\begin{gathered}
Y_{\infty} \subset \cdots f\left(X_{m+1}\right) \subset f\left(X_{m}\right) \subset \cdots \subset f\left(X_{1}\right)=f(X) \\
Y_{\infty}=\cap_{m} f\left(X_{m}\right) \text { and } Y_{\text {fin }}=f(X) \backslash Y_{\infty}
\end{gathered}
$$

Key Step: $y \in Y_{\infty}$ and $m \geq 1: \exists$ unique $x_{m} \in X, y=f\left(x_{m}\right)$, $n\left(x_{m}\right)=m$ and $c=c\left(f, u, v, \nu_{X}, \nu_{Y}\right)>0$

$$
K_{u}\left(x_{m}\right) \leq c \cdot \nu_{Y}^{-1}(y) m \log \left(\nu_{Y}^{-1}(y) m\right)
$$

Oracle mediated recursive construction of Y_{∞} and $Y_{\text {fin }}$

- Choose sequence $\left(N_{m}, m\right), m \geq 1, N_{m+1}>N_{m}$
- Step 1: $A_{1}=$ list $y \in f(X)$ with $\nu_{Y}^{-1}(y) \leq N_{1} ; B_{1}=\emptyset$
- Step $m+1$: Given A_{m} and B_{m}, list $y \in f(X)$ with $\nu_{Y}^{-1}(y) \leq N_{m+1} ; A_{m+1}=$ elements in this list for which $\exists x \in X$, $y=f(x), n(x)=m+1 ; B_{m+1}=$ remaining elements in the list
- oracle: search for $x \in X, y=f(x), n(x)=m+1$ only among those x with complexity bounded by function of $\nu_{Y}^{-1}(y)$ as above
- $A_{m} \cup B_{m} \subset A_{m+1} \cup B_{m+1}$, union is all $f(X) ; B_{m} \subset B_{m+1}$ and $Y_{\text {fin }}=\cup_{m} B_{m}$, while $Y_{\infty}=\cup_{m \geq 1}\left(\cap_{n \geq 0} A_{m+n}\right)$
- from A_{m} to A_{m+1} first add all new y with $N_{m}<\nu_{Y}^{-1}(y) \leq N_{m+1}$ then subtract those that have no more elements in the fiber $f^{-1}(y)$: these will be in B_{m+1}

Structural numbering for codes

- $X=$ Codes $_{q}, Y=[0,1]^{2} \cap \mathbb{Q}^{2}$ and $f: X \rightarrow Y$ is
$c p: C \mapsto(R(C), \delta(C))$ code parameters map
- $A=\{0, \ldots, q-1\}$ ordered, A^{n} lexicographically; computable total order ν_{X} :
(i) if $n_{1}<n_{2}$ all $C \subset A^{n_{1}}$ before all $C^{\prime} \subset A^{n_{2}}$;
(ii) $k_{1}<k_{2}$ all $\left[n, k_{1}, d\right]_{q}$-codes before $\left[n, k_{2}, d^{\prime}\right]_{q}$-codes;
(iii) fixed n and q^{k} : lexicographic order of code words, concatenated into single word $w(C)$ (determines code): order all the $w(C)$ lexicographically
- total recursive map $c p: \operatorname{Codes}_{q} \rightarrow[0,1]^{2} \cap \mathbb{Q}^{2}$
- fixed enumeration ν_{Y} of rational points in $[0,1]^{2}$
... inductively building the asymptotic bound using the described oracle mediated procedure
- Question: is there a statistical view of this procedure?

Partition function for code complexity

$$
Z(X, \beta)=\sum_{x \in X} K_{u}(x)^{-\beta}
$$

weights elements in constructive world X by inverse complexity; $\beta=$ inverse temperature, thermodynamic parameter
Convergence properties

- Kolmogorov complexity and Kolmogorov ordering

$$
c_{1} \mathbf{K}_{u}(x) \leq K_{u}(x) \leq c_{2} \mathbf{K}_{u}(x)
$$

- convergence of $Z(X, \beta)$ controlled by series

$$
\sum_{x \in X} \mathbf{K}_{u}(x)^{-\beta}=\sum_{n \geq 1} n^{-\beta}=\zeta(\beta)
$$

- Partition function $Z(X, \beta)$ convergence for $\beta>1$; phase transition at pole $\beta=1$

Asymptotic bound as a phase transition

- $X^{\prime} \subset X$ infinite decidable subset of a constructive world
- $i: X^{\prime} \hookrightarrow X$ total recursive function; also $j: X \rightarrow X^{\prime}$ identity on X^{\prime} constant on complement

$$
K_{u}\left(i\left(x^{\prime}\right)\right) \leq c_{1} K_{v}\left(x^{\prime}\right) \quad \text { and } \quad K_{v}(j(x)) \leq c_{2} K_{u}(x)
$$

- $\delta=\beta_{q}(R)$ inverse of $\alpha_{q}(\delta)$ on $R \in[0,1-1 / q]$
- Fix $R \in \mathbb{Q} \cap(0,1)$ and $\Delta \in \mathbb{Q} \cap(0,1)$

$$
Z(R, \Delta ; \beta)=\sum_{C: R(C)=R ; 1-\Delta \leq \delta(C) \leq 1} K_{u}(C)^{-\beta+\delta(C)-1}
$$

Phase transition at the asymptotic bound

- $1-\Delta>\beta_{q}(R)$: partition function $Z(R, \Delta ; \beta)$ real analytic in β
- $1-\Delta<\beta_{q}(R)$: partition function $Z(R, \Delta ; \beta)$ real analytic for $\beta>\beta_{q}(R)$ and divergence for $\beta \rightarrow \beta_{q}(R)_{+}$

Another view of the asymptotic bound as a phase transition

- Yuri I. Manin, Matilde Marcolli, Error-correcting codes and phase transitions, Mathematics in Computer Science (2011) 5:133-170.
- when constructing random codes (Shannon Random Code Ensemble): choose code words as equally distributed independent random variables
- imagine passing from classical to quantum systems, where the code words remain the fundamental degrees of freedom
- the basic quantum system of this kind is a system of independent harmonic oscillators: creation/annihilation operators associated to the basic independent degrees of freedom

Single Code: algebra of creation/annihilation operators

- for a single code C : code words are degrees of freedom
- Algebra of observable of a single code: Toeplitz algebra on code words

$$
\mathcal{T}_{C}: \quad T_{x}, \quad x \in C, \quad T_{x}^{*} T_{x}=1
$$

$T_{x} T_{x}^{*}$ mutually orthogonal projectors

- Fock space representation \mathcal{H}_{C} spanned by ϵ_{w}, words $w=x_{1}, \ldots, x_{N}$ in code language \mathcal{W}_{C}

$$
T_{x} \epsilon_{w}=\epsilon_{x w}
$$

Quantum Statistical Mechanics of a single code

- algebra of observables \mathcal{T}_{C}; time evolution $\sigma: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathcal{T}_{C}\right)$

$$
\sigma_{t}\left(T_{x}\right)=K_{u}(C)^{i t} T_{x}
$$

- Hamiltonian $\pi\left(\sigma_{t}(T)\right)=q^{i t H} \pi(T) q^{-i t H}$

$$
H \epsilon_{w}=\ell(w) \log _{q} K_{u}(C) \epsilon_{w}
$$

in Fock representation, $\ell(w)$ length of word (\# of code words)

- Partition function

$$
\begin{aligned}
& Z(C, \sigma, \beta)=\operatorname{Tr}\left(e^{-\beta H}\right)=\sum_{m}\left(\# W_{C, m}\right) K_{u}(C)^{-\beta m} \\
& \quad=\sum_{m} q^{m\left(n R-\beta \log _{q} K_{u}(C)\right)}=\frac{1}{1-q^{n R} K_{u}(C)^{-\beta}}
\end{aligned}
$$

- Convergence: $\beta>n r / \log _{q} K_{u}(C)$

QSM system at a code point (R, δ)

- Different codes $C \in c p^{-1}(R, \delta)$ as independent subsystems
- Tensor product of Toeplitz algebras $\mathcal{T}_{(R, \delta)}=\otimes_{C \in c p^{-1}(R, \delta)} \mathcal{T}_{C}$
- Shift on single code temperature so that

$$
Z(C, \sigma, n(\beta-\delta+1)) \leq\left(1-K_{u}(C)^{-\beta}\right)^{-1}
$$

by singleton bound on codes $R+\delta-1 \leq 0$

- Fock space $\mathcal{H}_{(R, \delta)}=\otimes \mathcal{H}_{C}$; time evolution $\sigma=\otimes \sigma^{C}$
- Partition function (variable temperature)

$$
Z\left(c p^{-1}(R, \delta), \sigma ; \beta\right)=\prod_{C \in c p^{-1}(R, \delta)} Z(C, \sigma, n(\beta-\delta+1))
$$

- Convergence controlled by $\prod_{C}\left(1-K_{u}(C)^{-\beta}\right)^{-1}$; in turned controlled by the classical zeta function
$Z\left(c p^{-1}(R, \delta), \beta\right)=\sum_{C \in c p^{-1}(R, \delta)} K_{u}(C)^{-\beta}$

first versus second quantization

- Bosonic second quantization: example of primes p and integers $n \in \mathbb{N}$; independent degrees of freedom (primes) quantized by isometries $\tau_{p}^{*} \tau_{p}=1$; tensor product of Toeplitz algebras $\otimes_{p} \mathcal{T}_{p}=C^{*}(\mathbb{N})$ semigroup algebra; $\sigma_{t}\left(\tau_{p}\right)=p^{i t} \tau_{p}$, partition function $\zeta(\beta)=\prod_{p}\left(1-p^{-\beta}\right)^{-1}$ prod of partition functions individual systems
- Infinite tensor product: second quantization; finite tensor product: quantum mechanical (finitely many degrees of freedom) first quantization
- $\left(\mathcal{T}_{(R, \delta)}, \sigma\right)$ is quantum mechanical above the asymptotic bound; bosonic QFT below asymptotic bound
Asymptotic bound boundary between first and second quantization

Asymptotic bound as a phase transition (QSM point of view)

- Variable temperature partition function: $\mathcal{A}=\otimes_{s \in S} \mathcal{A}_{s}$, $\sigma=\otimes_{s} \sigma_{s} ; \beta: S \rightarrow \mathbb{R}_{+} ; Z(\mathcal{A}, \sigma, \beta)=\prod_{s} Z\left(\mathcal{A}_{s}, \sigma_{s}, \beta(s)\right)$
- fix a code point (R, δ); partition function (variable β)

$$
Z((R, \delta), \sigma ; \beta)=\prod_{c \in c p^{-1}(R, \delta)}\left(1-q^{(R-\beta) n_{c}}\right)^{-1}
$$

- if (R, δ) above bound finite product; if below bound convergence governed by $\sum_{C} q^{(R-\beta) n_{C}}$, for $\beta>R$.
- change of behavior of the system at $R=\alpha_{q}(\delta)$ asymptotic bound

Spherical Codes

- Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for spherical codes, arXiv:1801.01552
- spherical code: finite set X of points on unit sphere $S^{n-1} \subset \mathbb{R}^{n}$
- spherical code X has minimal angle ϕ if $\forall x \neq y \in X$

$$
\langle x, y\rangle \leq \cos \phi
$$

- $A(n, \phi)=$ max number of points on S^{n-1} with minimal angle ϕ

Relation to sphere packings and kissing number

Spherical codes from binary codes

- C binary $[n, k, d]_{2}$-code
- identifying $\mathbb{Z} / 2 \mathbb{Z}=\{ \pm 1\}$: code words as subset of the vertices of n-cube centered at origin in \mathbb{R}^{n} inscribed in sphere S^{n-1} (normalization factor)
- binary code C gives spherical code X_{C} with parameters

$$
\begin{gathered}
\cos \phi=1-\frac{2 d}{n} \Leftrightarrow \delta(C)=\frac{d}{n}=\sin ^{2}(\phi / 2)=\frac{1-\cos \phi}{2} \\
R(C)=\frac{\log _{2} \# X_{C}}{n}
\end{gathered}
$$

with maximum (for fixed n and d)

$$
R(C)_{\max }(n, d)=\frac{\log _{2} A(n, \phi(n, d))}{n}
$$

- Question: is there an asymptotic bound for spherical codes?

Space of code parameters

- binary codes: $[0,1]^{2} \cap \mathbb{Q}$ coordinates (δ, R)
- spherical codes:
- code rate $R=n^{-1} \log _{2} \# X_{C}$
- minimum angle $\phi=\phi_{X_{C}}$ (or $\left.\cos \phi\right)$
- unbounded: ϕ smaller maximal number of points $A(n, \phi)$ grows, so R unbounded near $\phi \rightarrow 0$
- space $\mathbb{R}_{+} \times[0, \pi]$

Regions in the space of code parameters

- code points of some spherical code X

$$
\mathcal{P}=\left\{P=(R, \phi) \mid \exists X \subset S^{n-1}:(R, \phi)=\left(R(X)=\frac{1}{n} \log _{2} \# X, \phi_{X}\right)\right\}
$$

- accumulation points of set of code parameters

$$
\mathcal{A}=\left\{P=(R, \phi) \mid \exists\left(R_{i}, \phi_{i}\right) \in \mathcal{P}:(R, \phi)=\lim _{i}\left(R_{i}, \phi_{i}\right),\left(R_{i}, \phi_{i}\right) \neq(R, \phi)\right\}
$$

- points surrounded by a 2-ball densely filled by code parameters

$$
\mathcal{U}=\{P=(R, \phi) \mid \exists \epsilon>0: B(P, \epsilon) \subset \mathcal{A}\}
$$

- asymptotic bound:

$$
\Gamma=\left\{(R=\alpha(\phi), \phi) \mid \alpha(\phi)=\sup \left\{R \in \mathbb{R}_{+}:(R, \phi) \in \mathcal{U}\right\}\right\}
$$

with $\alpha(\phi)=0$ if $\left\{R \in \mathbb{R}_{+}:(R, \phi) \in \mathcal{U}\right\}=\emptyset$

New phenomena with respect to binary codes

- the two regions \mathcal{A} and \mathcal{U} do not coincide
- asymptotic bound is the boundary of the region \mathcal{U} (not of \mathcal{A})
- the part of the region \mathcal{A} that is not in \mathcal{U} consists of sequences of horizontal segments not contained in $\mathcal{U} \cup \Gamma$
- also the asymptotic bound is only non-trivial in a "small angle region"
- small angles region: $0 \leq \phi \leq \pi / 2$
- large angle region: $\pi / 2<\phi \leq \pi$

Large angle region $\quad \pi / 2<\phi \leq \pi$

- Rankin bound: for $\pi / 2<\phi \leq \pi$

$$
A(n, \phi) \leq(\cos \phi-1) / \cos \phi
$$

- bound realized for $-1 \leq \cos \phi \leq-1 / n$ while for
$-1 / n \leq \cos \phi<0$ one has $A(n, \phi)=n+1$
- code points lie below the curve

$$
R=\frac{1}{n} \log _{2}\left(\min \left\{n+1, \frac{\cos \phi-1}{\cos \phi}\right\}\right)
$$

- large $n \rightarrow \infty$ behavior

$$
R=\frac{\log _{2} \# X}{n} \leq \frac{\log _{2} A(n, \phi)}{n} \rightarrow 0, \quad \pi / 2 \leq \phi \leq \pi
$$

\Rightarrow no interesting asymptotic bound in this region

- still contains code points in $\mathcal{A} \backslash \mathcal{U}$ and $\mathcal{P} \backslash \mathcal{A}$

Plots for $n=1, \ldots, 10$

Estimates in the small angle region

- Kabatiansky-Levenshtein bound: large $n \rightarrow \infty$
$R \leq \frac{\log _{2} A(n, \phi)}{n} \leq \frac{1+\sin \phi}{2 \sin \phi} \log _{2}\left(\frac{1+\sin \phi}{2 \sin \phi}\right)-\frac{1-\sin \phi}{2 \sin \phi} \log _{2}\left(\frac{1-\sin \phi}{2 \sin \phi}\right)$ for minimum angle $0 \leq \phi \leq \pi / 2$
- for large $n \rightarrow \infty$ code parameter in the undergraph

$$
\begin{gathered}
\mathcal{S}:=\left\{(R, \phi) \in \mathbb{R}_{+} \times[0, \pi]: R \leq H(\phi)\right\} \\
H(\phi)=\frac{1+\sin \phi}{2 \sin \phi} \log _{2}\left(\frac{1+\sin \phi}{2 \sin \phi}\right)-\frac{1-\sin \phi}{2 \sin \phi} \log _{2}\left(\frac{1-\sin \phi}{2 \sin \phi}\right)
\end{gathered}
$$

Graph of $H(\phi)$:

- either cutoff on minimum angle $\phi \geq \phi_{0}$ (e.g. case of sphere packings) or cutoff on $R=\frac{1}{n} \log _{2} \# X \leq T$ (more natural for spoiling operations)

Spoiling operations for spherical codes

(1) first spoiling operations:

- binary codes: $C_{1}=C \star_{i}$ a associates to a word $c=\left(a_{1}, \ldots, a_{n}\right)$ of C the word $c \star_{i} a=\left(a_{1}, \ldots, a_{i-1}, a, a_{i}, \ldots, a_{n}\right)$
- spherical codes: take code $X_{C} \subset S^{n-1}$ and inserts S^{n-1} as hyperplane section of S^{n}
(2) second spoiling operation:
- binary codes: $C_{2}=C_{\star_{i}}$, which is a projection of the code C in the i-th direction
- spherical codes: $\cos \theta=\left\langle v_{k}, v_{r}\right\rangle$ angle between two points of code X_{C} : orthogonal projection along x_{i}-axis

$$
\cos \tilde{\theta}=\frac{n}{n-1}\left\langle v_{k}^{\perp_{i}}, v_{r}^{\perp_{i}}\right\rangle=\frac{n}{n-1}\left(\cos \theta-\left\langle v_{k, i}, v_{r, i}\right\rangle\right)
$$

(3) third spoiling operation:

- binary codes: $C_{3}=C(a, i)$ code words with i-th digit a
- spherical codes: line ℓ and orthogonal hyperplane L through origin of \mathbb{R}^{n}, with $X_{3}:=X_{\ell}^{ \pm}=X \cap S_{\ell, \pm}^{n-1}$ intersection with one of the two hemispheres

Main differences: continuous parameters in spoiling operations

- first spoiling operation extends with continuous parameters (choice of a hyperplane H): scaling the sphere S^{n-1} and identifying it with the section $H \cap S^{n}$ to embed new code $X_{1}=X \star H$ in S^{n}
- parameters: $k\left(X_{1}\right)=k(X), n\left(X_{1}\right)=n(X)+1$ and

$$
\cos \phi X_{1}=\rho_{H}^{2} \cos \phi_{X}+\left(1-\rho_{H}^{2}\right)
$$

ρ_{H} radius of scaled sphere $S_{\rho}^{n-1}=H \cap S^{n}$

- second spoiling operation: L hyperplane through origin in \mathbb{R}^{n} with orthogonal ℓ not containing code points; orthogonal projection $P_{L}: \mathbb{R}^{n} \rightarrow L \simeq \mathbb{R}^{n-1}$ and normalize vectors: $X_{2}=X_{\star L} \subset S^{n-2}$
- code parameters: $k\left(X_{2}\right)=k(X)$ and $n\left(X_{2}\right)=n(X)-1$

$$
\cos \phi_{X_{2}}=(1+u) \cos \phi_{X}+u, \quad u=\left(1-\xi_{X, L}^{2}\right) / \xi_{X, L}^{2}
$$

with $\xi_{X, \ell}=\operatorname{dist}(X, \ell)$

- third spoiling operation also continuous choice of ℓ, L with $X_{3}:=X_{\ell}^{ \pm}=X \cap S_{\ell, \pm}^{n-1}$ one hemisphere
- code parameters: $\exists \ell$ with $k(X)-1 \leq k\left(X_{3}\right)<k(X)$ and minimum angle $\phi\left(X_{3}\right) \geq \phi(X)$
controlling cones: starting with X with code parameters [$n, k, \cos \phi]$
- use spoling operations to obtain code parameters to obtain
(1) $[n+1, k, \lambda \cos \phi+1-\lambda]$, for all $\lambda \in[0,1]$;
(2) $[n-1, k,(1+u) \cos \phi \pm u]$ for $u=\left(1-\xi_{X, L}\right)^{2} / \xi_{X, L}^{2}$;
(3) $[n-1, k-a, \cos \phi]$, for $0<a<k$.
for $0 \leq \phi \leq \pi / 2$
- consequence: if (R, ϕ) code point all line segment

$$
\ell_{n, k, \cos \phi}=\left\{\left(\frac{n}{n+1} R, \lambda \cos \phi+1-\lambda\right): \lambda \in[0,1]\right\}
$$

also made of code points: in \mathcal{A} not always in \mathcal{U}

Example of segments in \mathcal{A} not in \mathcal{U}

- Rankin examples of spherical codes realizing bound (large angles) $R(X)=\frac{1}{n} \log _{2}\left(\frac{\cos \phi-1}{\cos \phi}\right)$ for $-1 \leq \cos \phi \leq-1 / n$ and $R(X)=\frac{1}{n} \log _{2}(n+1)$ for $-1 / n \leq \cos \phi<0$
- apply first spoiling:

Existence of the asymptotic bound

- construct controlling regions $\mathcal{R}_{L, c}(P), \mathcal{R}_{R, c}(P), \mathcal{R}_{U, c}(P)$, $\mathcal{R}_{D, c}(P)$ in a cutoff of undergraph of $H(\phi)$
- use these to constrain position of the asymptotic bound: 「 graph of continuous decreasing $R=\alpha(\phi)$ with $\alpha(\phi) \rightarrow \infty$ for $\phi \rightarrow 0$ and $\alpha(\pi / 2)=0$.
- set \mathcal{U} is undergraph of this function

$$
\mathcal{U}=\{(R, \phi): R \leq \alpha(\phi)\}
$$

union of all the lower controlling regions $\mathcal{R}_{L}(P)$ of all points $P \in \Gamma$

- code point $P=(R, \phi) \notin \Gamma$ in region \mathcal{U} iff infinite multiplicity and \exists sequence X_{i} of spherical codes with $\left(R\left(X_{i}\right), \phi_{X_{i}}\right)=(R, \phi)$ and $n_{i} \rightarrow \infty$ and $\# X_{i} \rightarrow \infty$.

Questions

- applications to sphere packings? (maximal density sphere packings)
- interplay between classical binary (q-ary?) codes and spherical codes
- asymptotic bound and complexity: spherical codes and complexity
- classical to quantum codes (for binary and q-ary: CSSR algorithm): what about spherical codes?
- for binary codes: strange examples of codea above the asymptotic bound coming from linguistics (see my talk in the Linguistics and Al seminar)

