Codes and Complexity

Matilde Marcolli

Centre for Complex Systems Studies Utrecht, April 2018

This lecture is based on:

- Yuri I. Manin, Matilde Marcolli, *Error-correcting codes and phase transitions*, Mathematics in Computer Science (2011) 5:133–170.
- Yuri I. Manin, Matilde Marcolli, *Kolmogorov complexity and the asymptotic bound for error-correcting codes*, Journal of Differential Geometry, Vol.97 (2014) 91–108
- Yuri I. Manin, Matilde Marcolli, *Asymptotic bounds for spherical codes*, arXiv:1801.01552

Error-correcting codes

- Alphabet: finite set A with $#A = q \ge 2$.
- Code: subset $C \subset A^n$, length $n = n(C) \ge 1$.
- Code words: elements $x = (a_1, \ldots, a_n) \in C$.
- Code language: $W_C = \bigcup_{m \ge 1} W_{C,m}$, words $w = x_1, \ldots, x_m$; $x_i \in C$.
- ω -language: Λ_C , infinite words $w = x_1, \ldots, x_m, \ldots; x_i \in C$.
- Special case: $A = \mathbb{F}_q$, *linear codes*: $C \subset \mathbb{F}_q^n$ linear subspace
- in general: unstructured codes

Code parameters

• $k = k(C) := \log_q \#C$ and [k] = [k(C)] integer part of k(C)

$$q^{[k]} \le \#C = q^k < q^{[k]+1}$$

• Hamming distance: $x = (a_i)$ and $y = (b_i)$ in C

$$d((a_i), (b_i)) := \#\{i \in (1, \ldots, n) \mid a_i \neq b_i\}$$

• Minimal distance d = d(C) of the code

$$d(C) := \min \left\{ d(a, b) \, | \, a, b \in C, a \neq b \right\}$$

同 と く ヨ と く ヨ と

Code parameters

- R = k/n = transmission rate of the code
- $\delta = d/n = relative minimum distance of the code$

Small *R*: fewer code words, easier decoding, but longer encoding signal; small δ : too many code words close to received one, more difficult decoding. Optimization problem: increase *R* and δ ... how good are codes?

• M.A. Tsfasman, S.G. Vladut, *Algebraic-geometric codes*, Mathematics and its Applications (Soviet Series), Vol. 58, Kluwer Academic Publishers, 1991. The space of code parameters:

- $Codes_q = set of all codes C on an alphabet #A = q$
- function $cp: Codes_q \to [0,1]^2 \cap \mathbb{Q}^2$ to code parameters $cp: C \mapsto (R(C), \delta(C))$
- the function $C \mapsto (R(C), \delta(C))$ is a *total recursive map* (Turing computable)
- Multiplicity of a code point (R, δ) is $\#cp^{-1}(R, \delta)$

Bounds in the space of code parameters

- singleton bound: $R + \delta \leq 1$
- Gilbert–Varshamov line: $R = \frac{1}{2}(1 H_q(\delta))$

$$H_q(\delta) = \delta \log_q(q-1) - \delta \log_q \delta - (1-\delta) \log_q(1-\delta)$$

q-ary entropy (for linear codes GV line $R = 1 - H_q(\delta)$)

Statistics of codes and the Gilbert-Varshamov bound

Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: ω -language with alphabet A; uniform Bernoulli measure on Λ_A ; choose code words of C as independent random variables in this measure

Volume estimate:

$$q^{(H_q(\delta)-o(1))n} \leq Vol_q(n,d=n\delta) = \sum_{j=0}^d \binom{n}{j} (q-1)^j \leq q^{H_q(\delta)n}$$

Gives probability of parameter δ for SRCE meets the GV bound with probability exponentially (in *n*) near 1: expectation

$$\mathbb{E} \sim \binom{q^k}{2} Vol_q(n,d) q^{-n} \sim q^{n(H_q(\delta)-1+2R)+o(n)}$$

Spoiling operations on codes: C an $[n, k, d]_q$ code

•
$$C_1 := C *_i f \subset A^{n+1}$$

 $(a_1, \dots, a_{n+1}) \in C_1 \text{ iff } (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{n+1}) \in C$,
and $a_i = f(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{n+1})$
 $C_1 \text{ an } [n+1, k, d]_q \text{ code } (f \text{ constant function})$
• $C_2 := C *_i \subset A^{n-1}$
 $(a_1, \dots, a_{n-1}) \in C_2 \text{ iff } \exists b \in A, (a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{n-1}) \in C$.
 $C_2 \text{ an } [n-1, k, d]_q \text{ code}$
• $C_3 := C(a, i) \subset C \subset A^n$
 $(a_1, \dots, a_n) \in C_3 \text{ iff } a_i = a$.
 $C_3 \text{ an } [n-1, k-1 \le k' < k, d' \ge d]_q \text{ code}$

▲御▶ ▲注▶ ▲注▶

æ

Asymptotic bound

- Yu.I.Manin, What is the maximum number of points on a curve over F₂? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981), 715–720.
- $V_q \subset [0,1]^2$: all code points $(R,\delta) = cp(C)$, $C \in Codes_q$
- U_q : set of limit points of V_q
- Asymptotic bound: U_q all points below graph of a function

$$U_q = \{(R,\delta) \in [0,1]^2 \mid R \le \alpha_q(\delta)\}$$

• Isolated code points: $V_q \smallsetminus (V_q \cap U_q)$

Method: controlling quadrangles

 $R = \alpha_q(\delta)$ continuous decreasing function with $\alpha_q(0) = 1$ and $\alpha_q(\delta) = 0$ for $\delta \in [\frac{q-1}{q}, 1]$; has inverse function on [0, (q-1)/q]; U_q union of all lower cones of points in $\Gamma_q = \{R = \alpha_q(\delta)\}$

Characterization of the asymptotic bound

• Code points and multiplicities

• Set of code points of infinite multiplicity $U_q \cap V_q = \{(R, \delta) \in [0, 1]^2 \cap \mathbb{Q}^2 \mid R \leq \alpha_q(\delta)\}$ below the asymptotic bound

• Code points of finite multiplicity all above the asymptotic bound $V_q \setminus (U_q \cap V_q)$ and isolated (open neighborhood containing (R, δ) as unique code point)

Questions:

• Is there a characterization of the isolated good codes on or above the asymptotic bound?

向下 イヨト イヨト

Estimates on the asymptotic bound

• Plotkin bound:

$$lpha_{m{q}}(\delta) = \mathsf{0}, \quad \delta \geq rac{m{q}-1}{m{q}}$$

• singleton bound:

$$\alpha_q(\delta) \le 1 - \delta$$

• Hamming bound:

$$\alpha_q(\delta) \leq 1 - H_q(\frac{\delta}{2})$$

• Gilbert–Varshamov bound:

$$\alpha_q(\delta) \ge 1 - H_q(\delta)$$

白 ト イヨト イヨト

æ

Computability question

• Note: only the asymptotic bound marks a significant change of behavior of codes across the curve (isolated and finite multiplicity/accumulation points and infinite multiplicity)

• in this sense it is very different from all the other bounds in the space of code parameters

• but no explicit expression for the curve $R = \alpha_q(\delta)$

• ... is the function $R = \alpha_q(\delta)$ computable?

• ... a priori no good statistical description of the asymptotic bound: is there something replacing Shannon entropy characterizing Gilbert–Varshamov curve?

• Yu.I. Manin, A computability challenge: asymptotic bounds and isolated error-correcting codes, arXiv:1107.4246

・ 同・ ・ ヨ・ ・ ヨ・

The asymptotic bound and Kolmogorov complexity

• while random codes are related to Shannon entropy (through the GV-bound) good codes and the asymptotic bound are related to Kolmogorov complexity

• the asymptotoc bound $R = \alpha_q(\delta)$ becomes computable given an oracle that can list codes by increasing Kolmogorov complexity

- given such an oracle: iterative (algorithmic) procedure for constructing the asymptotic bound
- ... it is at worst as "non-computable" as Kolmogorov complexity
- asymptotic bound can be realized as phase transition curve of a statistical mechanical system based on Kolmogorov complexity
 - Yu.I. Manin, M. Marcolli, *Kolmogorov complexity and the asymptotic bound for error-correcting codes*, Journal of Differential Geometry, Vol.97 (2014) 91–108

- 4 回 2 - 4 □ 2 - 4 □

Complexity

- How does one measure complexity of a physical system?
- Kolmogorov complexity: measures length of a minimal algorithmic description

... but ... gives very high complexity to completely random things

• Shannon entropy: measures average number of bits, for objects drawn from a statistical ensemble

• There are other proposals for complexity, but more difficult for formulate

• Gell-Mann complexity: complexity is high in an intermediate region between total order and complete randomness

Kolmogorov complexity

• Let $T_{\mathcal{U}}$ be a universal Turing machine (a Turing machine that can simulate any other arbitrary Turing machine: reads on tape both the input and the description of the Turing machine it should simulate)

• Given a string w in an alphabet \mathfrak{A} , the Kolmogorov complexity

$$\mathcal{K}_{\mathcal{T}_{\mathcal{U}}}(w) = \min_{P:\mathcal{T}_{\mathcal{U}}(P)=w} \ell(P),$$

minimal length of a program that outputs w

• universality: given any other Turing machine T

$$\mathcal{K}_T(w) = \mathcal{K}_{T_U}(w) + c_T$$

shift by a bounded constant, independent of w; c_T is the Kolmogorov complexity of the program needed to describe T for T_U to simulate it

- any program that produces a description of w is an upper bound on Kolmogorov complexity $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- think of Kolmogorov complexity in terms of data compression
- shortest description of w is also its most compressed form
- can obtain upper bounds on Kolmogorov complexity using data compression algorithms
- finding upper bounds is easy... but NOT lower bounds

Main problem

Kolmogorov complexity is NOT a computable function

- suppose list programs P_k (increasing lengths) and run through $T_{\mathcal{U}}$: if machine halts on P_k with output w then $\ell(P_k)$ is an upper bound on $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- but... there can be an earlier P_j in the list such that $T_{\mathcal{U}}$ has not yet halted on P_j
- if eventually halts and outputs w then $\ell(P_j)$ is a better approximation to $\mathcal{K}_{\mathcal{T}_{\mathcal{U}}}(w)$
- would be able to compute $\mathcal{K}_{T_{\mathcal{U}}}(w)$ if can tell exactly on which programs P_k the machine $T_{\mathcal{U}}$ halts
- but... halting problem is unsolvable

回 と く ヨ と く ヨ と

with $m(x) = \min_{y \ge x} \mathcal{K}(y)$

æ

Kolmogorov complexity

 $X = infinite \ constructive \ world$: have structural numbering computable bijections $\nu : \mathbb{Z}^+ \to X$ principal homogeneous space over group of total recursive permutations $\mathbb{Z}^+ \to \mathbb{Z}^+$

• Ordering: $x \in X$ is generated at the $\nu^{-1}(x)$ -th step

Optimal partial recursive enumeration $u : \mathbb{Z}^+ \to X$ (Kolmogorov and Schnorr)

$$K_u(x) := \min\{k \in \mathbb{Z}^+ \mid u(k) = x\}$$

Kolmogorov complexity

- changing $u : \mathbb{Z}^+ \to X$ changes $K_u(x)$ up to bounded (multiplicative) constants $c_1 K_v(x) \le K_u(x) \le c_2 K_v(x)$
- min length of program generating x (by Turing machine)

▲□→ ▲ 国→ ▲ 国→

Main Idea:

• use characterization of asymptotic bound as separating code points with finite multiplicity from code points with infinite multiplicity

• given the function from codes to code parameter, want an algorithmic procedure that inductively constructs preimage sets with finite/infinite multiplicity

 \bullet choose an ordering of code points: at step m list code points in order up to some growing size N_m

• initialize A_1 : a set of a preimage for each code point up to N_1 ; initialize $B_1 = \emptyset$

• want to increase at each step A_m and B_m so that the first set only contains code points with multiplicity m

向下 イヨト イヨト

• going from step m to step m + 1: new code points listed between N_m and N_{m+1} are added to A_m , and then points (previously in A_m or added) that do not have an m + 1-st preimage are moved to B_{m+1}

• as $m \to \infty$ the sets A_m converge to set of code points of infinite multiplicity and the B_m converge to set of code points of finite multiplicity

• key problem: need to search for the m + 1-st preimage to detect if a code point stays in A_{m+1} or is moved to B_{m+1}

• ordinarily this would involve an *infinite search*...

• ordering and complexity: use a relation between ordering and complexity that shows that only need to search among bounded complexity codes, so a *complexity oracle* will render the search finite

・ 同・ ・ ヨ・ ・ ヨ・

X, Y infinite constructive worlds, ν_X , ν_Y structural bijections, u, v optimal enumerations, K_u and K_v Kolmogorov complexities

• total recursive function
$$f : X \to Y \Rightarrow \forall y \in f(X), \exists x \in X, y = f(x): \exists \text{ computable } c = c(f, u, v, \nu_X, \nu_Y) > 0$$

$$K_u(x) \leq c \cdot \nu_Y^{-1}(y)$$

Kolmogorov ordering

 $\mathbf{K}_{u}(x) =$ order X by growing Kolmogorov complexity $K_{u}(x)$

$$c_1 K_u(x) \leq \mathbf{K}_u(x) \leq c_2 K_u(x)$$

So... if know how to generate elements of X in Kolmogorov ordering then can generate all elements of $f(X) \subset Y$ in their structural ordering

In fact... take F(x) = (f(x), n(x)) with

$$n(x) = \#\{x' \mid \nu_X^{-1}(x') \le \nu_X^{-1}(x), \ f(x') = f(x)\}$$

total recursive function $\Rightarrow E = F(X) \subset Y \times \mathbb{Z}^+$ enumerable

- $X_m := \{x \in X \mid n(x) = m\}$ and $Y_m := f(X_m) \subset Y$ enumerable
- for $x \in X_1$ and y = f(x): complexity $K_u(x) \le c \cdot \nu_Y^{-1}(y)$ (using inequalities for complexity under composition)

Multiplicity: $mult(y) := #f^{-1}(y)$

$$Y_{\infty} \subset \cdots f(X_{m+1}) \subset f(X_m) \subset \cdots \subset f(X_1) = f(X)$$

 $Y_{\infty} = \cap_m f(X_m)$ and $Y_{fin} = f(X) \smallsetminus Y_{\infty}$

Key Step: $y \in Y_{\infty}$ and $m \ge 1$: \exists unique $x_m \in X$, $y = f(x_m)$, $n(x_m) = m$ and $c = c(f, u, v, \nu_X, \nu_Y) > 0$

$$K_u(x_m) \leq c \cdot \nu_Y^{-1}(y) m \log(\nu_Y^{-1}(y)m)$$

御 と く き と く き と

Oracle mediated recursive construction of Y_{∞} and Y_{fin}

• Choose sequence (N_m, m) , $m \ge 1$, $N_{m+1} > N_m$

• Step 1:
$$A_1 = \text{list } y \in f(X) \text{ with } \nu_Y^{-1}(y) \leq N_1; B_1 = \emptyset$$

- Step m + 1: Given A_m and B_m , list $y \in f(X)$ with $\nu_Y^{-1}(y) \le N_{m+1}$; A_{m+1} = elements in this list for which $\exists x \in X$, y = f(x), n(x) = m + 1; B_{m+1} = remaining elements in the list
- oracle: search for $x \in X$, y = f(x), n(x) = m + 1 only among those x with complexity bounded by function of $\nu_Y^{-1}(y)$ as above
- $A_m \cup B_m \subset A_{m+1} \cup B_{m+1}$, union is all f(X); $B_m \subset B_{m+1}$ and $Y_{fin} = \bigcup_m B_m$, while $Y_{\infty} = \bigcup_{m \ge 1} (\bigcap_{n \ge 0} A_{m+n})$

• from A_m to A_{m+1} first add all new y with $N_m < \nu_Y^{-1}(y) \le N_{m+1}$ then subtract those that have no more elements in the fiber $f^{-1}(y)$: these will be in B_{m+1}

・回・ ・ヨ・ ・ヨ・

Structural numbering for codes

•
$$X = Codes_q$$
, $Y = [0, 1]^2 \cap \mathbb{Q}^2$ and $f : X \to Y$ is $cp : C \mapsto (R(C), \delta(C))$ code parameters map

• $A = \{0, ..., q - 1\}$ ordered, A^n lexicographically; computable total order ν_X :

(i) if $n_1 < n_2$ all $C \subset A^{n_1}$ before all $C' \subset A^{n_2}$; (ii) $k_1 < k_2$ all $[n, k_1, d]_q$ -codes before $[n, k_2, d']_q$ -codes; (iii) fixed n and q^k : lexicographic order of code words, concatenated into single word w(C) (determines code): order all the w(C) lexicographically

- ullet total recursive map $cp: \mathit{Codes}_q
 ightarrow [0,1]^2 \cap \mathbb{Q}^2$
- fixed enumeration ν_Y of rational points in $[0,1]^2$

... inductively building the asymptotic bound using the described oracle mediated procedure

• Question: is there a statistical view of this procedure?

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Partition function for code complexity

$$Z(X,\beta) = \sum_{x \in X} K_u(x)^{-\beta}$$

weights elements in constructive world X by inverse complexity; $\beta = {\rm inverse}$ temperature, thermodynamic parameter

Convergence properties

• Kolmogorov complexity and Kolmogorov ordering

$$c_1 \operatorname{K}_u(x) \leq K_u(x) \leq c_2 \operatorname{K}_u(x)$$

• convergence of $Z(X,\beta)$ controlled by series

$$\sum_{x \in X} \mathbf{K}_{u}(x)^{-\beta} = \sum_{n \ge 1} n^{-\beta} = \zeta(\beta)$$

• Partition function $Z(X,\beta)$ convergence for $\beta > 1$; phase transition at pole $\beta = 1$

Asymptotic bound as a phase transition

• $X' \subset X$ infinite decidable subset of a constructive world

• $i: X' \hookrightarrow X$ total recursive function; also $j: X \to X'$ identity on X' constant on complement

 $\mathcal{K}_u(i(x')) \leq c_1 \mathcal{K}_v(x')$ and $\mathcal{K}_v(j(x)) \leq c_2 \mathcal{K}_u(x)$

• $\delta = \beta_q(R)$ inverse of $lpha_q(\delta)$ on $R \in [0, 1 - 1/q]$

• Fix $R \in \mathbb{Q} \cap (0,1)$ and $\Delta \in \mathbb{Q} \cap (0,1)$

$$Z(R,\Delta;\beta) = \sum_{C:R(C)=R;1-\Delta\leq\delta(C)\leq 1} K_u(C)^{-\beta+\delta(C)-1}$$

Phase transition at the asymptotic bound

• $1 - \Delta > \beta_q(R)$: partition function $Z(R, \Delta; \beta)$ real analytic in β • $1 - \Delta < \beta_q(R)$: partition function $Z(R, \Delta; \beta)$ real analytic for $\beta > \beta_q(R)$ and divergence for $\beta \to \beta_q(R)_+$ Another view of the asymptotic bound as a phase transition

- Yuri I. Manin, Matilde Marcolli, *Error-correcting codes and phase transitions*, Mathematics in Computer Science (2011) 5:133–170.
- when constructing random codes (Shannon Random Code Ensemble): choose code words as equally distributed independent random variables
- imagine passing from classical to quantum systems, where the code words remain the fundamental degrees of freedom
- the basic quantum system of this kind is a system of independent harmonic oscillators: creation/annihilation operators associated to the basic independent degrees of freedom

Single Code: algebra of creation/annihilation operators

- for a single code C: code words are degrees of freedom
- Algebra of observable of a single code: Toeplitz algebra on code words

$$\mathcal{T}_C: \quad T_x, \ x \in C, \quad T_x^*T_x = 1$$

 $T_{X}T_{X}^{*}$ mutually orthogonal projectors

• Fock space representation \mathcal{H}_C spanned by ϵ_w , words $w = x_1, \ldots, x_N$ in code language \mathcal{W}_C

$$T_x \epsilon_w = \epsilon_{xw}$$

Quantum Statistical Mechanics of a single code

• algebra of observables \mathcal{T}_{C} ; time evolution $\sigma : \mathbb{R} \to \operatorname{Aut}(\mathcal{T}_{C})$

$$\sigma_t(T_x) = K_u(C)^{it} T_x$$

• Hamiltonian $\pi(\sigma_t(T)) = q^{itH}\pi(T)q^{-itH}$

$$H \epsilon_w = \ell(w) \log_q K_u(C) \epsilon_w$$

- in Fock representation, $\ell(w)$ length of word (# of code words)
- Partition function

$$Z(C,\sigma,\beta) = \operatorname{Tr}(e^{-\beta H}) = \sum_{m} (\#W_{C,m}) K_u(C)^{-\beta m}$$

$$=\sum_{m}q^{m(nR-\beta\log_{q}K_{u}(C))}=\frac{1}{1-q^{nR}K_{u}(C)^{-\beta}}$$

• Convergence: $\beta > nr / \log_q K_u(C)$

QSM system at a code point (R, δ)

- Different codes $C \in cp^{-1}(R, \delta)$ as independent subsystems
- Tensor product of Toeplitz algebras $\mathcal{T}_{(R,\delta)} = \otimes_{C \in cp^{-1}(R,\delta)} \mathcal{T}_C$
- Shift on single code temperature so that

$$Z(C,\sigma,n(\beta-\delta+1)) \leq (1-K_u(C)^{-\beta})^{-1}$$

by singleton bound on codes $R + \delta - 1 \leq 0$

- Fock space $\mathcal{H}_{(R,\delta)} = \otimes \mathcal{H}_C$; time evolution $\sigma = \otimes \sigma^C$
- Partition function (variable temperature)

$$Z(cp^{-1}(R,\delta),\sigma;\beta) = \prod_{C \in cp^{-1}(R,\delta)} Z(C,\sigma,n(\beta-\delta+1))$$

• Convergence controlled by $\prod_{C} (1 - K_u(C)^{-\beta})^{-1}$; in turned controlled by the classical zeta function $Z(cp^{-1}(R,\delta),\beta) = \sum_{C \in cp^{-1}(R,\delta)} K_u(C)^{-\beta}$

first versus second quantization

• Bosonic second quantization: example of primes p and integers $n \in \mathbb{N}$; independent degrees of freedom (primes) quantized by isometries $\tau_p^* \tau_p = 1$; tensor product of Toeplitz algebras $\otimes_p \mathcal{T}_p = C^*(\mathbb{N})$ semigroup algebra; $\sigma_t(\tau_p) = p^{it}\tau_p$, partition function $\zeta(\beta) = \prod_p (1 - p^{-\beta})^{-1}$ prod of partition functions individual systems

• Infinite tensor product: second quantization; finite tensor product: quantum mechanical (finitely many degrees of freedom) first quantization

• $(\mathcal{T}_{(R,\delta)}, \sigma)$ is quantum mechanical above the asymptotic bound; bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization

(本間) (本語) (本語)

Asymptotic bound as a phase transition (QSM point of view)

- Variable temperature partition function: $\mathcal{A} = \bigotimes_{s \in S} \mathcal{A}_s$, $\sigma = \bigotimes_s \sigma_s$; $\beta : S \to \mathbb{R}_+$; $Z(\mathcal{A}, \sigma, \beta) = \prod_s Z(\mathcal{A}_s, \sigma_s, \beta(s))$
- fix a code point (R, δ) ; partition function (variable β)

$$Z((R,\delta),\sigma;\beta) = \prod_{C \in cp^{-1}(R,\delta)} (1 - q^{(R-\beta)n_C})^{-1}$$

- if (R, δ) above bound finite product; if below bound convergence governed by $\sum_{C} q^{(R-\beta)n_{C}}$, for $\beta > R$.
- change of behavior of the system at $R = \alpha_q(\delta)$ asymptotic bound

ヨット イヨット イヨッ

Spherical Codes

- Yuri I. Manin, Matilde Marcolli, *Asymptotic bounds for spherical codes*, arXiv:1801.01552
- spherical code: finite set X of points on unit sphere $S^{n-1} \subset \mathbb{R}^n$
- spherical code X has minimal angle ϕ if $\forall x \neq y \in X$

$$\langle x, y \rangle \leq \cos \phi$$

• $A(n, \phi) = \max$ number of points on S^{n-1} with minimal angle ϕ

向下 イヨト イヨト

æ

Relation to sphere packings and kissing number

example of sphere configuration with kissing nunber 12

Spherical codes from binary codes

• C binary [n, k, d]₂-code

• identifying $\mathbb{Z}/2\mathbb{Z} = \{\pm 1\}$: code words as subset of the vertices of *n*-cube centered at origin in \mathbb{R}^n inscribed in sphere S^{n-1} (normalization factor)

• binary code C gives spherical code X_C with parameters

$$\cos \phi = 1 - \frac{2d}{n} \Leftrightarrow \delta(C) = \frac{d}{n} = \sin^2(\phi/2) = \frac{1 - \cos \phi}{2}$$
$$R(C) = \frac{\log_2 \# X_C}{n}$$

with maximum (for fixed n and d)

$$R(C)_{max}(n,d) = \frac{\log_2 A(n,\phi(n,d))}{n}$$

• Question: is there an asymptotic bound for spherical codes?

Space of code parameters

- binary codes: $[0,1]^2 \cap \mathbb{Q}$ coordinates (δ, R)
- spherical codes:
 - code rate $R = n^{-1} \log_2 \# X_C$
 - minimum angle $\phi = \phi_{X_C}$ (or $\cos \phi$)
- unbounded: ϕ smaller maximal number of points $A(n, \phi)$ grows, so R unbounded near $\phi \to 0$
- space $\mathbb{R}_+ \times [0,\pi]$

伺 ト イヨ ト イヨ ト

Regions in the space of code parameters

• code points of some spherical code X

$$\mathcal{P} = \{ P = (R, \phi) \, | \, \exists X \subset S^{n-1} \, : \, (R, \phi) = (R(X) = \frac{1}{n} \log_2 \# X, \phi_X) \}$$

accumulation points of set of code parameters

 $\mathcal{A} = \{ P = (R,\phi) \mid \exists (R_i,\phi_i) \in \mathcal{P} : (R,\phi) = \lim_i (R_i,\phi_i), (R_i,\phi_i) \neq (R,\phi) \}$

• points surrounded by a 2-ball densely filled by code parameters

$$\mathcal{U} = \{ P = (R, \phi) \, | \, \exists \epsilon > 0 : B(P, \epsilon) \subset \mathcal{A} \}$$

• asymptotic bound:

$$\mathsf{\Gamma} = \{ (\mathsf{R} = \alpha(\phi), \phi) \, | \, \alpha(\phi) = \mathsf{sup}\{\mathsf{R} \in \mathbb{R}_+ \, : \, (\mathsf{R}, \phi) \in \mathcal{U} \} \, \}$$

with $\alpha(\phi) = 0$ if $\{R \in \mathbb{R}_+ : (R, \phi) \in \mathcal{U}\} = \emptyset$

New phenomena with respect to binary codes

- \bullet the two regions ${\mathcal A}$ and ${\mathcal U}$ do not coincide
- \bullet asymptotic bound is the boundary of the region ${\mathcal U}$ (not of ${\mathcal A})$
- the part of the region $\mathcal A$ that is not in $\mathcal U$ consists of sequences of horizontal segments not contained in $\mathcal U\cup\Gamma$

 \bullet also the asymptotic bound is only non-trivial in a "small angle region"

- small angles region: $0 \le \phi \le \pi/2$
- large angle region: $\pi/2 < \phi \leq \pi$

Large angle region $\pi/2 < \phi \le \pi$

• Rankin bound: for $\pi/2 < \phi \le \pi$

$$A(n,\phi) \leq (\cos \phi - 1) / \cos \phi$$

- bound realized for $-1 \le \cos \phi \le -1/n$ while for $-1/n \le \cos \phi < 0$ one has $A(n, \phi) = n + 1$
- code points lie below the curve

$$R = \frac{1}{n} \log_2(\min\{n+1, \frac{\cos \phi - 1}{\cos \phi}\})$$

• large $n \to \infty$ behavior

$$R = rac{\log_2 \# X}{n} \leq rac{\log_2 A(n,\phi)}{n} o 0, \quad \pi/2 \leq \phi \leq \pi$$

 \Rightarrow no interesting asymptotic bound in this region

 \bullet still contains code points in $\mathcal{A}\smallsetminus\mathcal{U}$ and $\mathcal{P}\smallsetminus\mathcal{A}$,

Plots for $n = 1, \ldots, 10$

æ

Estimates in the small angle region

• Kabatiansky–Levenshtein bound: large $n \to \infty$

$$R \leq \frac{\log_2 A(n,\phi)}{n} \leq \frac{1+\sin\phi}{2\sin\phi} \log_2(\frac{1+\sin\phi}{2\sin\phi}) - \frac{1-\sin\phi}{2\sin\phi} \log_2(\frac{1-\sin\phi}{2\sin\phi})$$
for minimum angle $0 \leq \phi \leq \pi/2$

• for large $n \rightarrow \infty$ code parameter in the undergraph

$$\mathcal{S}:=\{(R,\phi)\in\mathbb{R}_+ imes [0,\pi]\,:\,R\leq H(\phi)\}$$

$$H(\phi) = \frac{1+\sin\phi}{2\sin\phi}\log_2(\frac{1+\sin\phi}{2\sin\phi}) - \frac{1-\sin\phi}{2\sin\phi}\log_2(\frac{1-\sin\phi}{2\sin\phi})$$

伺 ト イヨト イヨト

æ

Graph of $H(\phi)$:

• either cutoff on minimum angle $\phi \ge \phi_0$ (e.g. case of sphere packings) or cutoff on $R = \frac{1}{n} \log_2 \# X \le T$ (more natural for spoiling operations)

Spoiling operations for spherical codes

- first spoiling operations:
 - binary codes: $C_1 = C \star_i a$ associates to a word $c = (a_1, \ldots, a_n)$ of C the word $c \star_i a = (a_1, \ldots, a_{i-1}, a, a_i, \ldots, a_n)$
 - spherical codes: take code $X_C \subset S^{n-1}$ and inserts S^{n-1} as hyperplane section of S^n
- econd spoiling operation:
 - binary codes: $C_2 = C \star_i$, which is a projection of the code C in the *i*-th direction
 - spherical codes: cos θ = ⟨v_k, v_r⟩ angle between two points of code X_C: orthogonal projection along x_i-axis

$$\cos\tilde{\theta} = \frac{n}{n-1} \langle v_k^{\perp_i}, v_r^{\perp_i} \rangle = \frac{n}{n-1} (\cos\theta - \langle v_{k,i}, v_{r,i} \rangle)$$

- third spoiling operation:
 - binary codes: $C_3 = C(a, i)$ code words with *i*-th digit *a*
 - spherical codes: line ℓ and orthogonal hyperplane L through origin of \mathbb{R}^n , with $X_3 := X_{\ell}^{\pm} = X \cap S_{\ell,\pm}^{n-1}$ intersection with one of the two hemispheres

・ロト ・日本 ・モート ・モート

Main differences: continuous parameters in spoiling operations

- first spoiling operation extends with *continuous parameters* (choice of a hyperplane H): scaling the sphere S^{n-1} and identifying it with the section $H \cap S^n$ to embed new code $X_1 = X \star H$ in S^n
- parameters: $k(X_1) = k(X)$, $n(X_1) = n(X) + 1$ and

$$\cos\phi_{X_1} = \rho_H^2 \cos\phi_X + (1 - \rho_H^2)$$

 ρ_H radius of scaled sphere $S_{\rho}^{n-1} = H \cap S^n$

- second spoiling operation: *L* hyperplane through origin in \mathbb{R}^n with orthogonal ℓ not containing code points; orthogonal projection $P_L : \mathbb{R}^n \to L \simeq \mathbb{R}^{n-1}$ and normalize vectors: $X_2 = X \star_L \subset S^{n-2}$
- code parameters: $k(X_2) = k(X)$ and $n(X_2) = n(X) 1$

$$\cos \phi_{X_2} = (1+u) \cos \phi_X + u, \quad u = (1-\xi_{X,L}^2)/\xi_{X,L}^2$$

with $\xi_{X,\ell} = \operatorname{dist}(X,\ell)$

向下 イヨト イヨト

• third spoiling operation also continuous choice of ℓ , L with $X_3 := X_{\ell}^{\pm} = X \cap S_{\ell,\pm}^{n-1}$ one hemisphere

• code parameters: $\exists \ell$ with $k(X) - 1 \le k(X_3) < k(X)$ and minimum angle $\phi(X_3) \ge \phi(X)$

controlling cones: starting with X with code parameters $[n, k, \cos \phi]$

• use spoling operations to obtain code parameters to obtain

• consequence: if (R, ϕ) code point all line segment

$$\ell_{n,k,\cos\phi} = \{\left(\frac{n}{n+1}R,\lambda\cos\phi+1-\lambda\right) : \lambda \in [0,1]\}$$

also made of code points: in ${\mathcal A}$ not always in ${\mathcal U}_{{\mathbb A}}$

Example of segments in \mathcal{A} not in \mathcal{U}

- Rankin examples of spherical codes realizing bound (large angles) $R(X) = \frac{1}{n} \log_2(\frac{\cos \phi 1}{\cos \phi})$ for $-1 \le \cos \phi \le -1/n$ and $R(X) = \frac{1}{n} \log_2(n+1)$ for $-1/n \le \cos \phi < 0$
- apply first spoiling:

Matilde Marcolli Codes and Complexity

Existence of the asymptotic bound

- construct controlling regions $\mathcal{R}_{L,c}(P)$, $\mathcal{R}_{R,c}(P)$, $\mathcal{R}_{U,c}(P)$, $\mathcal{R}_{D,c}(P)$ in a cutoff of undergraph of $H(\phi)$
- use these to constrain position of the asymptotic bound: Γ graph of continuous decreasing $R = \alpha(\phi)$ with $\alpha(\phi) \to \infty$ for $\phi \to 0$ and $\alpha(\pi/2) = 0$.
- \bullet set ${\mathcal U}$ is undergraph of this function

$$\mathcal{U} = \{(R,\phi) : R \leq \alpha(\phi)\}$$

union of all the lower controlling regions $\mathcal{R}_L(P)$ of all points $P \in \Gamma$

• code point $P = (R, \phi) \notin \Gamma$ in region \mathcal{U} iff infinite multiplicity and \exists sequence X_i of spherical codes with $(R(X_i), \phi_{X_i}) = (R, \phi)$ and $n_i \to \infty$ and $\#X_i \to \infty$.

・日本 ・ モン・ ・ モン

Questions

- applications to sphere packings? (maximal density sphere packings)
- interplay between classical binary (q-ary?) codes and spherical codes
- asymptotic bound and complexity: spherical codes and complexity
- classical to quantum codes (for binary and *q*-ary: CSSR algorithm): what about spherical codes?
- for binary codes: strange examples of codea above the asymptotic bound coming from linguistics (see my talk in the Linguistics and AI seminar)

・ 同 ト ・ ヨ ト ・ ヨ ト