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Error-correcting codes

• Alphabet: finite set A with #A = q ≥ 2.
• Code: subset C ⊂ An, length n = n(C ) ≥ 1.
• Code words: elements x = (a1, . . . , an) ∈ C .
• Code language: WC = ∪m≥1WC ,m, words w = x1, . . . , xm;
xi ∈ C .
• ω-language: ΛC , infinite words w = x1, . . . , xm, . . .; xi ∈ C .
• Special case: A = Fq, linear codes: C ⊂ Fn

q linear subspace
• in general: unstructured codes

Matilde Marcolli Codes and Complexity



Code parameters
• k = k(C ) := logq #C and [k] = [k(C )] integer part of k(C )

q[k] ≤ #C = qk < q[k]+1

• Hamming distance: x = (ai ) and y = (bi ) in C

d((ai ), (bi )) := #{i ∈ (1, . . . , n) | ai 6= bi}

• Minimal distance d = d(C ) of the code

d(C ) := min {d(a, b) | a, b ∈ C , a 6= b}
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Code parameters
• R = k/n = transmission rate of the code
• δ = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding
signal; small δ: too many code words close to received one, more
difficult decoding. Optimization problem: increase R and δ... how
good are codes?

M.A. Tsfasman, S.G. Vladut, Algebraic-geometric codes,
Mathematics and its Applications (Soviet Series), Vol. 58,
Kluwer Academic Publishers, 1991.
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The space of code parameters:

• Codesq = set of all codes C on an alphabet #A = q

• function cp : Codesq → [0, 1]2 ∩Q2 to code parameters
cp : C 7→ (R(C ), δ(C ))

• the function C 7→ (R(C ), δ(C )) is a total recursive map
(Turing computable)

• Multiplicity of a code point (R, δ) is #cp−1(R, δ)
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Bounds in the space of code parameters

• singleton bound: R + δ ≤ 1

• Gilbert–Varshamov line: R = 1
2 (1− Hq(δ))

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)

q-ary entropy (for linear codes GV line R = 1− Hq(δ))
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Statistics of codes and the Gilbert–Varshamov bound

Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: ω-language with alphabet A;
uniform Bernoulli measure on ΛA; choose code words of C as
independent random variables in this measure

Volume estimate:

q(Hq(δ)−o(1))n ≤ Volq(n, d = nδ) =
d∑

j=0

(
n

j

)
(q − 1)j ≤ qHq(δ)n

Gives probability of parameter δ for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

E ∼
(
qk

2

)
Volq(n, d)q−n ∼ qn(Hq(δ)−1+2R)+o(n)
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Spoiling operations on codes: C an [n, k, d ]q code

• C1 := C ∗i f ⊂ An+1

(a1, . . . , an+1) ∈ C1 iff (a1, . . . , ai−1, ai+1, . . . , an+1) ∈ C ,

and ai = f (a1, . . . , ai−1, ai+1 . . . , an+1)
C1 an [n + 1, k , d ]q code (f constant function)

• C2 := C∗i ⊂ An−1

(a1, . . . , an−1) ∈ C2 iff ∃b ∈ A, (a1, . . . , ai−1, b, ai+1, . . . , an−1) ∈ C .

C2 an [n − 1, k , d ]q code

• C3 := C (a, i) ⊂ C ⊂ An

(a1, . . . , an) ∈ C3 iff ai = a.

C3 an [n − 1, k − 1 ≤ k ′ < k , d ′ ≥ d ]q code
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Asymptotic bound

Yu.I.Manin, What is the maximum number of points on a
curve over F2? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715–720.

• Vq ⊂ [0, 1]2: all code points (R, δ) = cp(C ), C ∈ Codesq

• Uq: set of limit points of Vq

• Asymptotic bound: Uq all points below graph of a function

Uq = {(R, δ) ∈ [0, 1]2 |R ≤ αq(δ)}

• Isolated code points: Vq r (Vq ∩ Uq)
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Method: controlling quadrangles

1δ

R

1

R = αq(δ) continuous decreasing function with αq(0) = 1 and
αq(δ) = 0 for δ ∈ [ q−1

q , 1]; has inverse function on [0, (q − 1)/q];
Uq union of all lower cones of points in Γq = {R = αq(δ)}
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Characterization of the asymptotic bound

• Code points and multiplicities

• Set of code points of infinite multiplicity
Uq ∩ Vq = {(R, δ) ∈ [0, 1]2 ∩Q2 |R ≤ αq(δ)} below the
asymptotic bound

• Code points of finite multiplicity all above the asymptotic bound
Vq r (Uq ∩ Vq) and isolated (open neighborhood containing (R, δ)
as unique code point)

Questions:
• Is there a characterization of the isolated good codes on or above
the asymptotic bound?
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Estimates on the asymptotic bound

• Plotkin bound:

αq(δ) = 0, δ ≥ q − 1

q

• singleton bound:
αq(δ) ≤ 1− δ

• Hamming bound:

αq(δ) ≤ 1− Hq(
δ

2
)

• Gilbert–Varshamov bound:

αq(δ) ≥ 1− Hq(δ)
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Computability question

• Note: only the asymptotic bound marks a significant change of
behavior of codes across the curve (isolated and finite
multiplicity/accumulation points and infinite multiplicity)

• in this sense it is very different from all the other bounds in the
space of code parameters

• .... but no explicit expression for the curve R = αq(δ)

• ... is the function R = αq(δ) computable?
• ... a priori no good statistical description of the asymptotic
bound: is there something replacing Shannon entropy
characterizing Gilbert–Varshamov curve?

Yu.I. Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246
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The asymptotic bound and Kolmogorov complexity

• while random codes are related to Shannon entropy (through the
GV-bound) good codes and the asymptotic bound are related to
Kolmogorov complexity

• the asymptotoc bound R = αq(δ) becomes computable given an
oracle that can list codes by increasing Kolmogorov complexity

• given such an oracle: iterative (algorithmic) procedure for
constructing the asymptotic bound

• ... it is at worst as “non-computable” as Kolmogorov complexity

• asymptotic bound can be realized as phase transition curve of a
statistical mechanical system based on Kolmogorov complexity

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91–108
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Complexity

• How does one measure complexity of a physical system?

• Kolmogorov complexity: measures length of a minimal
algorithmic description

... but ... gives very high complexity to completely random things

• Shannon entropy: measures average number of bits, for objects
drawn from a statistical ensemble

• There are other proposals for complexity, but more difficult for
formulate

• Gell-Mann complexity: complexity is high in an intermediate
region between total order and complete randomness
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Kolmogorov complexity

• Let TU be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

• Given a string w in an alphabet A, the Kolmogorov complexity

KTU (w) = min
P:TU (P)=w

`(P),

minimal length of a program that outputs w

• universality: given any other Turing machine T

KT (w) = KTU (w) + cT

shift by a bounded constant, independent of w ; cT is the
Kolmogorov complexity of the program needed to describe T for
TU to simulate it
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• any program that produces a description of w is an upper bound
on Kolmogorov complexity KTU (w)

• think of Kolmogorov complexity in terms of data compression

• shortest description of w is also its most compressed form

• can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

• finding upper bounds is easy... but NOT lower bounds

Matilde Marcolli Codes and Complexity



Main problem
Kolmogorov complexity is NOT a computable function

• suppose list programs Pk (increasing lengths) and run through
TU : if machine halts on Pk with output w then `(Pk ) is an upper
bound on KTU (w)

• but... there can be an earlier Pj in the list such that TU has not
yet halted on Pj

• if eventually halts and outputs w then `(Pj ) is a better
approximation to KTU (w)

• would be able to compute KTU (w) if can tell exactly on which
programs Pk the machine TU halts

• but... halting problem is unsolvable
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with m(x) = miny≥x K(y)
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Kolmogorov complexity
X = infinite constructive world: have structural numbering
computable bijections ν : Z+ → X principal homogeneous space
over group of total recursive permutations Z+ → Z+

• Ordering: x ∈ X is generated at the ν−1(x)-th step

Optimal partial recursive enumeration u : Z+ → X
(Kolmogorov and Schnorr)

Ku(x) := min{k ∈ Z+ | u(k) = x}

Kolmogorov complexity
• changing u : Z+ → X changes Ku(x) up to bounded
(multiplicative) constants c1Kv (x) ≤ Ku(x) ≤ c2Kv (x)
• min length of program generating x (by Turing machine)
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Main Idea:

• use characterization of asymptotic bound as separating code
points with finite multiplicity from code points with infinite
multiplicity

• given the function from codes to code parameter, want an
algorithmic procedure that inductively constructs preimage sets
with finite/infinite multiplicity

• choose an ordering of code points: at step m list code points in
order up to some growing size Nm

• initialize A1: a set of a preimage for each code point up to N1;
initialize B1 = ∅

• want to increase at each step Am and Bm so that the first set
only contains code points with multiplicity m

Matilde Marcolli Codes and Complexity



• going from step m to step m + 1: new code points listed
between Nm and Nm+1 are added to Am, and then points
(previously in Am or added) that do not have an m + 1-st preimage
are moved to Bm+1

• as m→∞ the sets Am converge to set of code points of infinite
multiplicity and the Bm converge to set of code points of finite
multiplicity

• key problem: need to search for the m + 1-st preimage to detect
if a code point stays in Am+1 or is moved to Bm+1

• ordinarily this would involve an infinite search...

• ordering and complexity: use a relation between ordering and
complexity that shows that only need to search among bounded
complexity codes, so a complexity oracle will render the search
finite
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X , Y infinite constructive worlds, νX , νY structural bijections, u, v
optimal enumerations, Ku and Kv Kolmogorov complexities

• total recursive function f : X → Y ⇒ ∀y ∈ f (X ), ∃x ∈ X ,
y = f (x): ∃ computable c = c(f , u, v , νX , νY ) > 0

Ku(x) ≤ c · ν−1
Y (y)

Kolmogorov ordering
Ku(x) = order X by growing Kolmogorov complexity Ku(x)

c1 Ku(x) ≤ Ku(x) ≤ c2Ku(x)

So... if know how to generate elements of X in Kolmogorov
ordering then can generate all elements of f (X ) ⊂ Y in their
structural ordering
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In fact... take F (x) = (f (x), n(x)) with

n(x) = #{x ′ | ν−1
X (x ′) ≤ ν−1

X (x), f (x ′) = f (x)}

total recursive function ⇒ E = F (X ) ⊂ Y × Z+ enumerable

• Xm := {x ∈ X | n(x) = m} and Ym := f (Xm) ⊂ Y enumerable

• for x ∈ X1 and y = f (x): complexity Ku(x) ≤ c · ν−1
Y (y) (using

inequalities for complexity under composition)

Multiplicity: mult(y) := #f −1(y)

Y∞ ⊂ · · · f (Xm+1) ⊂ f (Xm) ⊂ · · · ⊂ f (X1) = f (X )

Y∞ = ∩mf (Xm) and Yfin = f (X ) r Y∞

Key Step: y ∈ Y∞ and m ≥ 1: ∃ unique xm ∈ X , y = f (xm),
n(xm) = m and c = c(f , u, v , νX , νY ) > 0

Ku(xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m)
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Oracle mediated recursive construction of Y∞ and Yfin

• Choose sequence (Nm,m), m ≥ 1, Nm+1 > Nm

• Step 1: A1 = list y ∈ f (X ) with ν−1
Y (y) ≤ N1; B1 = ∅

• Step m + 1: Given Am and Bm, list y ∈ f (X ) with
ν−1

Y (y) ≤ Nm+1; Am+1 = elements in this list for which ∃ x ∈ X ,
y = f (x), n(x) = m + 1; Bm+1 = remaining elements in the list

• oracle: search for x ∈ X , y = f (x), n(x) = m + 1 only among
those x with complexity bounded by function of ν−1

Y (y) as above

• Am ∪ Bm ⊂ Am+1 ∪ Bm+1, union is all f (X ); Bm ⊂ Bm+1 and
Yfin = ∪mBm, while Y∞ = ∪m≥1(∩n≥0Am+n)

• from Am to Am+1 first add all new y with Nm < ν−1
Y (y) ≤ Nm+1

then subtract those that have no more elements in the fiber
f −1(y): these will be in Bm+1
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Structural numbering for codes

• X = Codesq, Y = [0, 1]2 ∩Q2 and f : X → Y is
cp : C 7→ (R(C ), δ(C )) code parameters map

• A = {0, . . . , q − 1} ordered, An lexicographically; computable
total order νX :
(i) if n1 < n2 all C ⊂ An1 before all C ′ ⊂ An2 ;
(ii) k1 < k2 all [n, k1, d ]q-codes before [n, k2, d

′]q-codes;
(iii) fixed n and qk : lexicographic order of code words,
concatenated into single word w(C ) (determines code):
order all the w(C ) lexicographically

• total recursive map cp : Codesq → [0, 1]2 ∩Q2

• fixed enumeration νY of rational points in [0, 1]2

... inductively building the asymptotic bound using the described
oracle mediated procedure

• Question: is there a statistical view of this procedure?
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Partition function for code complexity

Z (X , β) =
∑
x∈X

Ku(x)−β

weights elements in constructive world X by inverse complexity;
β = inverse temperature, thermodynamic parameter

Convergence properties

• Kolmogorov complexity and Kolmogorov ordering

c1 Ku(x) ≤ Ku(x) ≤ c2 Ku(x)

• convergence of Z (X , β) controlled by series∑
x∈X

Ku(x)−β =
∑
n≥1

n−β = ζ(β)

• Partition function Z (X , β) convergence for β > 1; phase
transition at pole β = 1
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Asymptotic bound as a phase transition
• X ′ ⊂ X infinite decidable subset of a constructive world
• i : X ′ ↪→ X total recursive function; also j : X → X ′ identity on
X ′ constant on complement

Ku(i(x ′)) ≤ c1Kv (x ′) and Kv (j(x)) ≤ c2Ku(x)

• δ = βq(R) inverse of αq(δ) on R ∈ [0, 1− 1/q]

• Fix R ∈ Q ∩ (0, 1) and ∆ ∈ Q ∩ (0, 1)

Z (R,∆;β) =
∑

C :R(C)=R;1−∆≤δ(C)≤1

Ku(C )−β+δ(C)−1

Phase transition at the asymptotic bound
• 1−∆ > βq(R): partition function Z (R,∆;β) real analytic in β
• 1−∆ < βq(R): partition function Z (R,∆;β) real analytic for
β > βq(R) and divergence for β → βq(R)+
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Another view of the asymptotic bound as a phase transition

Yuri I. Manin, Matilde Marcolli, Error-correcting codes and
phase transitions, Mathematics in Computer Science (2011)
5:133–170.

• when constructing random codes (Shannon Random Code
Ensemble): choose code words as equally distributed independent
random variables

• imagine passing from classical to quantum systems, where the
code words remain the fundamental degrees of freedom

• the basic quantum system of this kind is a system of independent
harmonic oscillators: creation/annihilation operators associated to
the basic independent degrees of freedom
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Single Code: algebra of creation/annihilation operators

• for a single code C : code words are degrees of freedom

• Algebra of observable of a single code: Toeplitz algebra on code
words

TC : Tx , x ∈ C , T ∗x Tx = 1

TxT
∗
x mutually orthogonal projectors

• Fock space representation HC spanned by εw , words
w = x1, . . . , xN in code language WC

Tx εw = εxw
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Quantum Statistical Mechanics of a single code

• algebra of observables TC ; time evolution σ : R→ Aut(TC )

σt(Tx ) = Ku(C )it Tx

• Hamiltonian π(σt(T )) = qitHπ(T )q−itH

H εw = `(w) logqKu(C ) εw

in Fock representation, `(w) length of word (# of code words)

• Partition function

Z (C , σ, β) = Tr(e−βH) =
∑

m

(#WC ,m)Ku(C )−βm

=
∑

m

qm(nR−β logq Ku(C)) =
1

1− qnRKu(C )−β

• Convergence: β > nr/ logq Ku(C )
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QSM system at a code point (R, δ)

• Different codes C ∈ cp−1(R, δ) as independent subsystems

• Tensor product of Toeplitz algebras T(R,δ) = ⊗C∈cp−1(R,δ)TC

• Shift on single code temperature so that

Z (C , σ, n(β − δ + 1)) ≤ (1− Ku(C )−β)−1

by singleton bound on codes R + δ − 1 ≤ 0

• Fock space H(R,δ) = ⊗HC ; time evolution σ = ⊗σC

• Partition function (variable temperature)

Z (cp−1(R, δ), σ;β) =
∏

C∈cp−1(R,δ)

Z (C , σ, n(β − δ + 1))

• Convergence controlled by
∏

C (1− Ku(C )−β)−1; in turned
controlled by the classical zeta function
Z (cp−1(R, δ), β) =

∑
C∈cp−1(R,δ) Ku(C )−β
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first versus second quantization

• Bosonic second quantization: example of primes p and integers
n ∈ N; independent degrees of freedom (primes) quantized by
isometries τ∗p τp = 1; tensor product of Toeplitz algebras

⊗pTp = C ∗(N) semigroup algebra; σt(τp) = pitτp, partition
function ζ(β) =

∏
p(1− p−β)−1 prod of partition functions

individual systems

• Infinite tensor product: second quantization; finite tensor
product: quantum mechanical (finitely many degrees of freedom)
first quantization

• (T(R,δ), σ) is quantum mechanical above the asymptotic bound;
bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization
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Asymptotic bound as a phase transition (QSM point of view)

• Variable temperature partition function: A = ⊗s∈SAs ,
σ = ⊗sσs ; β : S → R+; Z (A, σ, β) =

∏
s Z (As , σs , β(s))

• fix a code point (R, δ); partition function (variable β)

Z ((R, δ), σ;β) =
∏

C∈cp−1(R,δ)

(1− q(R−β)nC )−1

• if (R, δ) above bound finite product; if below bound convergence
governed by

∑
C q(R−β)nC , for β > R.

• change of behavior of the system at R = αq(δ) asymptotic bound
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Spherical Codes

Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, arXiv:1801.01552

• spherical code: finite set X of points on unit sphere Sn−1 ⊂ Rn

• spherical code X has minimal angle φ if ∀x 6= y ∈ X

〈x , y〉 ≤ cosφ

• A(n, φ) = max number of points on Sn−1 with minimal angle φ
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Relation to sphere packings and kissing number

example of sphere configuration with kissing nunber 12
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Spherical codes from binary codes

• C binary [n, k , d ]2-code

• identifying Z/2Z = {±1}: code words as subset of the vertices
of n-cube centered at origin in Rn inscribed in sphere Sn−1

(normalization factor)

• binary code C gives spherical code XC with parameters

cosφ = 1− 2d

n
⇔ δ(C ) =

d

n
= sin2(φ/2) =

1− cosφ

2

R(C ) =
log2 #XC

n

with maximum (for fixed n and d)

R(C )max (n, d) =
log2 A(n, φ(n, d))

n

• Question: is there an asymptotic bound for spherical codes?
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Space of code parameters

• binary codes: [0, 1]2 ∩Q coordinates (δ,R)

• spherical codes:

code rate R = n−1 log2 #XC

minimum angle φ = φXC
(or cosφ)

• unbounded: φ smaller maximal number of points A(n, φ) grows,
so R unbounded near φ→ 0

• space R+ × [0, π]
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Regions in the space of code parameters

code points of some spherical code X

P = {P = (R, φ) | ∃X ⊂ Sn−1 : (R, φ) = (R(X ) =
1

n
log2 #X , φX )}

accumulation points of set of code parameters

A = {P = (R, φ) | ∃(Ri , φi ) ∈ P : (R, φ) = lim
i

(Ri , φi ), (Ri , φi ) 6= (R, φ)}

points surrounded by a 2-ball densely filled by code parameters

U = {P = (R, φ) | ∃ε > 0 : B(P, ε) ⊂ A}

• asymptotic bound:

Γ = {(R = α(φ), φ) |α(φ) = sup{R ∈ R+ : (R, φ) ∈ U} }

with α(φ) = 0 if {R ∈ R+ : (R, φ) ∈ U} = ∅
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New phenomena with respect to binary codes

• the two regions A and U do not coincide

• asymptotic bound is the boundary of the region U (not of A)

• the part of the region A that is not in U consists of sequences of
horizontal segments not contained in U ∪ Γ

• also the asymptotic bound is only non-trivial in a “small angle
region”

small angles region: 0 ≤ φ ≤ π/2

large angle region: π/2 < φ ≤ π
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Large angle region π/2 < φ ≤ π

• Rankin bound: for π/2 < φ ≤ π

A(n, φ) ≤ (cosφ− 1)/ cosφ

• bound realized for −1 ≤ cosφ ≤ −1/n while for
−1/n ≤ cosφ < 0 one has A(n, φ) = n + 1

• code points lie below the curve

R =
1

n
log2(min{n + 1,

cosφ− 1

cosφ
})

• large n→∞ behavior

R =
log2 #X

n
≤ log2 A(n, φ)

n
→ 0, π/2 ≤ φ ≤ π

⇒ no interesting asymptotic bound in this region

• still contains code points in Ar U and P rA
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Plots for n = 1, . . . , 10
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Estimates in the small angle region

• Kabatiansky–Levenshtein bound: large n→∞

R ≤ log2 A(n, φ)

n
≤ 1 + sinφ

2 sinφ
log2(

1 + sinφ

2 sinφ
)−1− sinφ

2 sinφ
log2(

1− sinφ

2 sinφ
)

for minimum angle 0 ≤ φ ≤ π/2

• for large n→∞ code parameter in the undergraph

S := {(R, φ) ∈ R+ × [0, π] : R ≤ H(φ)}

H(φ) =
1 + sinφ

2 sinφ
log2(

1 + sinφ

2 sinφ
)− 1− sinφ

2 sinφ
log2(

1− sinφ

2 sinφ
)
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Graph of H(φ):

• either cutoff on minimum angle φ ≥ φ0 (e.g. case of sphere
packings) or cutoff on R = 1

n log2 #X ≤ T (more natural for
spoiling operations)
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Spoiling operations for spherical codes

1 first spoiling operations:

binary codes: C1 = C ?i a associates to a word c = (a1, . . . , an)
of C the word c ?i a = (a1, . . . , ai−1, a, ai , . . . , an)
spherical codes: take code XC ⊂ Sn−1 and inserts Sn−1 as
hyperplane section of Sn

2 second spoiling operation:

binary codes: C2 = C?i , which is a projection of the code C in
the i-th direction
spherical codes: cos θ = 〈vk , vr 〉 angle between two points of
code XC : orthogonal projection along xi -axis

cos θ̃ =
n

n − 1
〈v⊥i

k , v⊥i
r 〉 =

n

n − 1
(cos θ − 〈vk,i , vr ,i 〉)

3 third spoiling operation:

binary codes: C3 = C (a, i) code words with i-th digit a
spherical codes: line ` and orthogonal hyperplane L through
origin of Rn, with X3 := X±` = X ∩ Sn−1

`,± intersection with one
of the two hemispheres
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Main differences: continuous parameters in spoiling operations

• first spoiling operation extends with continuous parameters
(choice of a hyperplane H): scaling the sphere Sn−1 and identifying
it with the section H ∩ Sn to embed new code X1 = X ? H in Sn

• parameters: k(X1) = k(X ), n(X1) = n(X ) + 1 and

cosφX1 = ρ2
H cosφX + (1− ρ2

H)

ρH radius of scaled sphere Sn−1
ρ = H ∩ Sn

• second spoiling operation: L hyperplane through origin in Rn

with orthogonal ` not containing code points; orthogonal projection
PL : Rn → L ' Rn−1 and normalize vectors: X2 = X?L ⊂ Sn−2

• code parameters: k(X2) = k(X ) and n(X2) = n(X )− 1

cosφX2 = (1 + u) cosφX + u, u = (1− ξ2
X ,L)/ξ2

X ,L

with ξX ,` = dist(X , `)
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• third spoiling operation also continuous choice of `, L with
X3 := X±` = X ∩ Sn−1

`,± one hemisphere

• code parameters: ∃` with k(X )− 1 ≤ k(X3) < k(X ) and
minimum angle φ(X3) ≥ φ(X )

controlling cones: starting with X with code parameters
[n, k, cosφ]

• use spoling operations to obtain code parameters to obtain

1 [n + 1, k , λ cosφ+ 1− λ], for all λ ∈ [0, 1];

2 [n − 1, k , (1 + u) cosφ± u] for u = (1− ξX ,L)2/ξ2
X ,L;

3 [n − 1, k − a, cosφ], for 0 < a < k .

for 0 ≤ φ ≤ π/2

• consequence: if (R, φ) code point all line segment

`n,k,cosφ = {( n

n + 1
R, λ cosφ+ 1− λ) : λ ∈ [0, 1]}

also made of code points: in A not always in U
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Example of segments in A not in U
• Rankin examples of spherical codes realizing bound (large angles)
R(X ) = 1

n log2( cosφ−1
cosφ ) for −1 ≤ cosφ ≤ −1/n and

R(X ) = 1
n log2(n + 1) for −1/n ≤ cosφ < 0

• apply first spoiling:
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Existence of the asymptotic bound

• construct controlling regions RL,c (P), RR,c (P), RU,c (P),
RD,c(P) in a cutoff of undergraph of H(φ)

• use these to constrain position of the asymptotic bound: Γ graph
of continuous decreasing R = α(φ) with α(φ)→∞ for φ→ 0 and
α(π/2) = 0.

• set U is undergraph of this function

U = {(R, φ) : R ≤ α(φ)}

union of all the lower controlling regions RL(P) of all points P ∈ Γ

• code point P = (R, φ) /∈ Γ in region U iff infinite multiplicity and
∃ sequence Xi of spherical codes with (R(Xi ), φXi

) = (R, φ) and
ni →∞ and #Xi →∞.
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Questions

• applications to sphere packings? (maximal density sphere
packings)

• interplay between classical binary (q-ary?) codes and spherical
codes

• asymptotic bound and complexity: spherical codes and
complexity

• classical to quantum codes (for binary and q-ary: CSSR
algorithm): what about spherical codes?

• for binary codes: strange examples of codea above the
asymptotic bound coming from linguistics (see my talk in the
Linguistics and AI seminar)
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