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This article presents a unified mathematical framework for infer-
ence in graphical models, building on the observation that graph-
ical models are algebraic varieties. From this geometric viewpoint,
observations generated from a model are coordinates of a pointin
the variety, and the sum-product algorithm is an efficient tool for
evaluating specific coordinates. Here, we address the question of
how the solutions to various inference problems depend on the
model parameters. The proposed answer is expressed in terms of
tropical algebraic geometry. The Newton polytope of a statistical
model plays a key role. Our results are applied to the hidden
Markov model and the general Markov model on a binary tree.

his article presents a unified mathematical framework for
probabilistic inference with statistical models, such as graph-
ical models. Our approach is summarized by the following theses:

(i) Statistical models are algebraic varieties.
(i) Every algebraic variety can be tropicalized.
(iii) Tropicalized statistical models are fundamental for para-
metric inference.

1. Algebraic Statistics, Tropical Geometry, and Inference

By a statistical model, we mean a family of joint probability
distributions for a collection of discrete random variables Y =
{Y1, ...,Y,}. Thesisi states that many families of interest can be
characterlzed by polynomials in the joint probabilities pg,. .., =
Prob(Y: = o4, ...,Y, = 0,). Although the Varlety deflned by
these polynomials contains points that are not in the model (for
example, points with negative coordinates), the emerging field of
algebraic statistics (1, 2) offers practical and useful algorithms
for studying statistical models.

Tropicalization means replacing the arithmetic operations (+,
X) by the operations (min, +). This process captures the essence
of what happens when the joint probabilities p,,. - ., are replaced
by their logarithms. The tropicalization of an algebraic variety is
a piecewise-linear set that has many features familiar from
algebraic geometry (3, 4). In particular, the tropicalization of a
statistical model is a piecewise-linear set in the space with
logarithmic coordinates —log(po,: - -a,)-

Thesis iii states that tropical algebraic geometry of statistical
models is of fundamental interest in analyzing the behavior of
inference algorithms under the variation of model parameters.
By inference, we mean the evaluation of one or more coordinates
of a single point on the algebraic variety, in either (+, X) or (min,
+) arithmetic. This evaluation corresponds to a form of infer-
ence that is used for graphical models in statistical learning
theory (5), but it differs from other (more classical) notions of
inference in mathematical statistics. By parametric inference, we
mean the analysis of the dependence of inference on parameters.

To give a more concrete discussion of parametric inference, it
is useful to focus on directed graphical models. A directed
graphical model (or Bayesian network) is a finite directed acyclic
graph G with two kinds of vertices (observed variables Y =
{Y1, ....,Y,} and hidden variables X = {X1, ..., X,n}), where
each edge is labeled by a transition matrix whose entries are
linear forms in some parameters. The rules of discrete proba-
bility express the observed probabilities p,. . ., as polynomials of
a degree = FE in the parameters, where E is the number of edges
of G. The polynomials parameterize the graphical model as an
algebraic variety.
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The following are two types of inference questions from
statistical learning theory for graphical models.

1. The calculation of marginal probabilities:

pa'l- s oy = E

hi, .o hm

Prob(Xl = h17 ey Xm = hm,

Y1:0'1,... ,Yn: and

T,

2. The calculation of maximum a posteriori (MAP) log proba-
bilities:

1) :hb""Xm:hm?

o)),

where the h; range over all of the possible assignments for the
hidden random variables X;. Together, these two primitives can
be used effectively to solve a range of other statistical learning
inference problems, including the calculation of conditional
probabilities and other quantities of interest. The key to these
statistical learning inference questions for graphical models is
the sum-product algorithm (6), which is also known as the
generalized distributive law (7). This polynomial-time algorithm
(in the case that the graph has constant clique size) is used, both
in ordinary arithmetic (+, X) and in tropical arithmetic (min, +),
to solve problems 1 and 2 efficiently. For more background on the
sum—product algorithm, and for connections to message passing
and the junction tree algorithm, see ref. 5.

Although the sum—product algorithm provides efficient solu-
tions to the basic inference problems 1 and 2, it only applies to
one coordinate pg, ..., of one distribution at a time. We are
interested in the parametric versions of the inference problems.
They can be phrased as follows:

oy e, = MiN
hi, ..., hm

— log (Prob(X;

Yi=0,....Y,=

3. Find all parameter values for a model that result in the same
values for all ps,.. .o,

4. Given observations Y = ¢ and hidden data X = h, identify all
parameter values such that h is the most likely explanation for
the observations o.

As we will show, the following modeling problems are related
fundamentally to problems 3 and 4:

5. Which (parameter-independent) relations on the probabili-
ties pg,-- .o, does the model imply?

6. Describe the tropicalization of the variety that corresponds to
a graphical model.

Problem 5 asks for the ideal of polynomial invariants of a
statistical model (1). Invariants have been investigated in phy-
logenetics (8, 9), where they can help to identify good trees for
aligned DNA sequences.

The primary goal of our study is to give a practical answer
to problem 4 for graphical models. Our main algorithmic result
is an efficient procedure for parametric inference that can be
viewed as a polytopal analog of the sum-product algorithm.

Abbreviations: MAP, maximum a posteriori; HMM, hidden Markov model.
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Fig. 1. The HMM of length 3.

The efficiency is based on the complexity estimates for Newton
polytopes that we derive in section 4. The resulting polytope
propagation algorithm is applied to problems in biological
sequence analysis in ref. 10.

The mathematics developed in sections 3 and 4 is of indepen-
dent interest. It also furnishes tools for parametric inference
(problems 3 and 4) and parametric modeling (problems 5 and 6),
which are applicable to a wide range of statistical problems. We
demonstrate this point of view by analyzing the hidden Markov
model (HMM) and the general Markov model on a binary tree
in sections 2 and 5, respectively.

2. Algebraic Representation of HMMs
A graphical model is an algebraic variety that is presented as the
image of a highly structured polynomial map f: RY — R™. Here,
R¢ is the space in which coordinates are the model parameters
51, ..., 84, and R™ is the space in which coordinates p, = pg,-- -,
are the joint probabilities for the observed random variables. In
applications, the integer m is much larger than the integer d; in
fact, it is so large that one can only look at one coordinate p,, at
a time. Each coordinate f, = f,(s1, ..., s4) of the map fis a
polynomial function in sy, ..., sq. The efficient evaluation of
these functions relies on the sum—product algorithm. Here, we
study the (parametric) inference and modeling problems in the
familiar context of the HMM.

A discrete HMM has n observed states Y7, . . .,Y, taking on
[ possible values and n hidden states X7, . .., X, taking on k
possible values. The HMM can be characterized by the fol-
lowing conditional independence statements fori =1, ..., n:

p(A/t|Xl) X27' .. 7Xvifl) :p(Afl|X71)’

p(K|X1) . aA/i? Yla' L] Yi*l) :P(Yz|Xz)

We consider the homogeneous model with uniform initial
distribution, where all transitions X; — X;4+ are given by the
same k X k matrix S = (s;) and all transitions X; — Y; are given
by the same k X [ matrix T = (t;). Throughout our discussion,
we disregard for simplicity the usual probabilistic hypothesis
that § and T are nonnegative and that all row sums are 1.

Proposition 1. The HMM is the image of a map f: R¢ — R!", where
d = k(k + 1) and each coordinate of f is a bihomogeneous
polynomial of degree n — 1 in S and degree n in T.

Problem 3 is to compute the fibers of the map f. In statistics,
this computation is called parameter identification. We use the
term coordinate polynomials for the polynomials f, that are
coordinates of the map f.

Our running example in this section is the case n = 3 with
binary random variables (k = / = 2). The graph of this model
is given in Fig. 1. The shaded nodes are the observed random
variables.

Here, the parameter space is R® with the coordinates sgo, So1,
810, S11, 00, f01, 110, and £11, and it maps to R8 with the coordinates
P000s P0015 P010> P0o11s P100s P1015> P110> a0d p111. The map f: R® —
R® is given by the following:
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Joroa0s = $00800L00 F0of 0oy T S00801L00 L0t 0oy T S018 10000, F 10, 00y
t 501511200, L10,f 105 T S10500L 10 f00f 00y T S10S018 10, L0060, 10y
t 811810010,/ 10000, T S115118 10 L 10, 10y

The HMM (i.e., the image of f) is the zero set of the following
quartic polynomial:

2 2 2 2 2 2
Po11P100 — Poo1P1io T PoooPo11Pio1 — PoooP101P110

2 2 2 2
+ PoooPo11P110 — PootPoioP11t T PooiP1ooP 111 T PoioP1ooP111

- P001P%00P111 - Pooopgupuo ~ Poo1Po11P100P 101

— Po10Po11P100P101 T Po01Po10Po11P 110 — Po10Po11P100P110
+ Poo1Po1oP101P110 T Poo1P100P101P 110 T PoooPo1oPo11P111
— PoooPo11P100P111 — PoooP001P101P111 T PoooP100P 1012111

+ PoooPoo1P110P111 — PoooPo1oP110P111-

This polynomial was found by a Grobner basis computation. See
the discussion on implicitization in section 3 of ref. 11.

In general, the polynomial functions on R” that vanish on the
image of f are called the invariants of the model. They form a prime
ideal I5. In our example, I is generated by the quartic polynomial
given above. Problem 5 is to compute generators of the ideal Iy
When /” and d are small, this can be done by using Grobner bases,
and in some cases it is possible to characterize Ir based on the
structure of the model (see, for example, Conjecture 13), but in
general, problem 5 is hard and the ideal I may remain unknown.

Here, tropical geometry comes in. The tropicalization of our
map f is the map g: R? — R” defined by replacing products by
sums and sums by minima in the formula for f. In our example
(n =3,k =1=12), the tropicalization is the piecewise-linear map
g: R® = RS, (U, V) — with the following:

)

0,05 = mln{uh1h2 + uh2h3 + Vhltr] + th[fz + Vh3(r3:

(hb hZ’ h3) € {0’1}3} [1]

This minimum is attained by the most likely hidden data (%1, /5,
h3), given the observations (o, 02, 03) and given the parameters
u.. = —log(s..) and v.. = —log(t..). The sequence (%1, 2, h3) is
known as the Viterbi sequence in the HMM literature (12). It
solves problem 2 in section 1.

The key observation, which we discuss in more detail in section
4, is that the set of parameters (U, V) that selects the Viterbi
sequence (ﬁ1, ho, ﬁ3) is the normal cone at a vertex of the Newton
polytope of the polynomial f; ,,,. This polytope is four-
dimensional, it has eight vertices, and its normal fan represents the
solution to problem 4 in section 1 when o = o003 is fixed.

We can also consider an extension of problem 4 in which o =
010,03 ranges over all possible observations. The solution is given
by the Newton polytope of the map f. In our example, it is a
five-dimensional polytope with 398 vertices, 1,136 edges, 1,150
two-faces, 478 three-faces, and 68 facets, namely, the Minkowski
sum of eight copies of the earlier four-dimensional polytope for (o,
o2, 03) € {0, 1}3. For a concrete numerical example, fix the
parameters U* = (§ 1) and V* = (§ §). We find the following:

If the observed string at Y Y,Y3 is
00,03 = 000001010011 100 101 110 111,
then the Viterbi sequence at X1 X,X5 is

h.hshy =000 001 000 011 000 111 110 111.
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The set of all parameters (U, V) leading to the same conclusions
as (U*, I*) is the cone defined by the following:

Uoy — gy + Vi1 — Vo1 = 0, uyg — uyy +vgo —v19=0,

Ugg + vor —Uyg — V11 =0,

2ugg + vor —ugr —uUyg — v =0,

2uyy +vio+ vin — ugo — Uor — Voo — vor = 0.

Our solution to the parametric inference problem with respect
to all observations simultaneously consists of 398 such cones.
The tropical HMM is the union of the images of these cones
under the piecewise-linear map g: (U, V) ~— 6. This image is a
piecewise-linear set of dimension 7. The cone that contains the
chosen parameters (U*, ’*) is mapped to a seven-dimensional
cone in the tropical HMM (it spans the hyperplane 8p10 = 8100),
but most of the other 397 cones are mapped to lower-
dimensional cones by the map g. The question of how the number
398 grows as the length n increases is addressed in Corollary 10.

3. Positivity and Morphisms in Tropical Geometry

We have shown that a graphical model is the image of a
polynomial map f from the space of parameters to the space of
joint probability distributions on the observed random variables.
Furthermore, we have shown that the tropicalization of f arises
naturally in solving problem 4. In this section, we study the
geometry of tropicalization in the more general setting where f:
RY — R is an arbitrary polynomial map. In statistical applica-
tions, each coordinate f,; of the map f'is usually a polynomial with
positive coefficients. If this condition holds, then the polynomial
map f is called positive. We consider f to be surjectively positive
if, in addition, f maps the positive orthant surjectively onto the
positive points in the image, in symbols,

f(RLy) = image(f) N RZ,. [2]

The set of all polynomial functions that vanish on the image of
fis a prime ideal I in the polynomial ring R[py, ..., p]. The
closure of the image of f is the variety of the prime ideal .

In tropical geometry, we replace the variety of Iy by a
piecewise-linear set as follows. The tropical variety T(Iy) is the set
of all weight vectors w € R™ such that the initial ideal in,,(Iy)
contains no monomial (4, 13). By following ref. 14, we define the
positive tropical variety T* (Iy) as the set of all weight vectors w €
R™ such that the initial ideal in,,(If) contains no polynomial with
only positive coefficients. The tropical variety T(Iy) is a polyhe-
dral fan in R™, and T (Iy) is a polyhedral subcomplex of T(Iy). This
observation means that T(/y) is a finite union of closed convex
polyhedral cones that fit together nicely, and T*(Iy) is the union
of a subset of these cones. The tropicalization of the polynomial
map f is the piecewise-linear map g: RY — R™ defined by
replacing products by sums and sums by minima in the evaluation
of f. We consider g to be a tropical morphism. Examples of
tropical morphisms appear in Egs. 1, 3, 4, 9, and 10.

The following theorem describes the geometry of this situa-
tion. We define the Newton polytope of a polynomial map f: R¢ —
R” as the Minkowski sum in R? of the Newton polytopes of its
coordinates fi, . . ., f,,. For basic information on Newton poly-
topes and their normal fans, see section 1 of ref. 13.

Theorem 2. The tropical morphism g is linear on each cone in the
normal fan of the Newton polytope of f. Its image is a fan contained
in T(Iy). If f is positive, then image(g) is a subset of T*(Iy), but it
is generally not a polyhedral subcomplex. If f is surjectively positive,
then image(g) = T*(Ip).

Proof: Let P; denote the Newton polytope of the polynomial
fi = fi(s1, . .., sa4). By definition, P; is the convex hull in R? of
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all nonnegative lattice points a = (ay, .. ., a4) € N such that
the monomial s{' - - - 5% appears with a nonzero coefficient in f;.
The piecewise-linear concave function g; is the support function
of the polytope P;. Thus, g;(w) is the minimum value attained on
P; by the linear functional a — w-a. In particular, the function
gi: R — R is linear on each cone in the normal fan of P,.
The Newton polytope of the map f is the Minkowski sum
pPi+---+P,={ay +--++a,:a € P;}. The normal fan of

Py + -+ + P, is the common refinement of the normal fans
of Py, ..., P,. This observation shows that the function f =
(f1, - - . » fm): R® > R is linear on each cone of the normal fan

of the Newton polytope of f. Because g is continuous, the image
of g is a closed polyhedral fan in R™.

Consider any vector w € RY. We must show that g(w) lies in
T(Iy), and if f is positive, then g(w) lies in T*(Iy). Let ¢ be any
polynomial in the ideal /. If we substitute py = fi, ..., pm = fin
into ¢ = ¢(p1, ..., pm), then the result is zero. Consequently,
if we substitute the initial forms p; = in,(f1), . . ., P = inW(fin)
into the initial form ing,)(¢), then the result is zero (see
equation 11.2 in ref. 13, p. 100). This fact implies that ing(,)(¢)
is not a monomial. Moreover, if f is positive, then ¢ must have
two terms whose coefficients have opposite signs.

The following example shows that image (g) need not be a
subcomplex of T*(/y). If fis assumed to be surjectively positive, then
it follows from proposition 2.5 in ref. 14 that image(g) = T"(Ip).

Example 3: Letd = 3 and m = 4, and consider the linear map

f: R3%R4> (S], $2, S3)
H(Sl + 5, + 853, 51 + 2S2+S3, S, + 83, S3).

Then, I is the principal ideal generated by the linear form p; —
p2 + p3 — ps, and T(Iy) is essentially the normal fan of a
tetrahedron. We identify T(/) with the complete graph Kj. The
six edges of K4 are labeled with six monomial-free initial ideals
of I, namely, (p1 + p3), (—p2 — pa), (p1 — p2), {p1 — pa), (—p2 +
P3), (p3 — pa). The first two of these six initial ideals contain a
polynomial with positive coefficients. Hence, the positive trop-
ical variety T" (Iy) is the four-cycle in K4 formed by the remaining
four edges.

The tropicalization of the linear map f is the tropical mor-
phism:

g R =R, (uy, uy, u3) [3]
'_)l:min(ulr U, M3)’ min(ulr U, M3)7 min(u27 M3), u3:|

The image of g is the set of all vectors (a, a, b, ¢) witha = b =
¢. Each vector (a, a, b, ¢) with a < b < ¢ has the initial ideal
(p1 — p2), so it lies on a particular edge of K4. But the same edge
also accounts for all vectors (a, a, b, ¢) with a < ¢ < b, none
of which is in the image of g. Thus, image(g) is a closed segment
that covers only half of the edge of K4 indexed by (p1 — p2).

In the rest of this section, we examine Theorem 2 for a small
but important graphical model, namely, the naive Bayes model
with two features (ref. 1, section 7). There are two observed
random variables Y; and Y5 that depend on one hidden binary
random variable X. The two observed variables take k and [
possible values, respectively. The parameterization f of this
model is the map f: R2&+) — R given by p; = syfy + sty Thus,
the model consists of all k& X [ matrices P = (pj) of the form P =
S-T,where S is a k X 2 matrix and 7'is a 2 X  matrix (i.e., the model
consists of precisely the k X [/ matrices of rank <2).

Proposition 4. The parameterization f of the naive Bayes model with
two features is surjectively positive. The ideal I is generated by the
3 X 3 subdeterminants of the k X [ matrix P = (pj).

Proof: The map f being positive means that, if P is any positive
matrix of rank 2, then § and 7 can be chosen to be positive. This

Pachter and Sturmfels
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Fig. 2.
determinant.

The tropical variety and positive-tropical variety of the 3 x 3

is a known result in linear algebra (e.g, see ref. 15). The same
statement is false for rank =3 (i.e., the parameterization of the
naive Bayes model with three or more features is not surjectively
positive). A well known result in commutative algebra states that
the (» + 1) X (r + 1) minors of a k X [ matrix generate a prime
ideal. The variety of this ideal is the set of k X [ matrices of rank
=r. This is our ideal Iy for r = 2.

The objects of Theorem 2 have been studied (3, 16). The
tropical variety T(Iy) is the set of k X [ matrices of tropical rank
=2, and the tropical variety T"(Iy) = image(g) is the set of k X
| matrices of Barvinok rank =2. Develin (16) determined the
combinatorics and topology of these spaces when min(k, /) = 3.
He showed that T([y) is shellable but that T* () can have torsion
in its integral homology groups.

The Newton polytope of the map f is an interesting combi-
natorial object, namely, it is the (kl — k — [ + 2)-dimensional
zonotope associated with the complete bipartite graph Ky ;. The
Newton polytope of each coordinate f;; is a line segment, and the
zonotope is their Minkowski sum. The normal fan is the hyper-
plane arrangement {u;o — u;1 = vij — vq;}. Its maximal cones
correspond to the acyclic orientations of the complete bipartite
graph Ky ;. West (17) showed that the number of facets of such
a cone can be any integer between k + [ — 1 and kl. The total
number of cones equals S5, S(k, /)(—1)"*i!(i + 1)’, where S(k,
i) is the Stirling number of the second kind. Here, the tropical
morphism g is given by the following:

gy =min(u;y + v, Uy + vyp). [4]

The map g: R?*+) — R¥ is piecewise linear with respect to the
hyperplane arrangement.

Example 5: Letk = [ = 3, so the two observed random variables
are ternary. The prime ideal is the following:

I = {p11P2P33 — P11P23P32 — P12P21P33
+ P12P23P31 T P13P21P32 — P13P22P3)-

The tropical variety T(ly) is the fan over a two-dimensional
polyhedral complex consisting of six triangles and nine quad-
rangles. This complex is the 2-skeleton of the product of two
triangles, labeled as in Fig. 2a. This complex is shellable. The
positive tropical variety T*(Iy) is the subcomplex consisting of
the nine quadrangles shown in Fig. 2b. Note that T* (If) is a torus.

The Newton polytope of f is a five-dimensional zonotope with
230 vertices, one for each acyclic orientation of the complete
bipartite graph K3 3. The map g is linear on each of the 230 cones
in the corresponding hyperplane arrangement, but it is rank-
deficient on 68 of the cones. The remaining 162 = 18 X 9 cones are
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mapped onto the nine quadrangles of the torus T"(fy). Thus, the
general fiber of g involves 18 cones. Of these 18 cones, 8 cones have
five facets, 8 cones have six facets, and 2 cones have eight facets.

4. Newton Polytopes of Graphical Models and

their Complexity

Consider a graphical model with E edges and n observed random
variables Y7, .. .,Y,, each taking / values. Such a model is given by
a positive polynomial map f: R? — R”. Each coordinate f,, of fis a
polynomial of degree e in the model parameters sy, . . ., 4. In this
section, we discuss the statistical meaning and the computational
complexity of the mathematical objects introduced in section 3.

We write u; = —log(s;) for the negative logarithms of the model
parameters. Consider any of the /* possible observations o. The
quantity f(s1, . .., S¢) is the probability of making this particular
observation [i.e., it is Prob(Y = o)]. The quantity g,(u1, . . . , ug) is
the negative logarithm of the conditional probability Prob(X =
h|Y = ), where h maximizes Prob(X = h|Y = o) for the parameters
(51, - - - »84). Clearly, the function g,: R — R is piecewise linear and
concave on the logarithmic parameter space.

The domains of linearity of the function g, are the cones in the
normal fan of the Newton polytope of f,. Each maximal cone C
is indexed by the hidden data h that maximizes Prob(X = h|Y =
o) for any of the parameters (uy, . . ., g) € C. The hidden data
h that arise in this manner, for some choice of logarithmic
parameters u, are called the possible explanations of the obser-
vation o. For example, for the HMM described in section 2, the
explanations are the Viterbi sequences.

We vary the observations as follows. Each logarithmic param-
eter vector u defines an inference function o — h from the set of
observations to the set of explanations. For the HMM, each
inference function {1, ..., [}* = {1, ..., k}" takes an observed
sequence o to the corresponding Viterbi sequence h. There are
(k)" = k™" such functions, but most of these are not inference
functions. For example, consider the binary HMM of length
three. There are 8% = 16,777,216 Boolean functions {0, 1}3 —
{0, 1}3, but as we show at the end of section 2, only 398 of these
are inference functions for the HMM.

Proposition 6. The inference functions o > h of a graphical model
fare in bijection with the vertices of the Newton polytope of the map
f. The explanations h for a fixed observation o in a graphical model
are in bijection with the vertices of the Newton polytope of the
polynomial f,.

In applications of graphical models, the number d of param-
eters and the number / of values of the observed random
variables are small and fixed, but the number n of observed
random variables is large. Recall that the model is the image of
the map f: RY — R". Hence, the dimension of the model remains
fixed, but the dimension of its ambient space grows exponentially
inn. Therefore, it is algorithmically infeasible to compute the full
tropical variety T(Iy). However, we can efficiently compute the
Newton polytopes of the f,;, or even the Newton polytope of f.
This insight allows us to glean information about the tropical
variety from the domains of linearity of its “coordinate func-
tions” g.

Our next goal is to derive an upper bound on the number of
vertices of the Newton polytopes.

Theorem 7. Consider graphical models f whose number of param-
eters d is fixed and whose number n of observed random variables
and number of edges E varies. (Typically, E is a linear function of
n.) Then, the number of vertices of the Newton polytope NP(f,) of
fo is bounded above by the following:

No. of vertices (NP(f,)) = constant-E*¢~D/@+1)

< constant-E¢ ™.
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For many important families of graphical models, the number
E of edges is bounded by a linear function in terms of the number
n of observed nodes, and in these cases, we can replace E by n.
Hence, for any given observation o, the number of explanations
grows polynomially in 7. For example, in the HMM described in
section 2, we have E = 2n — 1, and a similar relationship holds
in the tree model of section 5.

Corollary 8. For any fixed observation in the homogeneous HMM,
the number of explanations is at most Cyrn***D, [If all random
variables are binary, then the upper bound C-n'/3 holds.

The proofs of Theorem 7 and Corollary 8 are derived from the
following classical result on lattice polytopes by Andrews (18). The
necessary observation is that the Newton polytope off,; is contained
in the cube [0, E]%, and the volume of this cube equals E“.

Proposition 9. For every fixed integer d, there exists a constant Cy
such that the number of vertices of any lattice polytope P in R? is
bounded above by Cgvolume(P)@-1/(@d+1) (18),

The Newton polytope of the map f was defined as the
Minkowski sum of the /* smaller Newton polytopes in Theorem
7. We infer the following to be naive bound on its number of
vertices.

Corollary 10. The number of inference functions of a graphical
model is at most I"“‘E?~1; hence, this number scales at most singly
exponentially in the complexity (n, E) of the graphical model.

Consider the homogeneous HMM on binary random vari-
ables. Each inference function is a Boolean function {0, 1}"* —
{0, 1}", but not conversely. The number of all Boolean functions
is 2", which grows doubly exponentially in n. However, the
number of inference functions is at most 2polynomial(n),

In practical applications of graphical models, it may be
infeasible to compute all (singly exponentially many) inference
functions. Nonetheless, we believe that important insight can be
gained by computing and classifying the Newton polytopes of
graphical models f on few random variables. Such a study would
be the polyhedral analog to the algebraic classification of ref. 1.

However, for a fixed observation o, the size of the Newton
polytope of f,, grows polynomially with the size of the graphical
model, and therefore, there is hope that the polytopes can be
computed efficiently. Despite the fact that the Newton polytope of
fohas polynomially many vertices in the size of the graphical model,
the number of terms in f,, grows exponentially. This is a potential
problem because the computation of the Newton polytope requires
the inspection of these terms. The following result states that the
convex hull computations scale with the running time of the
sum—product algorithm, which for many models of interest scales
polynomially with the size of the graphical model.

Proposition 11 (Polytope Propagation). 7he Newton polytopes of the
polynomials f, can be computed recursively by using the decom-
position of f, according to the sum-product algorithm.

5. The General Markov Model on a Binary Tree

We conclude by illustrating the concepts that we have developed
in the context of tree Markov models. These models are directed
graphical models in which the graph is a directed tree 7 with
observed random variables Y7, ...,Y, at the leaves. The naive
Bayes model in section 3 is the special case in which n = 2. Each
edge e has a different transition matrix ¢ = [s7,,]. We consider
the general model given by Allman and Rhodes (8), which means
that the $¢ are arbitrary distinct / X [ matrices. In most
applications, the transition matrices are from a special model
family (for example, in phylogenetics, these may be Jukes—
Cantor model or the Hasegawa—Kishino—Yano model). As be-
fore, we relax the hypothesis that transition probabilities are

16136 | www.pnas.org/cgi/doi/10.1073/pnas.0406010101
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Fig. 3. A directed binary tree with n = 4 leaves.

nonnegative and sum to 1. Hence, the s},, are distinct unknowns.
For simplicity, we further assume that the tree 7 is binary.

Proposition 12. The general Markov model for the binary tree 7 is the
image of a map f: R?"=2"" — RI", where each coordinate of f is a
multilinear polynomial in the unknowns {(s},), e edge of }.

If we denote an edge between nodes i and j by (if), and 7’ is
the tree 7 without the leaves, then the coordinate of the
multilinear map f indexed by an observed sequence (o1, . . . ,0%)
can be written as follows:

Py =2 I Gslhsif) - [51
' with thEilgrcnj,k
Here, h ranges over all colorations 4 = (h;);e- of the nodes such
that 4; = o; for all leaves j. Our running example in this section
is the binary tree in Fig. 3 with binary random variables (/ = 2).
In this example, the coordinates of the multilinear map f:
R?* — R!% are given by the following formula:

— 75 76 51 52 63 64
Powrrn = 2 SEsi R siom) (shsion). 6]
{hs.he,h7y€{0,1}3

The prime ideal Iy of polynomial invariants is generated by the
3 X 3 subdeterminants of the following matrix:

Poo11
Poi1i

7
Pio11 71
P

Pooo1
Poio1
P1oo1
Piio1

Poooo  Poo1o
Poioo  Poiio
P1ooo  Pio1o

1100  P1110

Thus, this particular model is the k = [ = 4 instance of the
determinantal variety in Proposition 4.

We generalize the determinantal presentation in this example by
proposing the following explicit solution to problem 5 for arbitrary
binary trees 7. Every edge of 7induces a split of the set of leaves {1,
2,...,n}, corresponding to the two connected components of the
tree obtained by removing that edge. The unrooted tree underlying
7 is uniquely determined by the set of these splits.

Conjecture 13. The ideal Iy of phylogenetic invariants of the general
Markov model for any binary tree T on binary random variables is
generated by the 3 X 3-determinants of all two-dimensional
matrices obtained by flattening the 2 X -+ X 2-table (po,---s,)
according to the splits induced by the edges of .

We need to explain the meaning of the word “flattening.” If
(4, B) is any split of the set {1, ..., n}, then this term refers to
the 2#¢) x 2#(B) matrix whose rows and columns are indexed
by the functions 4 — {0, 1} and B — {0, 1}, respectively, and
whose entries are the 2” probabilities py,. . .q, .

The sum-product algorithm is used in practice to evaluate the
polynomial of Eq. 5. Its running time is linear in n, despite the
fact that the number /7! of terms in Eq. 5 grows exponentially.
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This reduction in complexity is achieved by recursively grouping
subsums. For example, Eq. 6 becomes the following:

— (75)(51)(52) (75)o(51),(52)
plT[(Tz(T304 - Z (SVO sO(r1SO(r + Sy s11r|sl(r )

76) (63 (76) (63) (64
(550 sty + sUPs s (0. [81

Remember the following rule: Polynomials are evaluated recur-
sively as sums of products of smaller polynomials. This is the
solution to problem 1. For details on the tree case, see ref. 19.

Problem 2 is known in phylogeny as the joint ancestral recon-
struction problem, which asks for the MAP ancestral assignments /;
given the observations (oy,..., 0,) at the leaves. An efficient
method for solving this problem is given in ref. 20. This method is
nothing but the sum—product algorithm with ordinary arithmetic
(+, X) replaced by tropical arithmetic (min, +). The o coordinate
of the tropicalization g: R?1~2" — R" of the map in Eq. 5 is

Ogy - g, = MiIN Z
h et
with children j,k

Vi, + Vi) - [9]

This expression can be evaluated efficiently by the same scheme
as used previously. The rule is now the following: Piecewise-
linear concave functions are evaluated recursively as minima of
sums of smaller such functions. A simple example illustrating this
rule is the following tropicalization of Eq. 8:

o min (U6, + Uyoy,), [10]

ve{0,1}

010,030,

where u,4,,, = min(v{j> + V(Sl) + v(sz), v + vﬁf,ll) + vﬁf,zz))
and similarly for u,,,.

In section 4, we showed that the number of vertices of the Newton
polytopes of the coordinate polynomials f,, is critical for efficient
parametric inference. That number grows polynomially in # if the
number of parameters is fixed (because of Theorem 7), but it may
grow exponentially if the number of parameters is not bounded. For
the general Markov model on a tree 7, the growth will be expo-
nential unless we restrict the number of parameters. This can be
done, for example, by considering the homogeneous tree model as
follows, where the transition matrices along all edges are identical:
s\, = s, is independent of the edge e. By using Theorem 7, we
obtain the following result analogous to Corollary 8.

Proposition 14. The number of vertices of the Newton polytope of any
coordmate fo in the homogeneous tree model is bounded above by
~! times a constant depending only onl.
For tree models that are used in applications, such as phylo-
genetics, the number of parameters is likely to be reduced even
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further. In such cases, the parametric joint ancestral reconstruc-
tion problem can be solved efficiently by using the polytope
propagation algorithm techniques given in Proposition 11.

6. Summary: A Statistics-Geometry Dictionary

The algebraic representation for graphical models with hidden
variables leads naturally to an interpretation of a parameterized
model as a point on an algebraic variety. Marginal probabilities
are coordinates of points on the variety. Varieties can be
tropicalized, and the statistical meaning is that the MAP prob-
abilities (calculated with logarithms of the parameters) can be
interpreted as coordinates of points on the positive part of the
tropical variety. Hence, the tropical model is fundamental for
understanding MAP probabilities. Although we have not ad-
dressed it in this article, the logarithms of the marginal proba-
bilities are coordinates of points on the amoeba (21) of the
model. Amoebas are likely to be important for understanding the
geometry of maximum-likelihood estimation.

The sum—product algorithm for graphical models is an efficient
method for evaluating the coordinate polynomials of a graphical
model. This algorithm works in exactly the same way for classical
arithmetic (+, X) and for tropical arithmetic (min, +). The same
method is used to evaluate coordinates of points on the variety and
of points on the tropical variety.

An explanation for an observation o is a vertex of the Newton
polytope of f,.. Thus, the parametric inference problem is solved by
finding the normal fans of the Newton polytopes of the coordinate
polynomials. For many important applications, the number of
vertices of the polytopes is polynomial in the size of the graphical
model. The polytope propagation algorithm, which is a geometric
analog of the sum—product algorithm, finds the Newton polytopes
and is efficient when the sum-product algorithm is fast and the
number of vertices on the Newton polytopes is small.

In our companion article (10), we show that polytope prop-
agation is practical and useful in the important application of
biological sequence analysis. In particular, existing parametric
alignment methods (22-24) can be viewed as special cases of
parametric inference for a pair HMM. The computation of the
Newton polytopes is also useful for Bayesian computations,
where we have priors on the parameters and it is of interest to
integrate over the maximal cones in the normal fan of the
Newton polytope (ref. 10, section 5).
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