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Abstract Using Phylogenetic Algebraic Geometry, we analyze computationally the phylogenetic tree of subfami-
lies of the Indo-European language family, using data of syntactic structures. The two main sources of syntactic data
are the SSWL database and Longobardi’s recent data of syntactic parameters. We compute phylogenetic invariants
and estimates of the Euclidean distance functions for two sets of Germanic languages, a set of Romance languages,
a set of Slavic languages and a set of early Indo-European languages, and we compare the results with what is
known through historical linguistics.

Keywords Phylogenetic algebraic geometry - Syntactic parameters - Historical linguistics - Phylogenetic trees -
Indo-European languages
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1 Introduction

The use of commutative algebra and algebraic geometry in the study of phylogenetic trees and networks was
developed in recent years in the context of biological applications, see [35,36]. We argue in this paper that these
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methods have advantages over the other methods of phylogenetic reconstruction, such as Hamming distance and
neighbor-joining, when applied to the computational study of phylogenetic trees of world languages based on
syntactic data. Computational studies of phylogenetics in linguistics have been carried out recently in [4,52], using
lexical and morphological data and in [27,28] using syntactic data.

The main advantages of the algebro-geometric approach presented here can be summarized as follows.

(1) The use of Phylogenetic Algebraic Geometry to select a best candidate tree avoids some of the well known
possible problems (see Chapter 5 of [51]) that can occur in phylogenetic reconstructions based on Hamming
distance and neighbor-joining methods. While such methods were used successfully in phylogenetic inference
using syntactic data in [27] and [28], we argue that the geometric methods provide additional useful information,
as explained below.

(2) Phylogenetic Algebraic Geometry associates an actual geometric object to a best candidate phylogenetic tree
T, together with a boundary probability distribution at the leaves P = (p;,..;,) derived from the data. This
geometric object consists of a pair (Vr, xr,p) of an algebraic variety Vr, which depends on the tree topology, and
apointxr, p € Vr onit, which depends on both the tree T and the boundary distribution P. Unlike what happens
with other phylogenetic methods that only provide a best candidate tree 7', the geometry (Vr, x7, p) contains
more information: the position of the point P on the variety V7 encodes information about the distribution of the
binary syntactic features across the language family. For example, one can have different language families with
topologically equivalent phylogenetic trees. In this case one obtains two different points on the same variety
Vr whose relative positions encode in a quantitative geometric way the difference between how the evolution
of syntactic feature happened historically in the two families.

(3) The point xr,p is constrained to lie on the locus of real points Vr(R) of the complex algebraic variety Vr,
and in particular on the sublocus V7 (R;) of nonnegative real coordinates, since it is defined by a probability
distribution. In several cases, especially when analyzing sufficiently small trees, V7 turns out to be a classical
and well studied algebraic variety, as in the case of the Secant varieties of Segre embeddings of products of
projective spaces that we encounter in this paper. In such cases, there are usually well understood and interesting
geometric subvarieties of V7 and one can gain further insight by understanding when the point x7_p lies on
some of these subvarieties, in addition to being contained in the real locus. For example, this may suggest
compatibility of the boundary distribution P with respect to certain splitting of the tree into subfamilies and
subtrees, which may provide additional information on the underlying historical linguistics.

The algebro-geometric method is compatible with admixtures and with phylogenetic networks that are not

necessarily trees. The algebraic varieties involved in this setting are different from the phylogenetic varieties

of trees Vr discussed here, but they are analyzed with a similar method. Results on topological analysis of
data of syntactic structures (see [41]) indicate the presence of nontrivial cycles (first homology generators)
in certain language families. This can be seen as supporting evidence for the use of networks that are not
trees for phylogenetic analysis. The algebro-geometric formalism necessary to the discussion of more general
phylogenetic networks is discussed in [37] and [9].

4

~

1.1 Binary Variables and Syntactic Structure

The idea that the possible syntactic structure of human languages is governed by certain basic binary variables, or
syntactic parameters, is one of the fundamental ideas underlying the Principles and Parameters model in linguistics,
originally introduced by Chomsky [10,12]. The notion of syntactic parameter underwent successive theoretical
reformulation in the context of more recent minimalist models [11], but the main underlying conceptual idea
remains unchanged. A recent detailed overview of the state of ongoing research in comparative generative grammar
on the topic of syntactic parameters can be found in the collection of papers in the volume [22]. An introduction to
syntactic parameters aimed at a general audience with no prior linguistics background is given in [3].

Interesting questions regarding syntactic parameters include identifying a minimal set of independent variables
completely determining a language’s syntax and obtaining an explicit and complete description of the dependencies
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that exist among the known parameters. A rough analogy is that the set of syntactic parameters forms a kind of “basis
set” spanning the space of possible human languages (alternatively, grammars, since we are attempting to describe
language structure). Each choice of values for the parameters in this basis set fixes a distinct possible (presumably
learnable) human language. Typically, it is assumed that the parameter values can be learned from data available
from positive example sentences presented to a language learner (i.e., a child). These binary variables describing
syntactic structures can roughly be thought of as yes/no answers to questions about whether certain constructions
are possible in a given language or not. For a more precise description of parameters as instructions for triggering
syntactic operations see [44].

From a more precise mathematical perspective one can view the question of identifying dependencies between
syntactic parameters as trying to identify the correct “manifold of syntax” inside a large ambient space of binary
variables, in the same sense as constraints on a physical system determine the manifold structure of its configuration
space. Any existing relation between syntactic parameters determines a locus inside the space of all possible binary
values of these syntactic variables where the syntactic data of the actual human languages are constrained to lie.
Since identifying relations between syntactic parameters is an open problem, the resulting geometry cut out by these
relations is presently unknown. While the problem of the “geometry of syntax” in itself is not the main focus of the
present paper, the issue of dependencies between syntactic variables is relevant, because the phylogenetic models
we will be discussing are typically based on assuming that variables evolving according to a Markov process on a
tree behave like independent identically distributed (i.i.d.) random variables. While this assumption is good enough
to draw some reasonable linguistic conclusions, in a more refined analysis one would like to identify the extent
to which relations between syntactic parameters may cause deviations from this hypothesis. This problem will be
discussed elsewhere [17].

There are two existing databases of syntactic structures of world languages that we use in this paper: the SSWL
database [49] and the data of syntactic parameters collected by Giuseppe Longobardi and the LanGeLin collabora-
tion. The binary variables recorded in the SSWL database should not be regarded, from the linguistics perspective as
genuine syntactic parameters, although they still provide a very useful collection of binary variables describing dif-
ferent features of syntactic structures of world languages. The variables recorded in the SSWL database include a set
of 22 binary variables describing word order properties, 0/—Subject Verb.. . ., 22-Noun Pronomial Possessor, a set of
4 binary variables AOI-A04 describing relations of adjectives to nouns and degree words, a variable AuxSel01 about
the selection of auxiliary verbs, variables CO/—C04 still related to word order properties on complementarizer and
clause and adverbial subordinator and clause, N20/-N211 variables on properties of numerals, Neg01—Neg 14 vari-
ables on negation, OrderN301-OrderN312 on word order properties involving demostratives, adjectives, nouns,
and numerals, Q01-Q15 regarding the structure of questions, Q/6Nega—Q18Nega and Q19NegQ-022NegQ on
answers to negative questions, V207-V202 on declarative and interrogative Verb-Second, w0la—w0Ic indefinite
mass nouns in object position, w02a-w02c¢ definite mass nouns in object position, w03a—w03d indefinite singular
count nouns in object position, w04a—-w04c definite singular count nouns in object position, w05a—w05¢ indefinite
plural count nouns in object position, wO06a—w06¢ definite plural count nouns in object position, w07a—w07d nouns
with (intrinsically) unique referents in object position, w08a—w08d proper names in object position, w09a—w09b
order of article and proper names in object position, wl0a—wI0c proper names modified by an adjective in object
position, willa—w11b order of proper names and adjectives in object position, wi2a—w12f order of definite articles
and nouns in object position, w20a—w20e singular count nouns in vocative phrases, w2la-w21e proper nouns in
vocative phrases, w22a—w?22e plural nouns in vocative phrases. A detailed description of each of these binary vari-
ables can be found on the online site of the SSWL database [49]. While these are certainly not considered to be an
exhaustive list of binary variables associated to syntax, they contain a considerable amount of information on the
variability of syntactic structures across languages.

The LanGeLin data of Longobardi record a different set of syntactic features, which are independent of the
SSWL data. These variables should be regarded as genuine syntactic parameters and are based on the general
Modularized Global Parameterization approach developed by Longobardi [24,26], that considers reasonably large
sets of parameters within a single module of grammar, and their expression across a large number of languages. The
LanGeLin data presented in [24] that we use here include 91 parameters affecting the Determiner Phrases structure.
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The full list of the LanGeLin syntactic parameters used in this paper is reported in Appendix D, reproduced from
Appendix A of [21].

Unlike the SSWL data, which do not record any explicit relations between the variables, many explicit relations
between the Longobardi syntactic parameters are recorded in the LanGeLin data. A more detailed analysis of the
relations in the LanGeLin data is given in [21] and in [34]. In our analysis here we have removed those parameters
in the LanGeLin data that are explicitly dependent upon the configuration of other parameters.

1.2 Related Work

A long-standing, familiar approach to linguistic phylogenetics is grounded on the use of lexical (including phonemic)
features; see, e.g., [52] for a survey of phylogenetic methods applying such features on a carefully analyzed Indo-
European dataset. More recently, other researchers have suggested alternatives to bypass issues with lexical items,
such as the non-treelike behavior of lexical diffusion, sometimes rapid and different time scales for lexical change,
and the like. For example, Murawaki [32] used linguistic typological dependencies such as word order (OV vs. VO, in
the Greenbergian sense) or grammar type (synthetic vs. analytic), in order to build phylogenies over longer time scales
and across widely different languages. Murawaki’s approach computes latent components from linguistic typological
features in the World Atlas of Languages, (WALS) and then feeds these into phylogenetic analysis. Longobardi
and colleagues have pursued a detailed linguistically-based analysis of, e.g., Noun Phrases (so-called Determiner
structure) across many different Western European languages to develop a fine-grained explicit parametric analysis
of what distinguishes each of these languages from the others, see [27] and subsequent work including the more
recent [29]. In effect, this is a “hand-tooled” version of a statistical, principal-components like approach. They have
used Jacquard distance metrics as the measure to feed into conventional distance-based phylogenetic programs.
The approach presented in the current work differs from either of these and from other more familiar phylogenetic
methods applied to linguistic datasets (such as maximum likelihood or Bayesian approaches) in that it adopts a
different approach to the structure of the phylogenetic space itself, rather than relying on conventional methods,
while retaining the non-lexical, typological information as the basis for describing the differences among languages.

1.3 Comments on the Data Sets

The two databases used in our analysis, namely the SSWL database [49] and the recent set of data published by
Longobardi and collaborators [24], are currently the only existing extensive databases of syntactic structures of
world languages. Therefore any computational analysis of syntax necessarily has to consider these data.

In the process of evaluating phylogenetic trees via the algebro-geometric method, we also perform a comparative
analysis of the two databases of syntactic variables that we use. As the extended version of the Longobardi dataset
has only recently become available [24], a comparative analysis of this dataset has not been previously considered, so
the one reported here is novel. Other methods of comparative analysis of these two databases of syntactic structures
will be discussed elsewhere. In the cases analyzed here we see specific examples (such as the second set of Germanic
languages we discuss) where Longobardi’s database appears to be more reliable for phylogenetic reconstructions
than the SSWL data, even though the latter dataset is larger.

1.4 Phylogenetics and Syntactic Data

The use of syntactic data for phylogenetic reconstruction of language families was developed in previous work of
Longobardi and collaborators, [27,28], see also [25,26]. Computational phylogenetic reconstructions of language
family trees based on lexical and morphological data were also obtained in [4,33,52]. It is well known that the use
of lexical data, in the form of Swadesh lists, is subject to issues related to synonyms, loan words, and false positives,
that may affect the measure of proximity between languages. Morphological information is much more robust, but
its encoding into binary data is not always straightforward. Syntactic data, on the other hand, are usually classified
in terms of binary variables (syntactic parameters), and provide a robust information about language structure.
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Thus, we believe that syntactic data should be especially suitable for the use of computational methods in historical
linguistics.

In [47] it was shown that, when using syntactic data of the SSWL database [49] with Hamming distances and
neighbor-joining methods to construct linguistic phylogenetic trees, several kinds of errors typically occur. These
are mostly due to a combination of two main factors:

e the fact that at present the SSWL data are very non-uniformly mapped across languages;
e errors propagated by the use of neighbor-joining algorithms based on the Hamming distance between the strings
of syntactic variables recorded in the SSWL data.

An additional source of problems is linguistic in nature, namely the existence of languages lying in historically
unrelated families that can have greater similarity than expected at the level of their syntactic structures. Another
possible source of problems is due to the structure of the SSWL database itself, where the syntactic binary variable
recorded are not what linguists would consider to be actual syntactic parameter in the sense of the Principles and
Parameters model [10, 12], see also [44]: there are conflations of deep and surface structures that make certain subsets
of the syntactic variables of the SSWL data potentially problematic from the linguistic perspective. However, it was
also shown in [47] that several of these problems that occur in a naive use of computational phylogenetic methods
can be avoided by a more careful analysis. Namely, some preliminary evidence is given in [47] that, when a naive
phylogenetic reconstruction applied simultaneously to the entire SSWL database is replaced by a more careful
analysis applied to smaller groups of languages that are more uniformly mapped in the database, the phylogenetic
invariants of Phylogenetic Algebraic Geometry can identify the correct phylogenetic tree, despite the imperfect
nature of the SSWL data. The method of Phylogenetic Algebraic Geometry that we refer to here was developed in
[35,36] for applications to mathematical biology, see also a short survey in [5].

In the present paper we focus on certain subfamilies of the Indo-European language family, in particular the
Germanic languages, the Romance languages, and the Slavic languages. We apply the Phylogenetic Algebraic
Geometry method, by computing the phylogenetic invariants for candidate trees, and the Euclidean distance function.
We compare the results obtained by applying this method to the SSWL data and to a more recent set of data of
syntactic parameters collected by Longobardi [24], which are a largely extended version of the data previously
available in [27].

We list here the specific historical linguistics settings that we analyze in this paper.

1.5 The Germanic Family Tree

We consider the following two sets of Germanic languages:

(1) 81(G) = {Dutch, German, English, Faroese, Icelandic, Swedish}
(2) $(G) = {Norwegian, Danish, Icelandic, German, English, Gothic, Old English}.

The first one only consists of modern languages, while in the second one we have included the data of the two
ancient languages Gothic and Old English. We analyze the first set S1(G) with the SSWL data, and we analyze
the second set first using the new Longobardi data and then using the SSWL data. In both cases we first generate
candidate trees using the software package PHYLIP [40], then using the Phylogenetic Algebraic Geometry method
we compute the phylogenetic invariants and an estimate of the Euclidean distance function for these candidate trees
and we select the best candidate.

For sufficiently small trees one can expect that other methods, including more conventional Bayesian analysis,
would be able to identify the correct candidate tree. However, we see here in specific examples that the algebro-
geometric method performs at least better than standard phylogenetic packages like PHYLIP when applied to the
same data.

Given the large number of alternative phylogenetic methods, why use PHYLIP as a baseline? There are two
main reasons. First of all, PHYLIP is selected here as an example of a well known and widely used phylogenetic
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package, hence it is an easy baseline for comparison. Moreover, we use PHYLIP to preselect a set of candidate
trees because likewise parsimony method is a standard starting point for Bayesian analysis, although maximum
likelihood inference is generally regarded as a more reliable method.

The estimates we consider here are based on the evaluation of phylogenetic invariants and on estimates of
Euclidean distance. A maximum likelihood degree, which counts the critical points of the likelihood function on
determinantal varieties, can in principle also be computed, see [23], but only in sufficiently small cases. Although
there are cases (such as Gaussian models) where the maximum likelihood degree and the Euclidean distance degree
match, there are also many examples where these solutions are different, as shown in [13].

We show that, for the set S;(G), the phylogenetic invariants suggest the correct tree among the six candidates
generated by PHYLIP, which is confirmed via the estimate of the Euclidean distance. The topology of this tree
correctly corresponds to the known historical subdivision of the Germanic languages into West Germanic and North
Germanic and the relative proximity of the given languages within these subtrees. In this sense the algebro-geometric
method applied to a baseline dataset can be confirmed, always a key step in advancing a novel phylogenetic approach
as [52] note.

For the other set S> (G) of seven languages, which are common to both databases, we also find that the phylogenetic
invariants computed on a subset of the Longobardi syntactic data point to the correct best candidate tree, which is
confirmed by a lower bound estimate of the Euclidean distance. With the SSWL data the phylogenetic invariants
computed with respect to the £! norm still identify the historically correct tree as the best candidate, but not when
computed with respect to the £ norm. This confirms in our setting a general observation of [8] on the better
reliability of the £! norm in the computation of phylogenetic invariants. We see here an example where the lower
bound on the Euclidean distance correctly excludes some of the candidates, but fails to assign the smallest lower
bound to the best tree. This different behavior of the Longobardi and the SSWL data on this set of languages
presumably reflects the presence of a large number of dependencies in the SSWL variables.

In the last section of the paper we discuss a possible issue of the direct application of this algebraic phylogenetic
method to syntax, which is caused by neglecting relations between syntactic parameters and treating them, in this
model, like independent random variables. We suggest possible ways to correct for these discrepancies, which will
be analyzed in future work. We expect that such discrepancies may be resolved by a better approach taking syntactic
relations into account.

1.6 The Romance Family Tree

The case of the Romance languages is an interesting example of the limitations of these methods of phylogenetic
reconstructions. We considered as set of languages Latin, Romanian, Italian, French, Spanish, and Portugues, and
we used a combination of the SSWL and the Longobardi data, which are independent sets of data. We find that
PHYLIP produces a unique candidate tree, which is however not the one that is considered historically correct.
We compute the phylogenetic invariants and the Euclidean distance for both the PHYLIP tree and the historically
correct tree. The phylogenetic invariants computed with respect to the £! norm identify the historically correct tree
as the favorite candidate, while they do not give useful information when computed in the £°° norm. The estimate
of the Euclidean distance also favors the historically correct tree over the PHYLIP candidate tree.

1.7 The Slavic Family Tree

We also analyze with the same method the phylogenetic tree of a group of Slavic languages for which we use a
combination of SSWL data and the data of [27]: Russian, Polish, Slovenian, Serb-Croatian, Bulgarian. For this
set of languages, PHYLIP applied to the combined syntactic data produces five candidate trees with inequivalent
topologies. Using the phylogenetic invariants computed with the £! norm we identify the historically correct tree as
the best candidate, while the computation in the £°° norm does not select a unique best candidate. The lower bound
estimate of the Euclidean distance also correctly selects the linguistically accurate tree.
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1.8 The Early Indo-European Branchings and the Indo-European Controversy

The use of computational methods in historical linguistics has been the focus of considerable attention, and contro-
versy, in recent years, due to claims made in the papers [6, 18] regarding the phylogenetic tree of the Indo-European
languages, based on a computational analysis of trees obtained from distances between binary data based on lexical
lists and cognate words. While this method of computational analysis of language families has been considered in
various contexts (see [16] for a collection of contributions), the result announced in [6, 18] appeared to contradict
several results obtained by historical linguists by other methods, hence the ensuing controversy, see [39]. For com-
parison, a different reconstruction of the Indo-European tree, carried out by computational methods that incorporate
lexical, phonological, and morphological data, was obtained by Ringe, Warnow, and Taylor [43]. Neither of these
computational analysis makes any use of syntactic data about the Indo-European languages.
We focus here on some specific issues that occur in the phylogenetic tree of [6] compared with that of [43]:

e The relative positions of the Greco-Armenian subtrees;
e The position of Albanian in the tree;
e The relative positions of these languages with respect to the Anatolian-Tocharian subtrees.

This means that we neglect several other branches of the Indo-European tree analyzed in [6] and in [43] and we
focus on a five-leaf binary tree with leaves corresponding to the languages: Hittite, Tocharian, Albanian, Armenian,
and Greek. We will consider the tree topologies for this subset of languages resulting from the trees of [6] and [43]
and we will select between them on the basis of Phylogenetic Algebraic Geometry.

The set of languages considered here (Hittite, Tocharian, Albanian, Armenian, Greek) are listed in the SSWL
database [49], while not all of them are present in the Longobardi data [24]. Thus, in this case we have to base
our analysis on the SSWL data. With the exception of Armenian and Greek, which are extensively mapped in
the database, the remaining languages (especially Tocharian and Hittite) are very poorly mapped, and the set of
parameters that are completely mapped for all of them is very small, hence the resulting analysis should not be
considered very reliable, due to this significant problem.

Nonetheless, we compute the phylogenetic invariants for the Gray-Atkins tree and for the Ringe—Warnow-Taylor
tree and we also compute the Euclidean distance function to the relevant phylogenetic algebraic variety. We find
that, while the evaluation of the phylogenetic invariants with the £°° norm does not give useful information, the
evaluation in the £' norm favors the linguistically more accurate Ringe—Warnow—Taylor tree. Similarly the estimate
of the Euclidean distance selects the same Ringe—Warnow-Taylor tree.

The Gray-Atkins tree is not the one generally agreed upon by linguists, while the Ringe—Warnow—Taylor tree
is considered linguistically more reliable. A more recent discussion of the early Indo-European tree, which is also
considered linguistically very reliable, can be found in [2]. However, the part of the tree of [2] that we focus on
here agrees with the one of [52] (though the position of Albanian is not explicitly discussed in [2]), hence we refer
to [52] in our analysis.

2 Phylogenetic Algebraic Varieties and Invariants

Before we proceed to the analysis of the two sets of languages listed above, we recall briefly the notation and the
results we will be using from Phylogenetic Algebraic Geometry, see [1,35,36]. We also discuss the limits of the
applicability of this method to syntactic data of languages and some approaches to improve the method accordingly.
In order to apply the algebro-geometric approach, we think of each binary syntactic variable as a dynamical
variable governed by a Markov process on a binary tree. These binary Markov processes on trees generalize the
Jukes—Cantor model, in the sense that they do not necessarily assume a uniform distribution at the root of the tree.
The model parameters (7r, M) consist of a probability distribution (7, 1 — 1) at the root vertex (the frequency of
expression of the 0 and 1 values of the syntactic binary variables at the root) and bistochastic transition matrices
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along the edges.
For a binary tree with n leaves, the boundary distribution P = (p;,,....;,) counts the frequencies of the occurrences
of binary vectors (i1, ..., i,) € {0, 1}"* of values of the binary syntactic variables for the languages {¢1, ..., ¢,} at

the leaves of the tree. This boundary distribution is the marginal distribution obtained after marginalizing over the
internal nodes of the tree. If N is the total number of syntactic binary variables available in the database (counting
only those that are completely mapped for all the n languages considered) and n;, . ;, is the number of occurrences
of the binary vector (i, ..., i,) in the list of values of the N syntactic variables for these n languages, then the
frequencies in P are given by

pilw-’in =

The boundary distribution is a polynomial function of the model parameters

Pivin =@, MY = Yy, [[ Mo e Q2.1
wy€{0,1} e

with a sum over “histories”, that is, paths in the tree. This determines a polynomial map of affine spaces
Op AT 5 AY (2.2)

where 4n — 5 is the number of model parameters for a binary tree 7" with n-leaves and binary variables. Dually, the
kernel of the map of polynomial rings

Vr @ Clziy,....i,] = Clx1, ..., X4n-5] (2.3)

defines the phylogenetic ideal Zr. This corresponds geometrically to the phylogenetic algebraic variety V7.

It is proved in [1] that, for these Markov models on trees with binary variables that generalize the Jukes—Cantor
model, the phylogenetic ideal Z7 is generated by all the 3 x 3-minors of all the flattenings of the tensor P = (p;,.....i,)-
There is one such flattening for each internal edge of the binary tree, where each internal edge corresponds to a
subdivision of the leaves into a disjoint union of two sets of cardinality r and n — r. The flattening is a 2" x 2"~"
matrix defined by setting

Flate,T(P)(u7 U) = P(Ml, cees Up, U1, e, Un—r)» (2‘4)

where P is the boundary distribution. The terminology corresponds to the fact that an n-tensor P is “flattened” into
a collection of 2-tensors (matrices).

These generators of the phylogenetic ideal can then be used as a test for the validity of a candidate phylogenetic
tree. If the tree is a valid phylogenetic reconstruction, then the boundary distribution P = (p;, ... ;,) should be a zero
of all the polynomials in the phylogenetic ideal (or very close to being a zero, allowing for a small error margin).

In the case of the binary Jukes—Cantor model, where one assumes a uniform root distribution, there are additional
invariants, as shown in [50]. For the purpose of linguistic applications it is more natural to work with the general
binary Markov models described above, where the root distribution (7, 1 — 77) is not assumed to be uniform, than
with the more restrictive Jukes—Cantor model. Indeed, there is no reason to assume that parameters at the root of a
language phylogenetic tree would have equal frequency of expression of O and 1: the overall data on all languages,
ancient and modern, contained in the available database show a clear prevalence of parameters that are expressed
(value 1) rather than not. (This point was discussed in some detail in [48].)
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2.1 Phylogenetic Invariants

The Allman—Rhodes theorem [1] shows that the generators ¢ of the phylogenetic ideal Z7 are given by the minors
det(M) of all the size 3 x 3-submatrices M of the flattening matrices Flat, 7, with e ranging over the internal edges
of T.

In the following, we denote by MS)T the set of all 3 x 3 submatrices of the flattening matrix Flat, 7, by
M(T3) = UeeE(T)MS)T and by D(T3) = {det(M) | M € M(T?’)}. We will also use the notation M) (A) for the set
of 3 x 3 submatrices of a given matrix A, and DA (A) := {det(M) | M € MP(A)}.

To every candidate tree, one can also associate a computation of a discrepancy that measures how much the
polynomials ¢7 fail to vanish at the point P. This can be done using different kinds of norms. Generally, one can
use either the £°° norm and obtain an expression of the form

¢ (P)ll¢e = max |det(M(P))l,
MGM(T3)

which we write equivalently in the following shorthand notation as

T (P)lle= = max |¢(P)],
¢GD(T3)

where the expression |¢ (P)| stands for the absolute value of the determinant of the 3 x 3-minor evaluated at the
boundary distribution P. It is also natural to use the £! norm and compute

Igr(PYlgr = D |det(M(P))],

MeM(f)

equivalently written in the rest of the paper as

lgr (Pl = Y I¢(P)].

3)
¢eD;

One can expect that the £°° norm will be a very weak invariant, because taking the maximum loses a lot of information
contained in the phylogenetic invariants ¢ (P). Indeed, this turns out to be the case. As analyzed in detail in [8],
the ¢! norm is a more refined and reliable way to identify best phylogenetic trees on the basis of the computation
of phylogenetic invariants than the £°° norm. We will see several explicit examples in the following sections where
the £>° norm does not provide useful information to identify the correct candidate tree, while the £! norm of the
phylogenetic invariants correctly identifies the unique best candidate tree.

For the best candidate tree T, the values of ||¢7 (P)|l¢~ and ||¢7 (P)||,1 will in general be small but still non-zero.
It is possible that these non-zero values may partly reflect a small deviation from Markov evolution. Namely, the
observed distribution P of the syntactic parameters of the languages at the leaves of the tree may differ from a
distribution obtained by the evolution of i.i.d. random variables via a Markov model on the tree.

One of the important points we wish to investigate in the longer term is how relations between syntactic parameters
affect their behavior as random variables in dynamical models of language change and evolution. To that purpose,
we can regard the values of phylogenetic invariants as a possible numerical indicator of discrepancies from the
standard i.i.d. Markov model assumption. As mentioned in the introduction, the presence of dependencies between
syntactic parameters is expected to cause at least some small deviations from the dynamics of an actual i.i.d. Markov
model. We do not analyze in the present paper how possible models of parameter dependencies affect the dynamics
and may be reflected in the value of the phylogenetic invariants. A more careful analysis of the Markov hypothesis
will appear elsewhere [17].
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2.2 Euclidean Distance

As a way to compare different candidate trees and select the best possible candidate, one can use the Euclidean
distance, in an ambient affine space, between the point P given by the boundary distribution and the variety Vr
associated to the candidate tree 7. The tree realizing the smallest distance will be the favorite candidate.

It is not always possible to compute the Euclidean distance exactly, but it can sometimes be estimated, as we
will discuss more explicitly in Sects. 3.6 and 3.11. We will compute Euclidean distances from certain Segre and
secant varieties, namely determinantal varieties of rank one and two, for which a direct computation is possible. In
some particular cases, like the first set of Germanic languages we analyze, we will show that a lower bound estimate
obtained in terms of these distances is sharp, under a conditional assumption, which we discuss more in detail in
Sect. 2.3.

The Euclidean distances of the flattening matrices from the corresponding determinantal varieties can be com-
puted using the Eckart—Young theorem, as in Example 2.3 of [13] and [35].

The Eckart—Young theorem describes a low-rank approximation problem, namely minimizing the Euclidean
distance |M — M’| between a given n x m matrix M, seen as a vector in R™, and an n x m matrix M’ with
rank(M") < k, for a given k < n < m. One considers the singular value decomposition M = UXV where X is an

n x m diagonal matrix ¥ = diag(oy,...,0,) ando] > 02 > --- > 0, > 0, and where U and V are, respectively
n x n and m x m orthogonal matrices. Then the minimum of the distance |M — M’| is realized by M’ = UZ'V
where ¥/ = diag(oy, ..., 0%, 0, ..., 0) with the distance given by

n 1/2
min |[M — M'|| = o? .

This can equivalently be stated as the fact that the minimum distance between a given n x m matrix M and the
determinantal variety Dy (n, m) of n x m matrices of rank < k is given by

dist(M, Dy(n,m)) = [|(Ok+1, - .., on)ll, (2.5)

where the o; are the singular values of M. The point M’ realizing the minimum is unique iff o+ # oy, with k the
rank [31].

2.3 Conditional Cases and Distance Estimates

In the specific examples we discuss below, we usually consider a list of pre-selected candidate trees, obtained via
the use of the PHYLIP package and among them we test for the most reliable candidate using the algebro-geometric
methods discussed here. Unlike the case where the search happens over all possible interpolating binary trees,
in these cases the pre-selected tree tend to all agree on certain proximity assignments of some of the leaves. For
example, in the first set of Germanic languages that we discuss below, all the candidate trees agree on the proximity
of Dutch and German and on the proximity of Icelandic and Faroese, though they disagree in the relative placements
of these subtrees with respect to the other languages in the set. This agreement among the candidate trees results in
two of the flattening matrices being common to all of the candidates.

In a situation like this one it is reasonable to consider a “conditional case” where we assume that the incidence
condition that these common flattenings lie on the respective determinantal varieties already holds. We then aim at
identifying the best candidate tree among those with these constraints already assumed.

We outline more precisely the reasoning behind the kind of estimation we are going to perform. We have a
preselected small list of candidate trees 7;,i = 1, ..., N and we assume that one of them is the correct phylogenetic
tree. This assumption means that the point P given by the boundary distribution of i.i.d. variables that evolved
according to a Markov model on this tree will lie on its phylogenetic variety. Thus, there is a Ty among the T;
fori =1,..., Nsuchthat P € Vr,.. If we also assume (as will be the case in specific examples we consider) that
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all the phylogenetic varieties V7; are intersections of the form V;, = W N'V;, where W is common to all the T;
while the other varieties V; depend on the tree 7;, then this assumption together with the previous one then gives
P € Vg,,.. = W N Vie so necessarily P € W. Thus, in this case the question about which of the varieties Vr, the
point P lies on is reduced to the question of which of the V; the point lies on, as it will lie on W anyway. This would
imply that it would suffice to check the Euclidean distances between P and the V;.

However, because of possible noise in the data and other effects such as possible small discrepancies from the
Markov hypothesis for syntactic parameters, we will in general have only a close proximity of P to the variety V7,
of the correct phylogenetic tree, rather than exact incidence. We can account for possible small discrepancies by
assuming that there is a sufficiently small € > 0 such that P € U (V7,,.), where Ty is correct phylogenetic tree
and V7. = Viwe N W, and U (V7,,.) is an e-tubular neighborhood of V7, . inside the ambient Euclidean space.
With only this proximity estimate available, one can no longer necessarily relate which 7; realizes the minimum
among the distances dist(P, V;) or the minimum among the dist(P, V; N W), as one could now have a situation
where dist(P, Vi N W) < dist(P, V, N W) while dist(P, V») < dist(P, V}).

Nonetheless, if we compute the minimum Euclidean distances dist(P, V;), instead of directly obtaining the
minimum among the distances dist(P, W N V;), this will provide a lower bound on the Euclidean distance
dist(P, Vr,,,.)- Indeed, we can simply obtain an estimate using the fact that the lower bound dist(P, V. N W) >
max{dist(P, V), dist(P, W)}, for two subvarieties V, W in the same ambient space. Since this is only a lower
bound, which is in general not expected to be sharp, one can at best hope to use this estimate to exclude candidates
for which the computed max{dist(P, V), dist(P, W)} is large (within the set of given candidates), while a small
value of this maximum will not necessarily imply that the corresponding candidate is optimal as dist(P, V N W)
could easily be significantly larger. We see however that in many cases this lower bound suffices to exclude most
candidates hence it provides a useful estimate.

A more general theoretical discussion of these estimation methods and their range of validity, compared to
other phylogenetic invariants and tree reconstruction algorithms (such as discussed in [8,14,45]) will be discussed
elsewhere, separately from the present application, since they are not restricted to the specific linguistic setting
considered here.

2.4 Limits of Applicability to Syntax

One of the purposes of this paper is also to better understand the limits of the applicability of these phylogenetic
models to syntactic data. One of the main assumptions that need to be more carefully questioned is treating syntactic
parameters as i.i.d. random variables evolving under the same Markov model on the tree. We know that there are
relations between syntactic parameters. While the complete structure of the relations is not known, and is in fact
one of the crucial questions in the field, one can detect the presence of relations through various computational
methods applied to the available syntactic data.

In [30] and [46], a quantitative test was devised, aimed at measuring how the distribution of syntactic parameters
over a group of languages differs from the result of i.i.d. random variables. Using coding theory, one associates
a binary code to the set of syntactic parameters of a given group of languages and computes the position of the
resulting code in the space of code parameters (the relative rate of the code and its relative minimum distance). If
the distribution of the syntactic features across languages were the effect of an evolution of identically distributed
independent random variables, one would expect to find the code points in the region of the space of code parameters
populated by random codes in the Shannon random code ensembles, that is, in the region below the Gilbert—
Varshamov curve. However, what one finds (see [46]) is the presence of many outliers that are not only above the
Gilbert—Varshamov curve, but even above the symptotic bound and the Plotkin bound. This provides quantitative
evidence for the fact that the evolutionary process that leads to the boundary distribution P of code parameters may
differ significantly from the hypothesis of the phylogenetic model.

In [38] it was shown, using Kanerva networks, that different syntactic parameters in the SSWL database have
different degrees of recoverability, which can be seen as another numerical indicator of the presence of relations, with
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parameters with lower recoverability counting as closer to being truly independent variables and those with higher
recoverability seen as dependent variables. One possible modification of the evolutionary model on the phylogenetic
tree may then be obtained by computing the observed distribution P at the leaves, by introducing different weights
for the different parameters, which depend on the recoverability factor, so that parameters that are more likely to
be independent variables would weight more in determining the boundary distribution and parameters that have
higher recoverability, and are therefore considered dependent variables, would contribute less to determining P.

A further issue worth mentioning, though we will not discuss it in this paper, is whether the hypothesis that the
evolutionary dynamics happens on a tree is the best model. There are more general phylogenetic reconstruction
techniques based on graphs that are not trees, see [19] and the algebro-geometric models in [9]. It was shown in [41]
that the persistent topology of the SSWL data of some language families (the Indo-European) contain non-trivial
persistent generators of the H; homology group. While the persistent generators of Hy appear to be related to the
structure of a candidate phylogenetic tree, the presence of a persistent H; points to the presence of loops, hence
to graphs that are not trees. Persistent generators of the Hj are also visible in the Longobardi data. This is further
discussed in [42].

We discuss some possible modifications of the evolutionary Markov model on the tree in the last section of the

paper.

3 Phylogenetic Algebraic Varieties of the Germanic Language Family

As discussed in the Introduction, we first analyze the phylogenetic tree for the set of Germanic languages S1(G):
Dutch, German, English, Faroese, Icelandic, and Swedish.

These six languages are mapped with different levels of accuracy in the SSWL database: we have Dutch (100%),
German (75%), English (75%), Faroese (62%), Icelandic (62%), Swedish (75%). There are 90 syntactic variables
that are completely mapped for all of these six languages: the list is reported in Appendix A. We will use only these
90 variables for the analysis carried out here.

We then consider the set S> (G) consisting of seven Germanic languages: Norwegian, Danish, Icelandic, German,
English, Gothic, Old English. These are chosen so that they are covered by both the SSWL database [49] and the
new data of Longobardi [24], and so that they contain some ancient languages, in addition to modern languages
situated on both the West and the North Germanic branches. In this way we can test both the effect of using different
syntactic data and the effect of including ancient languages and their relation to problem of the location of the root
vertex mentioned above.

The Germanic languages in the set S»(G) have a total of 68 SSWL variables that are completely mapped for
all the seven languages in the set. This is significantly smaller than the 90 variables used for the set S;(G). This
does not depend on the languages being poorly mapped: the levels of accuracy are comparable with the previous set
with Danish (76%), Norwegian (75%), German (75%), English (75%), Old English (75%) Icelandic (62%), Gothic
(62%). However, the regions of the overall 115 SSWL variables that are mapped is less uniform across this set of
languages creating a smaller overlap. The set of completely mapped SSWL variables for this set of languages is
reported in Appendix B.

3.1 Candidate PHYLIP Trees

When using the full but incomplete data for the six Germanic languages in S1(G), we obtain with PHYLIP a list
of six candidate phylogenetic trees, respectively given (in bracket notation) by
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parsl = ((¢1, £2), (¢3, (La, £5)), Lo)

pars2 = (({3, ({1, £2)), (4, 5), Lo)

pars3 = ({3, (€1, £2), (L4, €5)), L6)
bnbl = (Le, ((Ls, £4), (€3, (£2, £1))))
bnb2 = (e, (((Ls, £4), £3), (L1, £2)))
bnb3 = (le, (s, £4), (L1, £2)), £3))

where ¢; =Dutch, £, = German, {3 =English, £4 =Faroese, {5 =Icelandic, {, = Swedish. The Newick
representation of binary trees used by PHYLIP lists the leaves in the order specified by the choice of a planar
embedding of the tree, with brackets and commas indicating the joining together of branches. In the rest of the
paper, for convenience, we will spell out explicitly the form of the tree graphically, rather than writing them in the
Newick bracket notation. In the case of the trees listed here we obtain the following.

The trees parsl, pars2, and pars3 given above in the Newick representation have the form

S ) A() ; i
5 0 Ly s
Ly U5 0 Uy

£ Lo sy Us

Note that parsl is a binary tree, while pars?2 and pars3 are not binary trees. We will discuss how to resolve
the non-binary structure. The remaining trees bnb1l, bnb2, and bnb3 are binary trees of the form

K%X E% to

14 14

5 4 U3 & 0 ) i b b {3
ls Ly L1 Lo

Note how all of these candidate trees agree on the proximity of Dutch and German (¢ and ¢,) and of Faroese and
Icelandic (¢4 and €5), while they differ in the relative placement of these two pairs with respect to one another and
with respect to the two remaining languages, English and Swedish.

In phylogenetic linguistics the presence of a non-binary tree denotes an ambiguity, which should eventually be
resolved into one of its possible binary splits. As shown in [15], the phylogenetic algebraic variety of a non-binary
tree can be seen as the intersection of the phylogenetic algebraic varieties of all of its possible binary splits. Thus,
the phylogenetic ideal (for the binary Jukes-Cantor model) is generated by all the 3 x 3 minors of all the flattening
matrices of all the binary splits of the given non-binary tree. Being the intersection of the varieties defined by each
of the binary splits corresponds exactly to the notion of ambiguity mentioned above.

The resolution of a non-binary structure of the type shown in pars?2 and pars3 is obtained by replacing the
first tree below with the different possibilities given by its three possible binary splits that follow:

/AB

AB C A Fgc AB S A cC

Thus, for the tree pars2 we obtain the three binary trees

to G fs
Le ¢ Le
1% 2 05 b Ls 3 ISR %)
Note, however, that these three binary trees are equivalent up to a shift in the position of the root, which however
does not affect the phylogenetic invariants, see [1] and Proposition 2.16 in [5]. Thus, we need only consider one

By, 4 s
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of them for the purpose of computing the generators of the phylogenetic ideal. For the tree pars3 we obtain the
three binary trees

A b 03 L
Lo 43 by Ly by L5
b Uy ty s 0y by by Ls

Again these three binary trees only differ by a shift of the position of the root, which does not affect the computation
of the phylogenetic invariants, hence we need only consider one of them for that purpose. Notice, moreover, that
the binary tree bnbl1 is the same as the second binary tree for pars?2. Also the tree bnb2 has the same topology as
the tree pars1, up to a shift in the position of the root, which does not affect the phylogenetic invariants. Similarly,
the tree bnb3 is the same as the second binary tree of pars3.

All of the binary trees considered here have three internal edges, hence all of them have three flattenings Flat, 7 (P)
of the boundary distribution P = (p;;,....ic)-

e The flattenings for pars1 are given by a 4 x 16 matrix Flat,, pars1(P), an 8 x 8 matrix Flate, pars1 (P) and
a 16 x 4 matrix Flat,; pars1(P). These correspond to the separating the leaves into two components when
deleting the internal edge ¢; according to

er {1, €2} U L3, £y, €, Lo}
e2 : {l1, €2, €} U {3, L4, €}
e3 {1, €2, €3, £} U {ly, s}

o The flattenings for any of the three binary trees for pars2 are also given by a 4 x 16 matrix Flat,, pars2(P),
an 8 x 8 matrix Flate, pars2(P) and a 16 x 4 matrix Flat,, pars2(P), which in this case correspond to the
subdivisions

et {€y, €2} U L3, £y, s, Lo}
et {1, €2, €3} U {Ly, s, Lo}
ez {l1, €2, €3, Lo} U {Ly, s},
which only differ from the previous case in the e, flattening.

e The flattenings for any of the three binary trees for pars3 are given by a 4 x 16 matrix Flat, pars3(P), a
16 x 4 matrix Flate, pars3(P) and a 16 x 4 matrix Flat,, pars3(P), which correspond to the subdivisions

er : {€r, L2} U (€3, €4, L5, Lo}
e 1 {1, €2, €3, £} U {€4, €5}
ez {€y, 2, L4, €5} U {€3, L6}
e The bnbl tree is the same as one of binary trees for pars?2, hence their flattenings are also the same.
e The flattenings for bnb?2 are the same as the flattening of pars1, since the two tree differ only by a shift in

the position of the root vertex.
e The bnb3 tree is the same as one of binary trees for pars3, hence their flattenings are also the same.

Thus, in order to compare the phylogenetic invariants of these various trees, we need to compute the 3 x 3 minors of
the matrices Flat, 7 (P) for the splits {£1, €2} U {€3, €4, €5, €e}, {€1, €2, Le} U{L3, €4, L5}, {€1, €2, £3, Lo} U {4, L5},
{€1, 02,03} U {ly, s, Ls}, {£1, L2, La, €5} U {£3, £s}. We will compute these in the next subsection.

3.2 Flattenings

As discussed above, there are five matrices Flat, 7 (P) that occur in the computation of the phylogenetic ideals of
the candidate phylogenetic trees listed above. In fact, we do not need to compute all of them, as some occur in all
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the trees, hence do not contribute to distinguishing between them. This corresponds to the observation we already
made above, that all the candidate trees agree on the proximity of £1 and ¢»> and of £4 and ¢s.

To simplify keeping track visually of which flattening is being considered, we replace here the edge notation
e of the flattening matrices Flat, 7(P) with the explicit splitting of the leaves of 7 that corresponds to the edge
e. Thus, for example, instead of writing Flat,, pars1 (P) we write Flat(s, ¢,}u(¢5,¢04,¢5,66) (P)- This notation has the
advantage that, when the same flattening matrix (with the same subdivision of leaves) occurs in different trees, this
will be immediately evident from the notation. We will continue to use the more concise notation Flat, 7 (P) when
more convenient.

e The 4 x 16 matrix Flat(¢, ¢,)ui¢s,¢4,¢5,¢6} (P), contributes to the phylogenetic ideals of all the trees, hence it will
not help discriminate between them.

e The same is true about the 16 x 4 matrix Flat(s, ¢, ¢5,06)Uits,¢5)(P)-
e The 8 x 8 matrix Flatyy, ¢, ¢5)uies,64,¢5) (P) contributes to the phylogenetic invariants of parsl and bnb2. It
is given by

P000000  P000100  P001000  P001100  P000010  P000110  P001010  P001110
P010000  P010100  PO11000  PO11100  P010010  P010110  P011010  PO11110
P100000  P100100  P101000  P101100 100010  P100110  P101010  P101110
P110000  P110100  P111000  P111100  P110010  P110110  P111010  P111110
P000001  P000101  P001001  P001101  P000011  P000111  P001011  P001111
Ppo10001  Po10o101  Por1ool  Poriior - Poiooll  Porotil - Porioir - Poriitl
P100001  P100101  P101001  P101101  P100011  P100111  P101011  P101111
P11ooo1  P11o1ol - P111001 - P111101 - P110011 - P1ioiil - P1i1oil o Piiiiil

e The 8 x 8 matrix Flat(e, ¢,,¢5}Ue4,¢5,¢6) (P) contributes to the phylogenetic invariants of pars2 and bnbl and
it is given by

P000000  P000010  P000100  P000110  P000001 000011  P000101  P000111
P010000  P010010  P010100  P010110  P010001  PO10011  P010101  PO10111
P100000  P100010  P100100  P100110 2100001  P100011  P100101  P100111
P110000  P110010  P110100  P110110  P110001  P110011  P110101  P110111
P001000  P001010  P001100  P001110  P001001  P001011  P001101  P001111
P011000  P011010  PO11100  PO11110  PO11001  PO11011  PO11101  POI11111
P101000  P101010  P101100  P101110  P101001  P101011  P101101  P101111
P111000  P111010  P111100  P111110  P111001  P11101l  P1i11or - Piiliill

o The 16 x 4 matrix Flatye, ¢, ¢4, ¢5)ue5,¢6) (P) contributes to the phylogenetic invariants of pars3 and bnb3 and
is given by

P000000  P000001  P001000  P001001
P010000  P010001  P011000  P011001
P100000  P100001  P101000  P101001
P110000  P110001  P111000  P111001
P000010  P000011  P001010  P001011
P010010  P010011  P011010  P011011
P100010  P100011  P101010  P101011
P110010  P1100o11  P111010  P111011
P000100  P000101  P001100  P001101
P010100  P010101  P011100  P011101
P100100  P100101  P101100  P101101
P110100  P110101  P111100  P111101
P000110  P000111  P001110  P001111
poioi10  poioiir - Poiiiio - Poilill
P1oo110  P1ooitl  P1o111o0 - P1o111l
piio110 - pi1ioiir - Piiiiio - Piitina
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3.3 Boundary Distribution and Phylogenetic Invariants

Next we compute the boundary distribution P = (p;,
mapped syntactic variables, for which we find occurrences

niortr =3 noooort =1 nooooto =4 noooooo = 40
n110000 =2 noo1110 =1 noegot00 =2 i =22
nio =1 neot10 =1 niior =3 1100000 = 2

no10000 = 1 n111001 =2 nrono =1 nooim =1

noo1000 = 2 ngoor11 = 1

while all the remaining cases do not occur, n;, ;o = 0 for (i1, ..

F

P

.....

., 1p) not in the above list.

is) of the syntactic variables. We use only the 90 completely

With the boundary distribution determined by the occurrences above the three matrices of F 1= F}at{ £1,62,06)U1¢3,
L4, €5}(P), F2 = Flatyg, ¢,.0310(04,05,06) (P), and F3 = Flat(g, ¢, ¢, ¢510{¢3,06) (P) are, respectively, given by
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0 L o0
% 0 0 0
&= 0 0 0
50 0 &
54 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B=1L 0o o o
0 0 0 0
0 0 0 0
0 0 0 4
S
0 4 0 0
0 0 0 0
W w5

3.4 Phylogenetic Invariants

As we discussed above, the splits
{€1, €2} U (€3, 84, 65, Ls} and  {€1, £, €3, L6} U {€4, €5}
occur in all the candidate trees, hence the minors coming from the flattening matrices

Flatie,, e2)0(63,0.65.66)(P) - and - Flatie, e;.65,06)0(t4, 65} (P)

do not discriminate between the given candidates (preselected by PHYLIP). Thus it is reasonable to proceed by
assuming that the condition that these two flattenings lie on the corresponding determinantal varieties is satisfied
and only discriminate between the candidate trees on the basis of the position of the remaining flattenings. There
is only one additional flattening involved in each tree, once these common ones are excluded. Thus, we estimate
the phylogenetic invariants by evaluating the 3 x 3 minors of the remaining flattening matrix for each of the trees,
using both the £°° and the ¢! norm. We obtain the following:

(1) For the tree 71 = parsl (and equivalently bnb2) we have

22
P)lgx = Pl= 13235
ldr (P)lle (;21;5(%) [ (P)] 13275
7
3707
P)llp = Pl =
lon (Pl = 3 16(P) = 3=
¢eD(T31)
(2) For the tree 7> = pars2 (equivalently bnb1l) we have
419
Pl = Pl =
I97,(P) e = max 19(P)] = 35555
)
2719
P)llp = Pl =
l¢n, (Pl = 3 16(P)] = 3=

(3)
¢>eDTZ
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(3) For the tree T3 = pars3 (and equivalently bnb3) we have

22
oz, (Pl = max |¢(P)] = —=—o=

¢€Df3 18225

949

l¢r,(PYlg = 3 16(P)] = 5c
¢€D(Tz)

Thus, in terms of the evaluation of the phylogenetic invariants, the binary trees of pars2 and the binary tree
bnbl are favored over the other possibilities. (We discuss the position of the root vertex below.) Note that the £*°
norm does not distinguish between the other two remaining candidates and only singles out the preferred candidate
pars2. We compute the Euclidean distance function in Sect. 3.7.

3.5 The Problem with the Root Vertex

As we have seen above, the computation of the phylogenetic invariants helps selecting between different candidate
tree topologies. However, the phylogenetic invariants by themselves are insensitive to changing the position of
the root in binary trees with the same topology. In terms of phylogenetic inference about linguistics, however, it
is important to locate more precisely where the root vertex should be. In the case of languages belonging to a
subfamily of the Indo-European languages this can be done, as in the example we discussed in [47], by introducing
the data of some of the ancient languages in the same subfamily as a new leaf of the tree, that will help locating
more precisely the root vertex of the original tree based on the modern languages. For language families for which
there are no data of ancient languages available, however, this kind of phylogenetic analysis will only identify a
tree topology as an unrooted binary tree. We will return to this point in the following section, where we analyze the
set S»(G) which includes two ancient languages.

Note that when one or more ancient languages are included in the data (as in the second case of the Germanic
languages, or the Romance languages discussed here) that suffices to constrain the position of the root vertex, while
in other cases like the example discussed here, additional independent information is needed.

3.6 Varieties

In the discussion above we reduced the question of distinguishing between the candidate trees to an evaluation of
the phylogenetic invariants coming from the 3 x 3 minors of one of the three matrices Flat(¢; ¢, ¢610(¢3,¢4,05)(P),
Flatg, ¢y, 05)Ute4,65,6) (P), and Flat(g, ¢, ¢, 5101¢5,¢6) (P)- In the first two cases, the phylogenetic ideal defines the 28-
dimensional determinantal variety of all 8 x 8 matrices of rank at most two, while in the third case the phylogenetic
ideal defines the 36-dimensional determinantal variety of all 16 x4 matrices of rank at most two, [7]. These are not the
actual phylogenetic varieties associated to the candidate trees, which are further cut out by the remaining equations
coming from the 3 x 3 minors of the other flattenings Flat(y, ¢,1ui¢s,¢4,¢5,¢6) (P), and Flatie, ¢, ¢35 ¢6101¢4,05) (P).
The varieties associated to each individual tree are intersections of three different determinantal varieties inside a
common ambient space A% Since all the polynomials defining the phylogenetic ideals are homogeneous, they can
also be considered as projective varieties in the ambient projective space P21,

In the case of the trees considered here, two of the three determinantal varieties stay the same, since the
flattenings Flat(g, ¢,)uies,64.65,66) (P), and Flatge, ¢, ¢4, 06)Uie4,¢5)(P) are common to all candidate trees, while
the third component varies among the three choices determined by the flattenings Flat(e, ¢, ¢610(¢3,¢4,05)(P),
Flat(e, 0, e3)0(¢4.05,66) (P), and Flatge, ¢, ¢, e5)01¢3,¢6) (P)-

In general, let D, (n, m) denote the determinantal variety of n x m matrices of rank < r. As an affine subvariety in
A™" it has dimension 7 (n 4+ m — r). It will be convenient to consider D, (1, m) as a projective subvariety of P""~!,
though we will maintain the same notation. In the case » = 1, the determinantal variety Dj (n, m) is the Segre variety
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S(n, m) given by the embedding P*~! x P! < P""~! realized by the Segre map (x;, yj) = (ujj =x;y;). In
the case r = 2 the determinantal variety D;(n, m) is the secant variety of lines (chord variety) Sec(S(n, m)) of the
Segre variety S(n, m), see §9 of [20].

Thus, we obtain the following simple geometric description of the three cases considered above:

o Flat(y, ¢, ¢61Uit3,64.65) (P) (tree topology of parsl and bnb2): the relevant variety is the secant variety
Sec(S(8, 8)) of the Segre variety S(8,8) = P’ x P’, embedded in P93 via the Segre embedding u;,
Xiy,in,igYiz,ig.is-

e Flat(y, ¢, ¢310it4,¢5.06) (P) (tree topology of pars2 and bnb1): the relevant variety is again Sec(S(8, 8)), where
S(8, 8) is embedded in P% via u;, . jo = Xiy.iy.ix Viais.ic-

o Flatye, ¢, ¢4,05)01¢5,66) (P) (tree topology of pars3 and bnb3): the relevant variety is the secant variety
Sec(S(16,4)) of the Segre variety S(16,4) = P! x P?, embedded in P% via the Segre embedding

Uiy,....ig = Xiy,iz,is,is Vi3, ie-

,,,,, i =

The evaluation of the phylogenetic invariants at the boundary distribution determined by the SSWL data selects the
second choice, Sec(S(8, 8)) with the Segre embedding u;,, .. is = Xij iy,i3 Via,is.i6-

As a general procedure, given a subfamily of languages, {¢1, ..., £,} and a set of candidate phylogenetic trees
T1, ..., T,, produced by computational methods from the syntactic variables of these n languages, one can construct
with the method above a collection Y7, ..., Y, of algebraic varieties, where each Yj associated to the tree T} is
obtained by considering the determinantal varieties associated to all those flattenings Flat, 7, (P) of T} that are not
common to all the other trees 7.

The test for selecting one of the candidate trees, given the boundary distribution P = (p;,,....;,) of the syntactic
variables, is then to estimate which of the varieties Y; the point P is closest to, where a suitable test of closeness
is used, for instance through the Euclidean distance function. Assuming that this procedure does not result in
ambiguities (that is, that there is a unique closest Y to the given distribution P), then this method selects a best
candidate 7 among the m trees Tj. It also selects an associated algebraic variety Y = Y (T'), which is larger than
the usual phylogenetic algebraic variety X7 of T, since we have neglected flattenings that occur simultaneously in
all the m candidate trees T.

3.7 The Euclidean Distance

According to the discussion of the previous subsection, on the geometry of the varieties involved in distinguishing
between the candidate trees, we compute here

o the Euclidean distance of the point Flatye, ¢, ¢6)Uies,04,05)(P) and the determinantal variety D;(8, 8)
Sec(S(8, 8)),

o the Euclidean distance of the point Flats, ¢, ¢5)ufes,¢5,66) (P) from the same determinantal variety D5 (8, 8)
Sec(S(8, 8)),

o the Euclidean distance of the point Flatye, ¢,,¢,,05)Uie3,66) (P) from the determinantal variety D, (16, 4)
Sec(S(16, 4)).

Using the Eckart-Young theorem, we compute these distances using the singular values of these three matrices.
These are given by

X (Flatye, ¢, 063013, 04,053 (P)) ~

diag(0.44940, 0.25001, 0.19237 x 1071,0.96007 X 1072, 0.21595 x 1072, 0.88079 x 1073, 4.6239 x 10719, 0)
X (Flatyg, ¢, 03001e4.05.06} (P)) ~

diag(0.44956, 0.25018, 0.14729 x 10_1, 0.44229 x 10_2, 0.27802 x 10_2, 0.24881 x 10_17, 0)

X (Flatgg, ¢,,04,5)0(¢3.06} (P)) ~

diag(0.44939, 0.24994, 0.20625 x 10_1, 0.94442 x 10_2).



822 K. Shu et al.

Using (2.5) we then obtain
dist(Flat(e, ¢, 06)Ufes.0.05) (P), Sec(S(8, 8))% = 0§ + - - - + of = 0.46768 x 1073
dist(Flate, ¢ ¢3)Ufe.¢5,06) (P), Sec(S(8, 8)))* = 03 + - - + o = 0.24424 x 107
dist(Flatye, ¢, ¢,.05)Ut¢3.06) (P), Sec(S(16,4)))? = o + 07 = 0.51457 x 1073

The second Euclidean distance is the smallest, hence this more reliable distance test again favors the binary trees
of pars?2 and the binary tree bnbl.

The computation of these Euclidean distances provides a selection between the candidate trees in the following
way. The first distance measures how far the point determined by the data (in the form of the boundary distribution
P and the flattening matrix F;(P)) is from the determinantal variety D> (8, 8) determined by the tree parsl.
The second distance measures how far the point determined by the data, through the flattening F»(P), is from the
determinantal variety determined by the tree pars2, and the third distance measures how far the point, through
the flattening F3(P) is from the determinantal variety D, (16, 4) determined by the tree pars3. Since as observed
above the remaining flattenings of P occur in all trees and do not help distinguishing between them, it suffices to
find the best matching condition between the three possibilities listed here, for which we select the one realizing
the smallest Euclidean distance.

The Euclidean distances computed above provide lower bound estimates for the distances dist(P, V7;). Even
though these are just lower bounds, they do agree with the phylogenetic invariants test in the selection of the
candidate trees. Heuristically, we can think of this as reflecting the fact that the determinantal varieties associated
to the flattening matrices

Flat(e, e, 063,4,65.66)(P) and  Flatge, ¢, ¢5,66)0(¢4,05) (P)

that are common to all the tree candidates are not contributing in discriminating among the different 7; (though see
the more precise discussion in Sect. 2.3 above).

3.8 The West/North Germanic Split from SSWL Data

Note that the tree topology selected in this way, which (up to the position of the root vertex) is equivalent to the tree

Swedish English

Icelandic  Faroese Dutch  German

is also the generally acknowledged correct subdivision of the Germanic languages into the North Germanic and the

West Germanic sub-branches. The North Germanic in turn splits into a sub-brach that contains Swedish (but also
Danish which we have not included here) and another that contains Icelandic and Faroese (and also Norwegian,
which we have not included, in order to keep the number of leaves more manageable). The West Germanic branch
is split into the Anglo-Frisian sub-branch (of which here we are only considering English, but which should also
contain Frisian) and the Netherlandic-Germanic branch that contains Dutch and German. Thus, the analysis through
phylogenetic invariants and the estimate of the Euclidean distance have selected the correct tree topology among
the candidates produced by the computational analysis of the SSWL data obtained with PHYLIP.

3.9 Longobardi Data and Phylogenetic Invariants of Germanic Languages

Now we analyze the set Sp(G) consisting of Norwegian, Danish, Icelandic, German, English, Gothic, and Old
English, using the syntactic parameters collected in the new data of Longobardi [24].
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The DNA parsimony algorithm of PHYLIP based solely on the new Longobardi data produces a single candidate
phylogenetic tree for the set S»(G) of Germanic languages, of the form

English  German

Icelandic
Danish  Norwegian Gothic  Old-English

In fact, because of the presence of a vertex of higher valence in this tree, one should resolve it into the possible
binary trees and compare the resulting candidates. Moreover, the placement of the ancient languages as “leaves” of
the tree is an artifact, and needs to be resolved into the appropriate placement of the root of the binary trees.

We see here that the fact that ancient languages are treated as leaves in the tree although they really are intermediate
nodes creates some problems in the reconstruction provided by PHYLIP. In the PHYLIP tree above Gothic and Old
English are grouped as nearby leaves in the tree, since the reconstruction correctly identifies the closer proximity
of the two ancient languages with respect to the modern ones. However, this causes an error in the proposed tree
topology when these are placed as two nearby leaves. The standard way of resolving the higher valence vertex,
as discussed in the previous section, would maintain this problem. We propose here a simple method for avoiding
this problem, via a simple topological move in the resulting trees that restores the role of these two languages as
intermediate nodes of the tree (and suggests a position of the root vertex) while maintaining their relation to the
rest of the tree.

In particular, this means that we are going to consider possible candidate trees of the following form, where we
set £1 = Norwegian, £, = Danish, £3 = Gothic, £4 = Old English, ¢5 = Icelandic, {4 = English, £7 = German.

We first visualize the trees obtained by resolving the triple vertex. To simplify the picture, letus write A = {£1, £»}
for the end of the tree containing this pair of adjacent leaves, and similarly for B = {{3, £4}, C = {{s}, D = {{¢, {7},
so that we can visualize the the three possible binary splits of the vertex in the PHYLIP tree as the trees

B B B

5

A'ecp A cbP AD

We then want to input the extra piece of information concerning the fact that the leaves in the set B = {{3, {4}
are not really leaves but inner vertices of the tree, whose proximity is describing the fact that they are in closer
proximity to the root of the tree than the other leaves, rather than their proximity as leaves. We argue that this can
be done effectively by introducing a simple topological move on these trees that achieves exactly this effect, while
preserving the relation to the rest of the tree, namely the following operation:

More explicitly, this means the following. Suppose that a configuration as in the left-hand-side appears in a candidate
tree, where the two bottom leaves are ancient languages placed as nearby leaves of the tree, and the two top directions
continue to other branches of the tree. One replaces it, without changing the rest of the tree, with the configuration on
the right-hand-side. In this configuration, the two bottom leaves are still labelled by the same two ancient languages
and the two top directions are still attached to the same other branches of the tree to which they were connected in the
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left-hand-side. The configuration obtained in this way represents more correctly the role of the ancient languages,
by assigning to each of them an internal vertex of the tree, the vertex to which the leaf is now attached. Note that
on the right-hand-side there are two choices of how to place the labels in the two lower leaves: permuting the two
lower leaves in the left-hand-side has no effect, but permuting them on the right-hand-side gives rise to two different
tree candidates, both of which need to be taken into consideration. In a case like the present one, where these are
the only two ancient languages in the tree, this also suggests that the root vertex should be placed in between these
two points. Applying this operation produces the following list of candidate trees, with (1) and (2) derived from the
first binary tree above, (3) and (4) from the second binary tree above and (5) and (6) from the third one. Note that
each of these pairs corresponds to the two possible choices of labels in the right-hand-side, as mentioned above.

(1) The first candidate tree 71(G) has Icelandic (incorrectly) grouped together with the West Germanic (German,
English) instead of the North Germanic (Norwegian, Danish) languages. The labels £3 and ¢4 should be thought
of not as leaves but as intermediate vertices placed, respectively, above the {€, £2} subtree and above the
{€s, £g, €7} subtree.

IS %) b 4y Y,
> lg 7
(2) The second candidate tree 7>(G) has the same structure as the previous list (with the incorrect placement of
Icelandic), but with the reversed placement of the two ancient languages £3 and £4, this time with Old English

placed at the top of the North Germanic instead of the West Germanic subtree:

Z4 Zl ZZ £3 ES

e 7

(3) The third candidate tree 73(G) has the correct placement of Icelandic in the North Germanic subtree, with
Gothic above the North Germanic and Old English above the West Germanic subtrees:

63 ¢ Ly s
5 ISR %)

(4) The fourth candidate tree T4(G) also has the correct placement of Icelandic in the North Germanic subtree,
now with Old English above the North Germanic and Gothic above the West Germanic subtrees:

b, 5 6 b
S b

(5) The fifth candidate incorrectly places the sets {€1, £2} and {{¢, £7} in closer proximity and ¢5 in a separate
branch away from the ancient languages {¢3, £4}, placing ¢4 as the ancient language in closer proximity to £5:

s L
5453

le &7 41 L
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(6) The sixth candidate tree also incorrectly places £s as a separate branch and {£1, £>} and {{g, £7} in the same
branch, while placing ¢3 as the ancient language in closer proximity to ¢s:

ls £
5 3g4

le L7 L1 L2

We first discuss the candidate trees (1)—(4) as these have a lot of common structure that simplifies a common
analysis. We then show what changes for the last two cases.

When considering the new Longobardi data for the purpose of computing phylogenetic invariants, we need to
eliminate from the list all those parameters that have value either O (undefined in the terminology of Longobardi’s
data table) or ? (unknown). The reason for eliminating not just the unknown parameters but also those rendered
undefined by entailment relations lies in the fact that the result of [1] that we use for the computation of the
phylogenetic invariants holds for a binary Jukes-Cantor model but not for a ternary one. Thus, we stick to only
those parameters that are defined with binary values +1 in Longobardi’s table, for all the languages ¢1, ..., £7 in
our list of Germanic languages. After the change of notation to binary form, obtained by replacing 1 — 1 and
—1 +— 0, we obtain the following list of parameters
4 =11,1,1,10,1,1,0,1,0,0,1,0,0,1,1,0,0,1, 1,1, 1,0,0,0,0,0,0,0,0,0,0, 1, 1,0, 1,0, 0, 0, 0, 0, 0]

6 =11,11,101,1,0,10,0,1,0,0,1,1,0,0,1, 1,1, 1,0,0,0,0,0,0,0,0,0,0, 1, 1,0, 1,0, 0,0, 0, 0, 0]
43 =11,1,1,1,0,1,1,0,0,0,0, 1,0,0,1,1,0,0,1, 1,1, 1,0, 0,0, 0,0,0,0,0,0,0, 1,0, 1, 1,0, 0, 0, 0, 0, 0]
4 =11,1,1,101,1,0,1,0,0,1,0,0,1,1,0,0,1, 1,1, 1,0,0,0,0,0,0,0,0,0,0, 1,0, 1, 1,0, 0,0, 0, 0, 0]
¢ =1[1,1,1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, 1, 1, 1,0,0, 0,0, 0, 0]
6 =1[1,1,1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0, 1,0,0,0,0,0,0,0,0,0,0, 1,1, 1, 1,0,0, 0,0, 0, 0]
¢ =1[1,1,1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1, 1,0, 1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0, 0,0, 0, 0]
Notice how one is left with a shorter list of only 42 parameters, where most of them have the same value for all

the languages in this group. The only non-zero frequencies for binary vectors (ay, ..., a7) € FZ that arise in the
boundary distribution at the leaves of the trees are

niti = 12 nooooooo = 24 niio1111 = 1 ni111101 =1
nitoo =1 ninonr =1 nioi = 1 noorinnn =1

with probabilities
_2 _ 4 _ 1 _
P1111111 = 5 P0000000 = 7 P1101111 = 73 P1111101 = 73
— 1 _ 1 _ 1 _ 1
P1111100 = 73 P1111011 = 75 P1100111 = 75 P0011111 = 73

and all other pg,....; = 0.
We need to consider Flattenings of the boundary tensor P = (py,...q;) of the form

(1) Flatges q,10(61,62,¢3,4)
(2) Flatge, 0,,3)0(e4,65,66.7)
(3) Flatye,,e,,e4)0(¢3,65,¢6,¢7)
(4) Flatye, e,,e5)0(¢3,04,66,67)
(5) Flatyey eq,e7)0(¢1.65,65,65)
(6) Flaties 6,67)0161,62,04,65)

Note that we do not need to consider the flattenings Flat(s, ¢;10(¢;,¢,,¢5,¢4,¢5) and Flat{e, ¢,)0(e5,64,¢5,¢6,¢6)» @S these
are common to all the candidate trees and would not help discriminating between them.

All the flattenings above correspond to 8 x 16 matrices as in Fig. 1, where in each of the cases listed above the
matrix indices (abcdefg) correspond, respectively, to

(1) (abcdefg) = (asagaaiazazas)
(2) (abcdefg) = (a1axazasasacar)
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0000000
P1000000
P0100000
P0010000
Po110000
P1010000
P1100000
P1110000

P0001000
P1001000
P0101000
P0011000
P0111000
P1011000
P1101000
P1111000

P0000100
P1000100
P0100100
Poo10100
P0110100
P1010100
P1100100
P1110100

Po000010
P1000010
P0100010
P0010010
Por10010
P1010010
P1100010
P1110010

Fig. 1 Flattenings 8 x 16 matrices

P0000001
P1000001
P0100001
Po010001
Po110001
P1o10001
P1100001
P1110001

(3) (abcdefg) = (a1arasazasasar)
(4) (abcdefg) = (a1axasazasacar)
(5) (abcdefg) = (asasaraazazas)
(6) (abcdefg) = (azagaraiazasas)

Pooo1100
P1001100
P0101100
Po011100
PO111100
P1011100
P1101100
P1111100

Pooo1010
P1001010
Ppo1o1010
Poo11010
Po111010
Pro11010
Pr101010
P1111010

P0001001
1001001
Po1o1001
Poo11001
Por11001
P1o11001
P1101001
Pi111001

Po000110
P1000110
P0100110
Poo10110
Po110110
P1o10110
P1100110
P1110110

Poooo101
P1000101
Po1oo101
P0010101
Por10101
Pio10101
P1100101
Pi110101

P0000011
P1000011
P0100011
P0010011
Po11o011
P1o10011
P1100011
P1110011

P0001110
P1001110
Po1o1110
Poo11110
Po111110
P1011110
pP1101110
Pii1110

Poo01101
P1001101
Po101101
Poo11101
Po111101
P1o11101
P1101101
P1111101

P0001011
P1001011
Po101011
Poo11011
Po111011
P1o11011
P1101011
Pi111011

P0000111
P1000111
P0100111
Po010111
Po110111
P1o10111
P1100111
P1110111

Pooo1111
P1001111
Poro1111
Ppoor1111
Po111111
Pro11111
Pr101111
P

The probability distributions corresponding to the permutations listed above are respectively given by

(D) n11i01 = 1, nyoriinn = 1, nioorinn = 1 notnnnnn = 1, nrnnnoo = 1, nincorr = 1
(2) niro1111 = L nrnirtor = 1, nnannioo = 1, marnionr = L, nrroorn = 1, nootinnn = 1
(3) nito11r = L nrnitor = 1, nnirioo = 1, nuirio11 =
L, ni1o1111 =
L nitnio =

4) nio1r = 1L, niior = 1, nartii00 =

(5) nitttior = 1, nyotiinn = 1, nygori11 =

(6) notrriir = 1, nyoriinn = 1, nyoorinn = 1, natninio

L, ny100111 = L, noot1111 =1
1, n1110011 = 1, noot1111 = 1
L, no111101 = L, n1110011 =1

while all six cases have the common values n1111111 = 12 and nggooooo = 24.
The corresponding flattening matrices are given by

Flat(es, e6,010161,02,63,04) (P) =

Flat(e, ¢5,65)01t4,65,66,67) (P) =

20000
00000
00000
00000
00000
00000
00000
00000
20000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
L0000

0000000

S O o o o o O
S O o o o o <O

=)

000000
000000
000000
000000
000000
000000

S O o o o O

1 1
HoLoo

o o o o o o o

1 1
000005000000 35

00
00
00
00
00
00

oSO O o o o o o
SO o O o o o

&l-

&l
S

o o B-

N e

B~ o o o

oS O

<o Hl—

= 1, no111101 = 1, nir10011 =1
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4000000000000 0 0 0
0000000000000 0 0 0
0000000000000 0 0 0
0000000000000 0 0
Flatg, o5, 04)013.05.06.071 (P) =
0000000000000 0 0 0
0000000000000 0 0 0
0000000000000 0 5 0
0000050000005 5 55 3
£00000000000000 0
000000000000000 0
000000000000000 0
000000000000000 2
Flatie et tetetl P =100 0660000000000 0
000000000000000 0
000000000000000 2
0000055000075 0 505 2
20000000000 0 0000
00000000000 0 0004
00000000000 0 0000
00000000000 0 0000
Flates to.enuter 26,659 = 660600 000000 0 000 0
00000000000 0 000
00000000000 0 0000
00000500005 54500 2
20000000000 0 0000
00000000000 0 000 2
00000000000 0 0000
00000000000 0 0000
e eas® =100 06000000 0 0 4005
00000000000 0 000
00000000000 0 0000
00000000004 55 000 2
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The trees T5(G) and Tx(G) have a slightly different structure, since in addition to placing in closest proxim-
ity the pairs {¢1, €2} and {€¢, €7} like all other trees they also identify pairs {£4, £5} in the case of 75(G) and
{£3, £s} in the case of Ts(G). Thus, while these two trees also have the flattenings Flat(e, ¢,yuie,,¢,.¢5,64,¢5) and

Flat{s, e,)ues,04,05,¢6,66) cOmmon to all the other trees, they also have a flattening

Flat(es,e,,e510161,62,€6,07)

common to both trees T5(G) and T5(G) and

Fs = Flatye,, e530(0,05,03,06,07) Tor T5(G)
Fs := Flat(e; 0530(¢1,65,04.06.67) Tor Te(G).

We have as corresponding matrices

200000000000000 0
000000000000000 0
000000000000000 0
000000000000000 5
Flat(es ey, e50(¢1,62,66,07) (P) = |
000000000000000 5
000000000000000 5
000000000000000 0
00050500000000 45 2

while the matrices (written in transpose form) for F5 and Fg are given in Appendix C.

3.10 Computation of the Phylogenetic Invariants

We compute the phylogenetic invariants using the £*° and the £' norm.

(1) The tree T1(G) with flattenings M = Flat¢s ¢4, ¢,)Ui¢1,¢2,¢5,64) and M>

P)|poo = P)|, =
lor, (P)lle max{¢€7r313§§>(<M1)l¢( )| ¢€7r)r(1§)(<M lp(P)|} = 1029

83

I6r (Pl = 37 16PN+ Y (P = s
€D (M) $€DO (M)

(2) The tree T>(G) with flattenings M = Flat(es ¢4, 07)Uie1,¢5,¢5,¢4) and M3

P)|lge = max{ max P)|, max =
6z, (P)le (max [@(P)., max 6P} =155

233
lgn(PYlo = 3o lePI+ D 1P = e
DO (M) €D (M3)

(3) The tree T3(G) with flattenings My = Flate, ¢, ¢5)Uit3,64,66,¢7) and M5

Pl = P
ll¢7; (P)llece = max{ rI(1a>(<M4) o ( )|’¢eII>I<1%)<(M 6P} = 35g7

lpry (Pl = > 6P+ Y. lp(P)l=

3087
$€DO (My) $€DO (Ms)

= Flatye,,,,03)014,05,¢6,¢7) gIVES

= Flat(e,,0,,04)u(03,5,06,¢7) 8iVeS

= Flatyey, ¢6,01)0101,02,05,05) gIVes
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(4) The tree T4(G) with flattenings My = Flaty, ¢, ¢5)Uit3,64,66,67) A0d Mg = Flat(g, ¢ 0510161, 62, 04,¢5) EIVES

P)||g> = max max P)|, max P
6. (P)lle (_max 6P, max I$(P)}= {505

181
7, (Pl > lpP)+ ) 6(P) = 1oo55
$eDO) (My) $€D) (M)

(5) The tree T5(G) with flattenings F5 of Appendix C and M7 = Flaty, ¢, ¢5)0(¢,2,6,¢7) S1VES

P)l||lg~o = max{ max P)|, max P
675 (P)lle ( max 0PI, max 6PN = 15

233
lr(Plla = Y WP+ Y 6P = 5o
DO (Fs) ¢eDO) (M7)

(6) The tree T5(G) with flattenings Fg of Appendix C and M7 = Flat{¢, ¢, ¢53ue;,5.¢6,¢7) SiVES

P)|lpo = max{ max P)|, max P
7, (P)le ( max 19(P). max (8P} = {5

83
lpr (Pl = D7 1o+ Do Ie(P) = o
»eD (Fp) ¢eDO) (M7)

In this case we see that both the £>° and the £' norm provide a good test that selects the historically correct tree
T5(G). Note that the £°° has the same value 4/1029 on all the other candidates and the lower value 1/3087 only
for the correct tree 73(G).

3.11 Estimates of Euclidean Distance for the S>(G) Germanic Languages

We obtain an evaluation of the candidate trees based on computing a lower bound for the Euclidean distance in
terms of distances between the flattening matrices Flat, 7 (P) of the boundary distribution P and the determinantal
varieties they are expected to lie on. As before, we use the notation with the explicit split of the leaves for the
flattening matrices. More concretely, we have the following:

(1) The Euclidean distance estimate for the tree 77 (G) is given by dist(P, V) > L with

Ly = max{d(Flat, ¢,,¢5)0{t4,¢5,¢6,07} (P), D2(8, 16)), d (Flaties ¢4, 130101, 0,¢5,04) (P), D2(8, 16))}
(2) The Euclidean distance estimate of 72(G) is given by dist(P, Vr,) > Ly with

Ly = max{d(Flat(e, ¢, 0,003, 05,06,67 (P), D2(8, 16)), d (Flatyes, 6, 6:)0101 ,02,05,04) (P), D2(8, 16)) }
(3) The Euclidean distance estimate of 73(G) is given by dist(P, Vr;) > L3 with

L3 = max{d(Flat, ¢, ¢5)0i¢3,04,¢6,07} (P), D2(8, 16)), d(Flatyg, ¢4 ¢,301¢1,5,¢5,¢5)(P), D2(8, 16))}
(4) The Euclidean distance estimate of 74(G) is given by dist(P, Vr,) > L4 with

L4 = max{d (Flat(g, ¢, 5303, 04.¢6.¢7) (P), D2(8, 16)), d (Flat(es o6, 673011, 2,04.¢5) (P), D2(8, 16))}
(5) The Euclidean distance estimate of 75(G) is given by dist(P, Vry) > Ls with

Ls = max{d (Flat(¢, ¢, ¢5)U(t, 62,0661 (P), D2(8, 16))%, d(F5(P), D2 (4, 32))*}
(6) The Euclidean distance estimate of T¢x(G) is given by dist(P, Vr,) > Le with

Lo = max{d (Flat{e, e4.65)0(61.62.66.67) (P), D2(8, 16))%, d(Fs(P), D2 (4, 32))%).
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The singular value decomposition of the flattening matrices gives ¥ = diag(o1, ..., 0g) with

X (Flatyes, 6, 073011, 02, 3,04) (P))
~ diag(0.57143, 0.291548, 0.58333 x 1072, 0.12240 x 1077,
0.10572 x 1073*,0.16149 x 107!, 0.63652 x 10798, 0)
X (Flatye, e, 03)01e4,5,06,67)) (P))
~ diag(0.57143, 0.29059, 0.23973 x 10!, 0.33558 x 1072, 0.64145 x 10~'?,0.60260 x 1073!,0, 0)
X (Flate, ¢, 04)0(¢3,65.06,67) (P))
~ diag(0.57143, 0.29061, 0.23809 x 10~!,0.33787 x 1072, 0, 0, 0, 0)
X (Flate, ;. 05)0(¢3,84.06,67) (P))
~ diag(0.57143, 0.29155, 0.54996 x 1072, 0, 0,0, 0, 0)
X (Flatye,, ¢6,07)01¢1,02,3,25) (P))
~ diag(0.57143, 0.29155, 0.54996 x 1072, 0, 0,0, 0, 0)
X (Flat{es, 6, 0)0(¢1,62,04,5) (P))
~ diag(0.57143, 0.29059, 0.23892 x 10", 0.38881 x 1072, 0.12435 x 107'7,0.73417 x 107?,
0.32257 x 10734, 0).
X (Flat{ey, ¢4, 05)0(¢1,62,06,67) (P))
~ diag(0.57143, 0.29155, 0.58333 x 1072, 0.18608 x 10~7,0.32093 x 10733, 0,0, 0)
T(F5(P)) = (0.57143,0.29061, 0.23809 x 10~!,0.33787 x 107%)
T (Fs(P)) = (0.57143, 0.29060, 0.23973 x 10~", 0.33558 x 1072)

By the Eckart-Young theorem we then have

d(Flat(es g 0)0101.02.05.04) (P), D2(8, 16))> = 0 4 - - - 4+ 02 = 0.34027 x 107
d(Flatye, 0,.04)0104.05.06.6:)) (P), D2(8, 16))> = 03 + - - - + 0§ = 0.58597 x 1073
d(Flat(e, ¢, 4)0(es.05.¢6.6)(P), D2(8,16))? = 0 + - - - + o = 0.57831 x 1073
d(Flat(e, o, 65)0its.05.06.0)(P), D2(8, 16))> = 0 4 - - - 4+ 02 = 0.30245 x 107
d(Flatye, ¢q.0:)010; .65.05.05) (P), D2(8,16))> = 67 + - - - + 0f = 0.30245 x 10~*
d(Flat(es t5.67)0(0,.62.04.5) (P), D2(8,16))? = 0 + - - - 4+ o = 0.58595 x 1073
d(Flat(e, ¢, 6510101020602} (P), D2(8, 16))> = 0 4 - - 4+ 02 = 0.34027 x 107
d(Fs5(P), D2(4,32))* = 0§ + 07 = 0.57831 x 10~

d(Fs(P), D2(4,32))? = 07 4+ 07 = 0.58597 x 1073,

Thus, we obtain

L, =0.58597 x 1072, L, =0.57831 x 1073, L3 =0.30245 x 107*, L4 =0.58595 x 1072,
Ls =0.57831 x 1073, Lg = 0.58597 x 1073.

Thus, the computation of the phylogenetic invariants selects the tree 73(G) as the preferred candidate phy-
logenetic tree. The estimate of the Euclidean distance shows that the lower bounds obtained for the trees
T1(G), T2(G), Ta(G), Ts(G), Te(G) are comparable and only 73(G) has a significantly smaller estimate. Thus,
this criterion, even if it is only based on lower bounds, also suggests 73(G) as the most favorable candidate. The
tree 73(G) is indeed the closest to what is regarded as the correct linguistic phylogenetic tree.
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3.12 Comparison with SSWL Data

The DNA parsimony algorithm of PHYLIP produced the following two candidate phylogenetic trees for the set
S2(G) of Germanic languages based on the combination of the Longobardi data and the SSWL data.

English  German

Old-English  Gothic ... 4 -

Danish  Norwegian

English  German

Ieelandic Danish  Norwegian

Old-English ~ Gothic

In this case, the inclusion of the additional SSWL data resolves the ambiguity of the PHYLIP tree discussed in
Sect. 3.9. In terms of our treatment of the positioning of the ancient languages, the two trees shown here should be
regarded as corresponding to the possible trees in cases (3) and (4) discussed above in §3.9, for the first tree and
cases (5) and (6) for the second one.

Thus, the set of possible binary trees we should consider for a comparison between the phylogenetic invariants
evaluated on the Longobardi and on the SSWL data, consists of the trees 73(G) and T4(G) and T5(G) and T6(G)
of the previous section. We will evaluate here the phylogenetic invariants and estimate the Euclidean distance
function of these candidate trees (including for completeness also 77(G) and 7> (G) of the previous section) using
the boundary distribution based on the SSWL data.

3.13 Boundary Distribution for S»(G) Based on SSWL Data

The Germanic languages in the set S>(G) have a total of 68 SSWL variables that are completely mapped for all
the seven languages in the set. This is significantly smaller than the 90 variables used for the set S;(G). This does
not depend on the languages being poorly mapped: the levels of accuracy are comparable with the previous set
with Danish (76%), Norwegian (75%), German (75%), English (75%), Old English (75%) Icelandic (62%), Gothic
(62%). However, the regions of the overall 115 SSWL variables that are mapped is less uniform across this set of
languages creating a smaller overlap. The set of completely mapped SSWL variables for this set of languages is
reported in Appendix B.
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The occurrences of binary vectors at the leaves is given by

10,0,0,0,0,0,0 = 26 n1,1,1,1,1,1,1 = 16 19,0,1,1,0,0,1 =2
10,0,1,0,0,0,0 =3 711,1,0,1,0,00 = 1 10,0,1,1,1,1,0 = 1
n0,0,1,1,1,0,0 = 1 10,0,1,0,1,00 =1 71,101,011 =2
n1,01,1,1,00 =1 ni111101 =1 ny111,100=1
n11,1,1,0,1,1 =3 n11,01,1,010 =1 10,000,100 =1
n1,1,0,0,1,1,1 =1 10,0,0,0,0,1,0 =1 70,0,0,1,0,0,0 =2
1n0,0,0,0,0,0,1 = 1 10,0,1,1,0,00 =1 n1101,1,1,1 =1

Thus, the boundary probability distribution for the SSWL data for these seven Germanic languages is given by

13 4
P0,0,0,0,0,0,0 = 37 P1.1,1,1,1,1,1 = 17 P0,0,1,1,0,0,1

1

3 1 3t

P0,0,1,0,0,0.0 = gg P1,1,0,1,0,0,0 = gg P0.0,1,1,1,1,0 = gg
P0,0,1,1,1,0,0 = é D0,0,1,0,1,0,0 = 61—8 P1,1,0,1,0,1,1 = 31—4
P1,0,1,1,1,0,0 = 61—8 P1,1,1,1,1,0,1 = & P1,1,1,1,1,0,0 = 6]—8
P1,1.1,1,0.1,1 = % P1,1,0.1,1,0,1 = 6—13 P0.0,0,0,1,0,0 = 6—13
P1,1,0,0.1,1,1 = 61—8 D0.0,0,0,0,1,0 = 6—18 P0.,0,0,1,0,0,0 = %4
D0,0,0,0,0,0,1 = é P0,0,1,1,0,0,0 = 61—8 P1,1,0,1,1,1,1 = é

The six flattening matrices corresponding to the different trees of the previous section are in this case of the
following form.

13 3 1 1 1
B0o0Z& 4 00000&0Kk 000

1 1 1 1 1
£00& 000000500 LX0&
&000 000000000 000
&£0000 00000500 000
Flat(es ¢.7)0161.62. 3,04} (P) = . 5
00000 000000044 00%
1 1
00000 0000000%00%
00000 00000500000
1 1 4
0000 0 £0000004& 00
13 1 1 1 1
B L Ld& 00000000000
000000000000 00O0O0O
000000000000 00O0O
3 1 1 1 1 1
Flat(e, e5.03)01¢4.65.06.7) (P) = Bww )0 wlu00050 090
o 000000000000 00O0O
00000&00000000O0O
1 1 1 1 1
050000000000 &4L&&
1 1 3 4
00000&K000000&KZ04
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34 68 68 68 68 68 000000000
00000000000O0O0OOO
00000000000O0O0O0OO
1 1 1 1 1
L&000LoL000%L0000
Flatie b egutestste ™) =9 9 9 90 0 00000000000
00000&L000000O0O0OO
000000000000O0OGZLO
1 1 1 1 1 3 1 4
F0000LoookL Lok i
13 3 1 1 1 1 1
B3 Ll do00000L000
000000000000 O00O0 O
000000000000 O00O0 O
1 1 1 1
Pt oo rn iy (P = | ® 000&00000&0000
o 000000000000 O00O0 O
00000&L0000000000O
1 1 3
00&00000000000%Z
1 1 1 1 1 4
00000&000&&o0 Lok
13 3 1 1
BooZk £ 00000k 00000
1 1 1 1 1 1
ook o Looookoo ok
&000 000000000000
- ) &000 000000000000
at{e,, 06,0730{01,02,3,€ =
tato 1010 2,65, 65) 00000000000 0&000
1 1 1
000400000000 & 004
00000 00000&00 000
1 3 1 4
00000 4000002 L0024
13 1 1 1
Bood 4000000 L0000
3 1 1 1 1 1
004 Loooook o0 Lok
&000 000000000000
000 0000000 0 0 00k
Flat(e; ¢6.67)0161.62.04.05) (P) = L1 1
0000 0000000 4 & 00
1 1
0004 0000000 0 0 00
0000 000000& 00000
0000 0000000 2 0 00%

17
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3.13.1 The Trees Ts and Tg

For the two remaining trees we have the flattening matrix

13 11
771000 g 00
1 1
7700 0000
3
0000000
1 1
s 00004500
1
s 0000000
0000O0O0O0OO
1
s 0000000
1L 1ol 1
2022000
Flat(, ¢, 5061, 00.66,07) (P) = | O 05~ 05 68
{€3.64,05}0{€1 €2, 06,07} 00000000
1
00000005
0000O0O0O0OO
3
000000 O0g
1
0000 0 0 0 &
L1
0000 0 0 ¢ ¢
0000O0O0O0OO
1 4
000000 &7
and the matrices for the flattenings F5 and Fg given in the Appendix C.

3.14 Phylogenetic Invariants

We compute the phylogenetic invariants, using either the £°° or the £! norm. This case shows, as observed already
in [8], that the £! norm gives more reliable results than the £>° norm.

e For the first tree 771(G) we consider all 3 x 3 minors of the flattenings
My = Flates ¢5.0)0(¢1.62.63,04) (P) and My = Flatge, ¢, e3)01¢4.05.06.67) (P)

and we obtain

13

Pl = Pl=25
I6r (Pl = ) max 18P = 3573
8811
lon(Plla = 3 18P =

DO (M)UD® (M3)
e For the second tree 75(G) we consider all 3 x 3 minors of the flattenings
My = Flaties t.67)0101.2.03.04) (P) and - M3 = Flat(e, ¢, e4)0ie3.65.06.67) (P)

and we obtain

13
o, (P)le =

(P)|=m

max
DO (M)HUDS (M3)

7103
P = P)| =
Iz (Pl > P = 155
DO (M)UD® (M3)
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e For the third tree 73(G) we consider all 3 x 3 minors of the flattenings

My = Flatyy, ¢, 05)0{¢3.04,66,7}(P) and  Ms = Flat(e, o6 ¢110i¢;,62,05,05) (P)

and we obtain

13
lprs (P) g =

lp(P)| = 903

max
DO (My)UD® (Ms)

5439
Py = P)| =
Iz (Pl > leP=155
DO (M4)UDP (M)

e For the fourth tree 74(G) we consider all 3 x 3 minors of the flattenings

M4 = F]at{ll,(2,@5}U{€3,l4,(6,@7}(P) and M6 = Flat{£3,/é(,,l7}u{€1,K2,44,£5}(P)

and we obtain

13
Pl = Pll= 1513
||¢T4( )”( DG)(M?)IS%@)(M@ ( )| 4913
5739
Py = P)| =
gz, (Pl > R T

DO (M4)UDS) (Me)
e For the fifth tree 75(G) we consider all 3 x 3 minors of the flattenings
M7 = Flat(g; ¢, 05)01¢1,62,66,6;) (P) and  F5 (as in Appendix C)

and we obtain

75 (P) e = (P)]

max | = —
DO (M7)UDS) (Fs) 4913

25
lzs (P = > $(P) = —¢
DO (M7)UD® (Fs)
e For the sixth tree T(G) we consider all 3 x 3 minors of the flattenings
M7 = Flatg, ¢, 05)Ui¢1,0.66.67)(P) and Fg (as in Appendix C)

and we obtain

207
P o = P = —
ldrs (P)lle Dﬂnﬂé?i%ﬁwfm| (P)] 78608
11795
Pl = E P)| =
lé7s (Pl g1 [ (P)] 314432

DO (M7)UD® (Fo)

When we evaluate the minimum among these candidate trees we see that using the £°° norm in this case would
incorrectly select the tree To(G) as the best candidate, while using the ¢! norm correctly selects 73(G)

207
min [|p7 (P)llex = Zo e = 675 (P) e~

78608
i P = = P .
min I (P)ll o1 57216 lé7y (P)l o1
The £°° norm also does not distinguish at all between the trees 71(G), . .., Ts(G).

3.15 Euclidean Distance Function Estimates

The Euclidean distance lower bound estimate can be obtained as in §3.11 by replacing the boundary probability
based on the Longobardi data with the one based on SSWL data. We obtain the following.
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The singular value decompositions £ = diag(oy) are now of the form

(M) = (0.38754, 0.24162, 0.36255 x 1071, 0.29457 x 107!,
0.17913 x 1071,0.18822 x 1072, 0.44554 x 1073, 0.81454 x 10~18)

(M) = (0.38705, 0.24121, 0.40755 x 1071, 0.35206 x 107!,
0.13458 x 10~1,0.25922 x 10717, 0.30537 x 10718,0.12727 x 1073%)

S (M3) = (0.38779, 0.24265, 0.37646 x 10~1,0.14679 x 107!,
0.13520 x 10~1,0.72298 x 10~17,0.10019 x 10~18,0.15015 x 10739)

> (Mys) = (0.38833, 0.23760, 0.54943 x 10~!,0.25989 x 107!,
0.11091 x 1071, 0.37355 x 10717, 0.11876 x 10~'8,0.41814 x 10~32)

(Ms) = (0.38730, 0.24267, 0.35401 x 10~!,0.25107 x 107!,
0.13409 x 1071, 0.10671 x 1071, 0.83305 x 1073, 0.63417 x 10~!¥)

> (Mg) = (0.38735,0.24147,0.34918 x 10~1,0.29212 x 107!,
0.23098 x 10~1,0.10765 x 10~1,0.17668 x 1072, 0.31311 x 1073)

¥ (M7) = (0.38775, 0.24257,0.29048 x 10~1,0.26515 x 107!,
0.14181 x 10~1,0.11708 x 101, 0.13047 x 1072, 0.60234 x 10~!¥)

¥ (Fs) = (0.38710, 0.24296, 0.44347 x 10~',0.15179 x 10~ ")
¥ (Fg) = (0.39170, 0.23723, 0.30854 x 107!,0.20237 x 10~ ")
One obtains from these the Euclidean distances
d(My, Dy(8,16))> = 67 + - - + o3 = 0.25068 x 107>
d(M>,D>(8,16))* = 0§ + -+ of = 0.30816 x 1072
d(M3,Dy(8,16))*> = 67 + - + o7 = 0.18155 x 1072
d(My, D2(8,16))> = 05 +--- + of = 0.38172 x 107>
d(Ms, D5(8,16))> = 0% 4 - - + o¢ = 0.21780 x 1072
d(Mg, D2(8,16))> = 0 + - + 0 = 0.27252 x 1072
d(M7,Dy(8,16))> = 67 + --- + o3 = 0.18867 x 1072
d(Fs, Dy(4,32))* = 07 + 02 = 0.21971 x 1072
d(Fs, D2(4,32))? = 07 + 07 = 0.13615 x 1072,

+ o+ o+ o+ +

From these distances, computed using the Eckart—Young theorem, one derives then estimates for the Euclidean
distance of the form dist(P, V7;) > L; where the L; are computed as maxima of the distances in the list above that
occur in the case of the tree 7;, in the same way as shown in Sect. 3.11.

We find that, in the case of the SSWL data for these Germanic languages, the lower bound on the Euclidean
distance gives a less reliable answer. While it correctly excludes the candidates 71(G), T>(G), T4(G), T5(G), it
assigns the lowest value to the tree 75(G) rather than to the correct tree 73(G) selected by the phylogenetic
invariants (computed with the £'-norm). Thus, we see here an example where the lower bound is an unreliable
predictor of the actual Euclidean distance. This example confirms the expectation that Longobardi’s LanGeLin data
behave better for phylogenetic reconstruction than the SSWL data.

A possible explanation for this phenomenon lies in the fact that, although the list of SSWL variables for this
set of languages is longer than the list of variables in the Longobardi data, there is a high degree of dependency
between the SSWL data. This was also observed in [38] where the dependencies between SSWL variables were
studied using Kanerva networks. Thus, the actual number of independent variables that contribute to the boundary
distribution may be smaller in the use of the SSWL data. The fact that the languages in the set S»(G) have a smaller
overlap in the regions of the SSWL variables that are uniformly mapped for all languages, compared to those in
the set S1(G) further explains why the £>°-phylogenetic invariants and the Euclidean distance evaluated on the
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boundary distribution of SSWL data correctly identify the best tree in the S1(G) case but not in the S (G) case and
the ¢!-phylogenetic invariant identifies the correct tree in the case of S»(G) only by a small margin. We will return
to discuss this point in §8 below.

4 Phylogenetic Algebraic Varieties of the Romance Languages

We consider here the case of the Romance subfamily of the Indo-European language family. In particular, we focus
of the relative position of the languages ¢; = Latin, £, = Romanian, £3 = French, ¢4 = Italian, £5 = Spanish,
and ¢ = Portuguese. We use the combined data of the SSWL and the Longobardi databases for this phylogenetic
analysis, where we retain only those features of the SSWL database that are completely mapped for all of these
languages.

When run on this set of syntactic data, the PHYLIP phylogenetic program produces a unique most parsimonious
tree candidate, which is given by the tree 7}

£

with the additional linguistic information that ¢; (Latin) should be considered as the root vertex, since the tree
produced by PHYLIP is unrooted. There is clearly a problem with this tree, since the topology one expects based
on historical linguistics is instead given by the tree 7

£

4.1 Flattening Matrices of the PHYLIP Tree

There are three flattening matrices associated to the tree 77, given by the three possible splits e; = {£1, €2} U
{€3, L4, U5, Ls}, e2 = {£1, €2, €5} U {€3, €4, be} and e3 = {€1, £2, €5, £} U {3, £4}. With the boundary probability
distribution given by the combined SSWL and Longobardi data, these are given by

0.2 0.0121 0.0606 0.0121

0 0 0 0.0061
0 0 0.0061 0
0 0 0.0061 0
0 0 0 0.0061
0 0 0 0
0 0 0 0
Flat,, 7, = 0 0 0 0.0182
’ 0.0242 0 0.0182 0
0 0.0061 0 0
0 0 0 0
0 0 0.0061 0
0.0061 0 0 0.0061
0 0 0 0
0.0061 0 0 0.0061

0.0364 0.1091 0.0364 0.4121
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0.2 0 0.0121 0 0.0606 0 0.0121  0.0061
0 0 0 0 0.0061 0.0061 0 0
0 0 0 0 0 0 0.0061 0
Flat,, 7 — 0 0 0 0 0 0 0 0.0182
20 0.0242 0 0 0.0061 0.0182 0 0 0
0 0 0 0 0 0.0061 0 0
0.0061 0 0 0 0 0 0.0061 0

0.0061 0.0364 0 0.1091 0 0.0364 0.0061 0.4121
while the third flattening Flat,, 7, is given by

0.2 0 0.0121 0 0 0 0 0 0.0606 0 0.0121 0.0061 0.0061 0.0061 0 0

0 0 0 0 0 0 0 0 0 0 0.0061 0 0 0 0 0.0182
0.0242 0 0 0.0061 0 0 0 0 0.0182 0 0 0 0 0.0061 0 0
0.0061 0 0 0 0.0061 0.0364 0 0.1091 0 0 0.0061 0 0 0.0364 0.0061 0.4121

4.2 Flattening Matrices of the Historically Correct Tree

When we consider the linguistically correct tree 7>, instead of the tree 77 computed by PHYLIP, using the same
syntactic data for the boundary distribution, we find the flattening matrices which correspond to the splittings
ep = (€1, 2} U {ls, Ly, s, Le}, ey = (L1, €2, L4} U (€3, €, €6} and €5 = {£1, €2, €3, L4} U ({5, £g).

0.2 0 0 0

0.0121 0 0 0
0.0606 0 0.0061 0.0061
0.0121 0.0061 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Flat, . — | 00061 0 0 0.0182
12 0.0242 0 0 0
0 0.0061 0 0
0.0182 0 0 0.0061
0 0 0 0
0.0061 0 0.0061 0.0364
0 0 0 0.1091
0 0 0 0.0364
0.0061 0 0.0061 0.4121
0.2 0 0 0 0.0242 0 0 0
0.0121 0 0 0 0 0.0061 0 0
0.0606 0 0.0061 0.0061 0.0182 0 0 0.0061
Fla, . — | 0-01210.0061 0 0 0 0 0 0
e T2 0 0 0 0 0.0061 0 0.0061 0.0364
0 0 0 0 0 0 0 0.1091
0 0 0 0 0 0 0 0.0364
0

0.0061 0 0 0.0182 0.0061
and with the third flattening matrix Flalte%j2 given by

0.2 0 0 0 0 00 O 00242 0 O 0O 0.006100.00610.0364
0.0121 0 0 0 0 00 O 0 0.00610 O 0 0 0 0.1091
0.0606 0 0.00610.0061 O 00 O 0.0182 0 00.0061 0 0 0 0.0364
0.0121 0.0061 0 0 0.0061000.0182 0 0 0 0 0.006100.00610.4121

0.0061 0.4121
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4.3 Phylogenetic Invariants

We compare the phylogenetic invariants of these two trees computed with respect to the £ and the £! norm.
(1) from the PHYLIP tree T we obtain:
197 (P)llee = max{ max |p(P)], max [|¢(P)|. max [¢(P)[}=0.89579 x 107

¢6Del,T1 ¢eD62’T1 ¢eDe3’T1
IDr (Pl = D 16PN+ D [P+ Y [¢(P)|=0.24790 x 107!
9eDl €D 1 <D

(2) for the historically correct tree 7> we find:

197, (P)llee = max{ max |p(P)[, max |¢(P)|, max | (P)[} = 0.89579 x 107>

e .1y .1y

D7 (P)llg =Y 16P)+ D 6P+ D [p(P)|=0.22681x 107"
peD peD? peD
el,z 62,2 83,2

Once again we see that the £! norm reliably distinguishes the historically correct tree 75 over the incorrect PHYLIP
candidate, while the £°° norm gives the same result for both candidate trees and does not help distinguishing them.

4.4 Estimate of the Euclidean Distance

We also compute a lower bound estimate on the Euclidean distance. In the case of the first tree 77 The Euclidean
distances of the flattening matrices from the respective determinantal varieties are given by

Dy, =dist(Flat,, 7y, D2(4, 16)), Dj, = dist(Flat,, 1, D2(8,8)), Dj3 = dist(Flat,, 1,, D2(16, 4)).

The singular values of the flattening matrices are given, respectively, by

¥ (Flat,, 7,) = (0.4320,0.2075, 0.14766 x 10~!,0.8211 x 1072)

while the singular values of Flat,, 7, are given by

(0.4299,0.2115, 0.1390 x 10~",0.8586 x 1072, 0.7806 x 1072, 0.4896 x 1072, 0.8464 x 1073, 0.1867 x 1073)
and

X (Flat,, 1,) = (0.4299, 0.2118, 0.1332 x 1071,0.7593 x 1072).

Thus, the Euclidean distances are given, respectively, by

Di, =0.2854 x 107

D}, =03525x 107

Di;=02351 x 107

For the second tree 7> the Euclidean distances of the flattening matrices to the corresponding determinantal
varieties are given by

D3, =0.1390 x 107,
which is computed using the singular values

¥ (Flat,, 7,) = (0.4300, 0.2119, 0.8567 x 1072,0.8102 x 1072,
D3, = 0.3390 x 1073
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computed using the singular values X (Flat,, 7,) given by

(0.4299, 0.2115,0.14218 x 1071, 0.6889 x 1072, 0.6061 x 1072,0.6007 x 1072, 0.4070 x 1072,0.7823 x 107'%)
and

D35 =0.2854 x 1077

with singular values

¥ (Flat,, 7,) = (0.4320,0.2075,0.1477 x 107", 0.8211 x 1072).

Thus if we compare the two models 7| and 75 using the maximum between the distances as a lower bound for
the Euclidean distance to the phylogenetic variety we find

Ly = max{D{ |, D{,. Di 3} = 0.3525 x 10~°
Ly = max{D3 |, D3 ,, D3 3} = 0.3390 x 1077,

hence L, < L1, which also favors the historically correct tree 75:

Latin

Romanian
Italian

French
Spanish  Portuguese

5 Phylogenetic Algebraic Varieties of the Slavic Languages

We then consider a set of Slavic languages: £1 = Russian, £, = Polish, {3 = Bulgarian, £4 = Serb-Croatian, {5 =
Slovenian, for which we again use a combination of SSWL and Longobardi data. The PHYLIP most parsimonious
trees algorithm produces in this case five candidate trees when run on this combination of syntactic data. We use
additional linguistic information on where the root vertex should be placed, separating the West-Slavic branch
where Polish resides from the part of the tree that contains both the East-Slavic branch and the South-Slavic branch.
We see then that the candidate trees are respectively given by
T1—€2 Tz—g2 T3—€2
b by bty
5 ly U3 Y ols U 3 Ay Uy

T4 = T5 =

J4 ly

2 63 61 €4 65 61 f3 [4 €5

(1) The first tree 77 incorrectly places Bulgarian in closer proximity to Serb-Croatian than Slovenian.

(2) The second tree 73 has a similar misplacement, with Bulgarian appearing to be in greater proximity to Slovenian
than Serb-Croatian.

(3) The third tree T3 correctly places Slovenian and Serb-Croatian in closest proximity, and it also correctly places
Bulgarian in the same South-Slavic subbranch with the pair of Slovenian and Serb-Croatian, so it corresponds
to the correct tree topology that matches what is known from historical linguistics.

(4) The fourth tree 74 misplaces Bulgarian in the West-Slavic branch with Polish instead of placing it in the
South-Slavic branch.

(5) The fifth tree 75 misplaces Bulgarian in the East-Slavic branch with Russian instead of placing it in the South-
Slavic branch.
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5.1 Flattening Matrices

We write here the flattening matrices using either the edge and tree subscript of the split notation as in Sect. 3,
according to how it is more convenient: the following list makes it clear how these two notations match. The splits

for the trees above are given by

Ty :er = {£1, 62} U {€3, £y, U5}, e = {£1, €2, €5} U {€3, £4}
Ty cer = {£1, L2} U {€3, £y, s}, e = {£1, €2, €4} U (€3, €5}
T3 :ep = {£1, L2} U (€3, L4, U5}, e2 = {L1, €2, €3} U {£4, L5}
Ty :ep = {£2, L3} U (€, L4, U5}, e2 = {L1, €2, €3} U {£4, L5}
Ts :ep = {£1, L3} U (€, £4, U5}, e2 = {£1, £2, €3} U {£4, L5}

The flattening matrices for these trees are given by the following
(1) For the tree T the flattening matrices are

05122 0.0 0.0122 0.0
00 00 00 00
00 00 00 00
0.01220.0 0.0 0.0610
Flate, 7 = Flatie, myoies.ta.65) = | 9 0854 00 0.0 0.0
00 00 00 00122
00 00 00 00
00 00 00 03049

05122 0.0 0.0 0.0 001220000 0.0
0.0 001220000 00 00 0.0 00610

Flate, 7 = Flatie, 6,050,000 = 1 0 0854 0.0 0.0 0.0 0.0 0.0 0.0 0.0122

00 00 0000 00 0000 03049

(2) For the tree T; the flattening matrices are Flat,, 7, = Flat{¢, ¢,)u{¢s,¢4,¢5) @s above and

05122 0.0 00854 0.0
00 00122 00 00
00 00 00 00
00 00 00 00
Flate, 1, = Flatie, .05, = 1 90122 00 00 0.0
00 00 00 00
00 00 00 00122
0.0 00610 0.0 0.3049

(3) For the tree T3 the flattening matrices are Flat,, 7, = Flat(¢, ¢,)u{¢,¢4,¢5) as above and

051220000122 00 008540000 0.0
00 00 00 00 00 000000122
Flate, 7y = Flaie, o oests) = |90 00 00 00 00 0000 00
0012200 00 00610 0.0 0000 0.3049

(4) For the tree Ty the flattening matrices are Flat,, 7, = Flat(s, ¢, ¢3)uie,,¢5) as above and

0.5122 0.0122 0.0854 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0

Flate, 7, = Flat(e, e5)ue,,64,65) = 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0122

0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049

5.1
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(5) For the tree T5 the flattening matrices are Flat,, 7, = Flat(s, ¢, ¢3)uie,,¢5) as above and

0.5122 0.0 0.0854 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

00122 00 00 00
Flate, 75 = Flate, cjuieatatsh = 190122 00 00 0.0

0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049

5.2 Phylogenetic Invariants

When evaluating the phylogenetic invariant for the boundary probability distribution given by the combination of
the SSWL and Longobardi data we have the following result

(1) For the tree T;:
@7, (P)llee = max{ max  |$(P)|. max ¢ (P)]} = 0.19043 x 1077

¢)ED€|.T1 ¢ED62.T|
D7, (Pl = Y 16(P) + D 1p(P)|=0.31794 x 1072
3) 3)
¢7eDL,1YTl ¢6De2,Tl

(2) For the tree T»:
@7, (P) e = max{ max ¢ (P)I, max ¢ (P)|} = 0.19043 x 10~

e1,Tr ¢€Deé.Tz
1o, (Pl = Y 6P+ Y. 16(P)| =036582x 1072
3 (3)
¢€Del),T2 ¢eD82.T2

(3) For the tree T3:
D7y (P)llge = max{ max [¢p(P)|, max |¢p(P)|} =0.38087 x 1073

(3) (3)
¢ED€1,T3 ¢ED92.T3
D7, (Pl =Y 16(P)+ Y 16(P)|=0.90864x 10~
3) (3)
¢€De1,r3 ¢eD92_T3

(4) For the tree Ty:
| ®7,(P)Ilgec = max{ max 6 (P)I, max l¢(P)|} = 0.38087 x 1077

9D, 1, ¢€D;, 1,
1Dz, (Pl = D 1oP)+ > 16(P)=0.13621 x 10>
(3) 3)
qbeDLmT4 ¢E'D62‘T4

(5) For the tree T5:
@75 (P)]l¢c = max{ max 6 (P)], max l$(P)|} = 0.38087 x 107

¢’ED9'|,T5 ¢ED62,T5
1Pz (Pl = Y 6P+ > [p(P)=0.17175x 1072
<D <D 1,

For this set of languages we see again, as observed in [8], that the ¢! norm is a better test than the £°° norm for the
evaluation of the phylogenetic invariants. While the £°° norm does not distinguish between the trees 73, Ty, Ts, the
¢! norm correctly singles out T as the preferred candidate.



Phylogenetics of Indo-European Language Families 843

5.3 Estimates of Euclidean Distance

The matrix Flate, ¢,10(¢5,¢4,¢5) has singular values

Y (Flatye, ¢y)uies,04,05)) = (0.5195,0.3111, 0.2023 x 1072,0.2577 x 107'7,0, 0, 0, 0).
The matrix Flate, ¢, ¢5)uies,¢5) has singular values

Y (Flatye, ¢,,05)u1e4,05)) = (0.5196, 0.3110, 0.2391 x 1072,0).

The remaining matrices have

¥ (Flat,, 7,) = (0.5194,0.3112,0.1196 x 10~!,0.2003 x 1072),

¥ (Flat,, 7,) = (0.5194,0.3112,0.1220 x 107!, 0.2004 x 1072,0, 0, 0, 0),
¥ (Flat,, 7,) = (0.5195,0.3111,0.2438 x 1072,0.1964 x 1072, 0,0, 0, 0),
¥ (Flat,, 75) = (0.5195,0.3111, 0.2834 x 1072,0.2390 x 1072,0, 0, 0, 0).

The computation of the Euclidean distances then gives
(1) For the tree T;

dist(Flat,, 7,, D2(4,8))> = 07 4 - - - ¢ = 0.4094 x 107
dist(Flat,, 7,, D2(8,4))> = 0 + 07 = 0.1470 x 1073

(2) For the tree T»

dist(Flat,, 75, D2 (4, 8))? = 67 + - - - 02 = 0.4094 x 107>
dist(Flat,, 75, D2(4,8))? = 07 4 --- 04 = 0.1527 x 1073

(3) For the tree T3

dist(Flat,, 75, D2(4,8))> = 07 4 - - - 0¢ = 0.4094 x 1073
dist(Flate, 75, D2 (4, 8))* = 07 + - - - 03 = 0.5718 x 107>

(4) For the tree Ty

dist(Flat,, 7,, D2(4,8))> = 07 4 - - -0 = 0.9803 x 1073
dist(Flat,, 7,, D2 (4, 8))* = 0 + - - - 03 = 0.5718 x 107>

(5) For the tree Ts

dist(Flat,, 75, D2(4,8))? = 02 4 -- -0 = 0.1374 x 1074
dist(Flat,, 75, D2(4,8))> = 0§ 4+ ---a¢ = 0.5718 x 107

The lower bounds on the Euclidean distance function obtained above indicate as preferred candidate the tree 73,
which is the correct linguistic tree:

Polish
Russian

Bulgarian

Serb-Croatian ~ Slovenian
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6 Phylogenetic Algebraic Varieties of the Early Indo-European Tree
We now discuss the last phylogenetic problem listed in the Introduction, namely the early branchings of the Indo-
European tree involving the set of languages Hittite, Tocharian, Albanian, Armenian, and Greek. We analyze here

the difference between the trees of [6] and [43], when seen from the point of view of Phylogenetic Algebraic
Geometry.

6.1 Trees and Phylogenetic Invariants

Once we restrict our attention to the five languages listed above, the trees of [6] and [43] that we wish to compare
result in the smaller five-leaf trees

Hittite

Tocharian Armenian Albanian  Greek

for the case computed by [6], and the tree

Hittite

Tocharian

Albanian
Armenian  Greek

for the case computed by [43].
Forgetting momentarily the position of the root vertex (which is in both trees adjacent to the Anatolian branch),
we are comparing two trees of the form

g% & £

L
f] 52 54 55 4 52 55
where we have ¢; = Tocharian, £, = Armenian, £3 = Hittite, £4 = Albanian, £5 = Greek. The splits correspond
to
Ty : ey = {£1, €2} U {€3, £4, U5} ex = (€1, £2, £3} U {{y, L5}
T ep = {£1, 83} ULy, €2, Ls} ex = {€1, €3, L4} U {2, L5},

In order to compare the two possibilities then, we evaluate the phylogenetic invariants on the boundary distribution
obtained from the data of SSWL variables for the five languages, distributed in the leaves of the tree in one of the
two ways described above, and we compute estimates of the Euclidean distance function.

6.2 Syntactic Structures and Boundary Distributions

One of the main problems with the SSWL database is that the binary variables of syntactic structures are very
non-uniformly mapped across languages. In order to use the data for phylogenetic reconstruction, it is necessary
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Fig. 2 The SSWL syntactic P [Tocharian A, Hittite, Albanian, Armenian, A.Greek]
parameters P that are 01 (11.1,1.1]
completely mapped for the 06 [1,1,0,1,1]
set languages Tocharian A, E H?HH
Hittite,.Albania.n, 13 [1:1:0:1:1]
Armenian, Ancient Greek, 15 [1,1,1,1,1]
and their values on each 17 [1,1,1,1,1]
language 19 P,I,O,l,l}
21 1,1,0,1,1
A01 [1,1,1,0,1]
A02 [1,1,1,0,1]
Neg 01 [1,1,1,1,1]
Neg 03 [0,0,0,1,0]
Neg 04 0,0,0,0,0]
Neg 07 [0,0,0,0,0]
Neg 08 0,0,0,0,0]
Neg 09 [0,0,0,0,0]
Neg 10 0,0,0,0,0]
Neg 12 0,0,0,0,0]
Neg 13 [0,0,0,0,0]
Neg 14 0,0,0,0,0]
Order N3 01 [1,1,1,1,1]

to restrict to only those variables that are completely mapped for all the languages considered. In our present case,
some of the languages are very poorly mapped in the SSWL database: Tocharian A is only 19% mapped, Tocharian
B 18%, Hittite is 32% mapped, Albanian 69%, Armenian 89% and (Ancient) Greek is also 89% mapped. Moreover,
not all the 29 binary syntactic variables that are mapped for Tocharian A are also among the variables mapped for
Hittite. This reduces the list of syntactic variables that are completely mapped for all five of these languages to a
total of only 22 variables. The variables (listed with the name used in the SSWL database) and the resulting values
are given in the table in Fig. 2. Based on these data, the boundary distribution for the two cases considered above
is given by the following. In the first case the frequencies are given by

pooooo = 4/11, priin = 3/11, pinor = 2/11,
piioir = 1/22, pro111 = 1/11, poiooo = 1/22

is = 0 for all the remaining binary vectors in {0, 1}. In the second case we have frequencies

,,,,,

Ppooooo = 4/11, priinn = 3/11, prion = 2/11,
pioit = 1/22, priio1r = 1/11, poooro = 1/22

with p;, .. ;s = 0 for all the remaining binary vectors in {0, 1.

,,,,,

For the first case, the flattening matrices evaluated at the boundary distribution P give the matrices

£0000000
1
50000000
0000000
1 2 3
00050203

Flate, 1, =



846 K. Shu et al.

=N el -]
(= el -]

Flatez,rl =

oo oo N~ o s
o

v oo oo o o o
)

© oo oo
o =l

0
For the second case, on the other hand, we obtain the matrices
4 1
1770 00000
000 000O00O0

1
000 00005

2 1 3
000 505750+

—
|
=]
—

Flat,, 1, =

FlateZ,Tz =

SO O O o o o o
oSO o O o O

S © o o o o o -+
o o o o o o o N~

o = 13—

=

—|
—|
—
—|

6.3 Phylogenetic Invariants

The evaluation of the phylogenetic invariants on these two boundary distributions by evaluating the 3 x 3 minors
of the matrices above gives

(1) For the Gray-Atkins tree 77:

8
[P, (P)llee = max lp(P)| = —==
3 @) 1331
q}eDel’TlUDezyTl
61
IonPlla = 3o P =5
©) 3
qbeDel’TlUDez'Tl
(2) For the Ringe—Warnow—Taylor tree 7»:
8
[P, (P)llee = max lp(P)| = —%+
©) © 1331
qjeDel TzUDesz
18
1®7, (Pl > leP)= o

(3) (3)
¢6Del T UDez.Tz
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On the basis of this naive test of evaluation of the phylogenetic invariants, the £°° norm does not distinguish the
two trees while the £! norm prefers the Ringe—Warnow—Taylor tree T>. We show below that this preference is also
confirmed by an estimation of the Euclidean distance.

6.4 Estimate of the Euclidean Distance Function

In this case, in order to obtain a lower bound estimate of the Euclidean distance for the two trees 77 and T, we
compute the distances

Dy, = dist(Flate, 7, (P), D2(4,8)), Dy = dist(Flate, 7, (P), D2(8, 4))
with the Euclidean distance estimate of 77 given by L1 = max{D; 1, D12} and
Dy | = dist(Flat,, 1, (P), D2(4,8)), D> = dist(Flat,, 7,(P), D2(8,4))

with the Euclidean distance estimate of 7> given by Ly = max{Dy 1, D22}
The computation of the singular values ¥ = (o7, ..., 04) of the flattening matrices Flat, 7, (P) gives

¥ (Flat,, 7, (P)) = diag(0.3664662612, 0.3394847389, 0.5018672314 x 107", 0)
¥ (Flate, 1, (P)) = diag(0.3664662612, 0.3388120907, 0.5454321492 x 10~", 0)
¥ (Flat,, 7,(P)) = diag(0.3664662613, 0.3421098124, 0.2700872640 x 10~ 0)
¥ (Flate, 1, (P)) = diag(0.3664662613, 0.3394847388, 0.5018672301 x 10~", 0).

Since the last singular value is always zero, the Euclidean distances are given by the o3 value

Dy = 0.5018672314 x 107!, Dy, = 0.5454321492 x 107!,
D1 = 0.2700872640 x 10~', D, = 0.5018672301 x 10~

This gives L1 = 0.5454321492 x 10~ and L, = 0.5018672301 x 10~ 1.

Thus, the Euclidean distance estimate also favors the Ringe—Warnow—Taylor tree 7> over the Gray-Atkins tree
T:. The fact that there are very few parameters that are mapped (at present time) for all of these languages in the
SSWL database, and that these parameters largely agree on this set of languages, however make this analysis not
fully reliable. A more extensive set of syntactic data for these languages would be needed to confirm whether the
phylogenetic reconstruction based on syntactic data and the algebro-geometric method is reliable.

7 Towards Larger Phylogenetic Trees: Grafting

As we have seen in the previous sections, Phylogenetic Algebraic Geometry is a procedure that associates to a
given language family £ = {{1, ..., £,} an algebraic variety Y = Y (£, P) constructed on the basis of the syntactic
variables (listed in the distribution P).

A possible geometric viewpoint on comparative historical linguistics can then be developed, by considering
the geometry of the varieties Y (L, P) for different language families. This contains more information than the
topology of the tree by itself, in the sense that one can, for example, look more specifically for the position of
the point P on the variety. The point P contains precise information on how the binary syntactic variables change
across the languages in the family. For example, in the case of the six Germanic languages in the set S1(G), we see
from our table of occurrences that only very few possibilities for the binary vector (i, ..., ig) occur for these six
languages. We also see that, apart from the cases where the value of a syntactic variable agrees in all six languages
(40 occurrences where the feature is not expressed, and 22 where it is), we find that it is more likely for Icelandic
to have a feature that differs from the other languages in the group (4 occurrences of (0, 0, 0, 0, 1, 0) of lacking
a features the others have and 3 occurrences of (1, 1, 1, 1, 0, 1) for having a feature that the others lack). Thus,
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the location of the point P on the variety contains information that is related to the spreading of syntactic features
across the language family considered. This geometric way of thinking may be compared with the coding theory
approach of [30,46] to measuring the spread of syntactic features across a language family.

As we have seen in the example discussed above of a small set of Germanic languages, as well as in the examples
with Romance and Slavic languages, the use of SSWL data is suitable for phylogenetic reconstruction, provided
only the subset of the completely mapped syntactic variables (for the given set of languages) is used and the
candidate phylogenetic trees are selected through the computation of phylogenetic invariants, and their evaluation
at the boundary distribution determined by the syntactic variables.

This method works very well for small trees and for a set of languages that is well mapped in the available
databases (with enough binary syntactic variables that are mapped for all the languages in the given set). However,
one then needs a way to combine phylogenetic trees of smaller subfamilies into those of larger families.

We give a very brief sketch of how this procedure can be articulated in terms of Phylogenetic Algebraic Geometry,
and we refer the readers to §5-8 of [1] for more details. Although we do not need to use this method directly in
the present paper, we mention this for completeness, since it is a natural question how to proceed towards larger
trees. Given two binary trees 7’ and T”, respectively with n and m leaves, the grafting T = T’ ¢ T” at a leaf £
is the binary tree obtained by gluing together a leaf of 7’ with marking ¢ to a leaf of T” with the same marking.
The resulting tree T has n + m — 2 leaves. It is shown in [1] how the phylogenetic invariants of 7" depend on the
invariants of 7’ and T”. Consider the maps ®7+ and ®7~, defined as in (2.2) using (2.1), with values in C?" and
C?", respectively. We identify C2" = " '® C?, where the last binary variable corresponds to the leaf £. We then
identify the affine space ' @C? ~ Hom((Cz'Hv, C?) with the space of matrices M,u-1,,(C), and similarly
with C2" ~ M, om-1(C). One then defines &7 = P x Opr as the matrix product of the elements in the range
of @7/, seen as matrices in M,u-1,,(C) with the elements in the range of &7, seen as matrices in M,, ,m-1(C).
This results in a matrix in Myn-1,.om-1(C)), which gives a map W7 with values in C"*”"~2, The domain variables
of Wr are obtained as follows. For those edges of T not involved in the grafting operation, we define the 2 x 2
matrices M¢ to be the same as those originally associated to the edges of T’ or T”, respectively. For the edge of
T’ and the edge of T” that are glued together in the grafting, we replace the respective matrices M ¢ and M¢" by
their product M¢ = M M Dually, as in (2.3), this determines the map W7 of polynomial rings, whose kernel is
the phylogenetic ideal of T'. The closure in C**~2 of the image of W7 is the phylogenetic algebraic variety of the
graftedtree T =T’ %, T".

Suppose we are interested in the phylogenetic tree of a language family £, for which we assume that we already
know (from other linguistic input) a subdivision into several subfamilies £ = £; U - - - U Ly. Suppose also that for
the language families taken into consideration there are sufficient data available about the ancient languages. (This
requirement will limit the applicability of the algorithm discussed here to families like the Indo-European, where
significant amount of data about ancient languages is available.) We can then follow the following procedure to
graft phylogenetic trees of the subfamilies £ into a larger phylogenetic tree for the family L. For the procedure
described here we need to assume that one knows a priori (via historical linguistic information) that the members
of the subfamilies £; should remain together in a clade of the grafted tree.

(1) For each subfamily £y = {¢x. 1, ..., £k n,}, consider the list of SSWL data that are completely mapped for all
the languages ¢ ; in the subfamily L.

(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic tree 7} is constructed
based on the method illustrated above in the example of the Germanic languages.

(3) Use the procedure discussed in Sect. 3.5 above to identify the best location of the root vertex for each tree Ty,
and regard each tree T} as a tree with ny + 1 leaves, including one leaf attached to the root vertex.

(4) Let{Aq, ..., Ay} be the ancient languages located at the root vertex of each tree 77, ..., Ty. Consider the list
of SSWL parameters that are completely mapped for all the ancient languages Ax.

(5) On the basis of that set of binary syntactic variables, select preferred candidate phylogenetic tree 7 with N
leaves, by evaluating the phylogenetic invariants of these trees on the boundary distribution given by this set of
binary syntactic variables.
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(6) Graft the best candidate tree T to the trees 7 by gluing the leaf A of T to the root of Tj.

(7) The phylogenetic invariants of the resulting grafted tree 7/ = T *1]¢V=1 Ty can be computed with the grafting
procedure of [1] described above and evaluation at the boundary distribution given by the leaves {{; ; | j =
I,...,ng, k=1,..., N}of T’ (coming from the smaller set of syntactic variables that are completely mapped
for all the € ;) can confirm the selected tree topology 7.

The advantage of this procedure is that it is going to work even in the absence of a sufficient number of binary
syntactic variables in the SSWL database that are completely mapped for all of the languages ¢ ; at the same
time, provided there are enough for each subset £y and for the A. In cases where the number of variables that are
completely mapped for all the £ ; is significantly smaller compared to those that are mapped within each group, the
last test on the tree T’ becomes less significant. This method also has the advantage that one works with the smaller
subtrees Ty and T, rather than with the bigger tree given by their grafting, so that the computations of phylogenetic
invariants is more tractable.

In the case of language families where one does not have syntactic data of ancient languages available, one
can still adapt the procedure described above, provided there is a reasonable number of SSWL variables that are
completely mapped for all the languages £; ; in £. One can proceed as follows.

(1) For each subfamily £y = {1, ..., Lk.n,} consider the list of data that are completely mapped for all the
languages £y ; in the subfamily L.

(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic tree T} is constructed
based on the method illustrated above in the example of the Germanic languages.

(3) Consider all possible choices of a root vertex for each Tj (there are as many choices as the number of internal
edges of Ty).

(4) Consider all the possible candidate tree topologies T with N leaves.

(5) For each choice of a root vertex in each T} graft a choice of T to the give roots of the trees 7} to obtain a
candidate tree 7' = T %'_, Tj.

(6) Compute the phylogenetic invariants of 7/ = T *,](VZI Tk using the procedure of [1] recalled above.

(7) Evaluate the phylogenetic invariants of each candidate 7’ on the boundary distribution determined by the binary
syntactic variables that are completely mapped for all the languages {¢;,;|j =1,...,n, k=1,..., N}, to
select the best candidate among the 7”.

There are serious computational limitations to this procedure, however, because of how fast the number of trees
on N leaves grows. While the grafting procedure discussed above makes it possible to work with smaller trees
and then consider the problem of grafting them into a larger tree, this would still only work computationally for
small size trees, and cannot be expected to handle, for example, the entire set of languages recorded in the SSWL
database.

8 Modifying the Setting to Account for Syntactic Relations

In a followup to this paper, based on the ongoing analysis of [34], we will discuss how to adjust these phylogenetic
models to incorporate deviations from the assumption that the syntactic parameters are i.i.d. random variables
evolving according to the same Markov model on a tree.

Indeed, we know from various data analysis of the syntactic variables, including topological data analysis
[41,42], methods of coding theory [46], and recoverability in Kanerva networks [38], that the syntactic parameters
are certainly noti.i.d. variables. Thus, it is likely that some discrepancies we observed in this paper, in the application
of the Phylogenetic Algebraic Geometry method (for example in the case of the Romance languages or the early
Indo-European languages where the tree selected by the Euclidean distance is not the same as the tree favored by
the phylogenetic invariants) may be an effect of the use of this overly simplified assumption.

The approach we plan to follow to at least partially correct for this problem, is to modify the boundary distribution
on the tree by attaching to the different syntactic parameters a weight that comes from some measure of its dependence
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from other parameters, in such a way that parameters that are more likely to be dependent variables according to
one of these tests will weight less in the boundary distribution than parameters that are more likely to be truly
statistically independent variables.

The main idea on how to achieve this goal is to modify the boundary distribution P by counting occurrences
ni,.....i, of parameter values (i1, ..., i,) at the n leaves of the tree by introducing weights for different parameters
that measure their degree of independence. An example of such a weight would be the degree of recoverability in
a Kanerva network, as in [38], or a computation of clustering coefficients as in [34].

This means that, instead of assigning to a given binary vector (i, ..., i,) the frequency

I’l,‘l
Piy,....i, =

seenln

N

with N total number of parameters and n;, . ;, number of parameters that have values (i, . . ., i) on the n languages
at the leaves of the tree, we replace this by a new distribution

Phrin =270 ) wm)

r=1
where for a syntactic parameter 7 the weight w(;r) measures the degree of independence of r, for example with
w(mr) close to 1 the more 7 can be regarded as an independent variable and close to O the more 7 is recoverable
from the other variables, with Z a normalization factor so that p; ..., 1s again a probability distribution.

With this new boundary distribution P’ we will recompute the Euclidean distances of the flattening matrices
Flat, 7 (P’) from the varieties D, (a, b) by computing the singular values (o7, . . ., 0,) of Flat, 7 (P’) and computing
the square-distance as 032 4.+ oaz, and compare the new distances obtained in this way with those of the original
boundary distribution P.

Results on this approach will be presented in forthcoming work.
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Appendix A: SSWL Syntactic Variables of the Set S;(G) of Germanic Languages

We list here the 90 binary syntactic variables of the SSWL database that are completely mapped for the six Germanic
languages ¢; = Dutch, ¢ = German, {3 =English, £4 = Faroese, {5 =Icelandic, ¢ = Swedish. The column
on the left in the tables lists the SSWL parameters P as labeled in the database.
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P [Zl 7827e37e4,85’ eG]

01 [1,1,1,1,1,1]

02 [0,0,0,0,0,0]

03 (1,1,1,1,1,1]

04 [1,1,0,0,0,0]

05 (1,1,1,1,1,1]

06 [1,1,0,0,0,0]

07 0,0,0,0,0,0] P [01,02,3,24,%5, Zo)
08 [0,0,0,0,0,0] N2 01 1,1,1,1,1,1]
09 0,0,0,0,0,0] N2 02 [0,0,0,1,0,0]
10 [0,0,0,0,0,0] N2 03 (1,1,1,1,0,1]
11 (1,1,1,1,1,1] N2 04 0,0,0,0,1,0]
12 [1,0,0,0,0,0] N2 05 [1,1,1,1,1,1]
13 (1,1,1,1,1,1] N2 06 (1,1,1,1,1,1]
14 0,0,1,1,1,0] N2 07 [0,0,0,0,0,0]
15 (1,1,1,1,1,1] N2 08 [0,0,0,0,0,0]
16 [0,0,0,0,1,0] N2 09 [0,0,0,0,0,0]
17 (1,1,1,1,1,1] N2 10 [0,0,0,0,1,0]
18 0,0,0,0,1,0] N2 11 [0,0,0,0,1,1]
19 (1,1,1,1,0,1] Neg 01 | [1,1,1,0,0,1]
20 [1,1,1,1,1,1] Neg 02| [1,1,1,1,1,1]
21 (1,1,1,1,0,1] Neg 03|  [0,0,0,0,0,0]
22 [0,0,0,1,1,0] Neg 04 |  [0,0,1,0,0,0]
A01 (1,1,0,1,1,1] Neg 05 |  [0,0,0,0,0,0]
A02 [0,0,0,1,1,1] Neg 06 |  [0,0,0,0,0,0]
A03 (1,1,1,1,1,1] Neg 07 |  [0,0,0,0,0,0]
A04 (1,1,1,0,0,1] Neg 08 |  [0,0,0,0,0,0]
Aux Sel 01 || [1,1,0,1,1,0] Neg 09 |  [0,0,0,0,0,0]
Co1 (1,1,1,1,1,1] Neg 10 |  [0,0,0,0,0,0]
C02 [0,0,0,0,0,0] Neg 11 ||  [0,0,0,0,0,0]
Co3 [1,1,1,1,1,1] Neg 12|  [0,0,0,0,0,0]
C04 [0,0,0,0,0,0] Neg 13 ||  [0,1,0,0,0,0]
EE (1,1,1,1,1,0] Neg 14 | [0,0,0,0,0,0]

P [€1,02,03,84,05, {s]
Order N3 01 [1,1,1,1,1,1]
Order N3 02 [0,0,1,0,0,0]
Order N3 03 || [0,0,0,0,0,0]
Order N3 04 |  [0,0,0,0,0,0]
Order N3 05 0,0,0,0,0,0
Order N3 06 ||  [0,0,0,0,0,0
Order N3 07 | [1,1,1,1,1,1]
Order N3 09 ||  [0,0,0,0,0,0
Order N3 10 0,0,0,0,0,0
Order N3 11 |  [0,0,0,0,0,0]
Order N3 12 |  [0,0,0,0,0,0]
Qo1 0,0,0,0,0,0
Q02 0,0,0,0,0,0
Q03 (0,0,0,0,0,0]
Q05 1,1,0,1,1,1
Qo6 1,1,1,1,1,1
Qo7 0,0,0,0,0,0]
Qo8 (1,1,1,1,1,1]
Q09 0,0,0,0,0,0]
Q10 (0,0,0,0,0,0]
Q11 0,0,0,0,0,0]
Q12 (0,0,0,0,0,0]
Q13 0,0,0,0,0,0]
Q14 0,0,0,0,0,0]
Q15 0,0,0,0,0,0]
Q16NEGA (1,1,1,1,1,1]
QI7NEGA 0,0,0,1,0,0]
QISNEGA 0,0,0,0,0,0]
Q20ANegQ (1,1,1,1,1,1]
Q21ANegQ 0,1,0,1,1,1]
Q22ANegQ [1,0,0,0,0,0]
V2 01 (1,1,0,1,1,1]
V2 02 (1,1,1,1,1,1]

Appendix B: SSWL Syntactic Variables of the Set S;(G) of Germanic Languages

We list here the 90 binary syntactic variables of the SSWL database that are completely mapped for the seven

Germanic languages ¢; =Norwegian, £, = Danish, £3 = Gothic, £4 =O0ld English, ¢5 =Icelandic, {¢

English, £7 = German. The column on the left in the tables lists the SSWL parameters P as labeled in the database.
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El 7527£37€41‘€5 766767]

22

A01
A02
A03
A04

co1
C02
Co3
C04

Aux Sel 01

1,1,1,1,1.1.7);
[1351 01,1 10
[0,0,1,1,0,0,1],
[1917171717171]7
[0,0,1,1,0,0,1],
[070717070707017
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[070,070,07070]7
(1,1,1,1,1,1,1],
[1,1,0,1,0,0,0],
21511121
[0,0,1,1,1,1,0],
[1,1,1,1,1,1,1],
[0,0,1,1,1,0,0],
(1,1,1,1,1,1,1],
[0,0,1,0,1,0,0],
[1,1,0,1,0,1,1],
(1,1,1,1,1,1,1],
(1,1,0,1,0,1,1],
[1,0,1,1,1,0,0],
[151,171,17071]7
[13:0.1.1.0.0],
[171’1717171’1]7
(1,1,1,1,0,1,1],
[1,1,0,1,1,0,1],
(1,1,1,1,1,1,1],
[0,0,0,0,0,0,0],
[1,1,1,1,1,1,1],
[0,0,0,0,0,0,0],

p 1222500 s o ]
N2 01 1,111,111,
N202 || [0,0,1,0,0,0,0],
N203 | [1,1,1,1,0,1,1],
N2 05 [1,1,1,1,1,1,1],
N206 | [1,1,1,1,1,1,1],
N208 | [0,0,0,0,0,0,0],
N209 | [0,0,0,0,0,0,0],
N210 || [0,0,0,0,1,0,0],
N2 11 [1,1,0,0,1,0,0],
Neg 01| [1,1,1,1,0,1,1],
Neg 02 | [1,1,0,0,1,1,1],
Neg 03 || [0,0,0,0,0,0,0],
Neg 04 | [0,0,0,0,0,1,0],
Neg 05 [0,0,0,0,0,0,0],
Neg 06 || [0,0,0,0,0,0,0],
Neg 07 || [0,0,0,0,0,0,0],
Neg 08 || [0,0,0,0,0,0,0],
Neg 09 || [0,0,0,0,0,0,0],
Neg 10| [0,0,0,0,0,0,0],
Neg 11| [0,0,0,1,0,0,0],
Neg 12| [0,0,0,0,0,0,0],
Neg 13| [0,0,0,0,0,0,1],
Neg 14 | [0,0,0,0,0,0,0]

P 01,05,03,04,05,06,07)
Order N3 04 || [0,0,1,1,0,0,0],
Order N3 07 [1,1,1,1,1,1,1],
Order N3 08 || [0,0,0,1,0,0,0],
Q01 [0,0,0,0,0,0,0],
Q02 [0,0,0,0,0,0,0],
Q03 [0,0,1,0,0,0,0],
Q06 (1,1,0,1,1,1,1],
Qo7 [0,0,0,0,0,0,0],
Q08 (1,1,1,1,1,1,1],
Q10 [0,0,0,0,0,0,0],
Q11 [0,0,0,0,0,0,0]7
Q12 [0,0,0,0,0,0,0]7
Q13 [0,0,0,0,0,0,0]
Q15 (0,0,0,0,0,0,0],
Q17TNEGA (0,0,0,0,0,0,0],
Q18NEGA [0,0,0,0,0,0,0],

Appendix C: Flattening Matrices F5 and Fg

The flattening matrices of (3.1) (written in transpose form for convenience) for the 75 and T trees, in the case of
the Longobardi data are given by the following:
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The same flattening matrices of (3.1) for the SSWL data are given by the following.

o c ook lRccocococococ—|fcooco—lcococococ oo oo o
oo oo o oc oc oo oo cococ o000 o000 oo onX
o ocococococoocococococooc o |fcococ oo oo oo~ o o—8
Rococ oo oo ocococoococoRococoocoococoococoocococ oo o~
Il
‘WF(O
co o oo o c oo c oo coco—~Rooc oo o o~ oo
o o—-Bocoocococoococofococoocoocoococoococococoo0co o o—fte oonX
=Nl o eNoNeoNoNoNoNoNeNoNoNoNeNeNeo oo No - ReNoNoR - fo ol ol o)
o comnooc oo coc o oo oo oc oo o000 oo o

Il
=

59

Appendix D: List of LanGeLin Syntactic Parameters
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FGP Gramm. person GSI Grammaticalised inalienability
FGM Gramm. Case ALP Alienable possession

FPC Gramm. perception GST Grammaticalised Genitive

FGT Gramm. temporality GEI Genitive inversion

FGN Gramm. number GNR Non-referential head marking

GCO Gramm. collective number STC Structured cardinals

PLS Plurality spreading GPC Gender polarity cardinals

FND Number in D PMN Personal marking on numerals

FSN Feature spread on N CQU Cardinal quantifiers

FNN Number in N PCA Number spread through cardinal adjectives
SGE Semantic gender PSC Number spread from cardinal quantifiers
FGG Gramm. gender RHM Head-markong on Rel

CGB Unbounded sg N FRC Verbal relative clauses

DGR Gramm. amount NRC Nominalized relative clause

DGP Gramm. text anaphora NOR NP over verbal rel clauses/adpos gen
CGR Strong amount AER Relative extrap.

NSD Strong person ARR Free reduced rel

FVP Variable person DOR def on relatives

DGD Gramm. distality NOD NP over D

DPQ Free null partitive Q NOP NP over non-genitive arguments
DCN Article-checking N PNP P over complement

DNN Null-N-licensing art NPP N-raising with obl. pied-piping

DIN D-controlled infl. on N NGO N over GenO

FGC Gramm. classifier NOA N over As

DBC Strong classifier NM2 N over M2 As

XCN Conjugated nouns NMI1 N over M1 As

GSC c-selection EAF Fronted high As

NOE N over ext. arg. NON N over numerals

HMP NP-heading modifier FPO Feature spread to genitive postpositions
AST Structured APs ACM Class MOD

FFS Feature spread to struct. APs DOA def on all +N

ADI D-controlled infl. on A NEX Gramm. expletive article

DMP def matching pron. poss. NCL Clitic poss.

DMG def matching genitives PDC Article-checking poss.

GCN Poss?-checking N ACL Enclitic poss. on As

GEN Gen-feature spread to Poss? APO Adjectival poss.

GAL Dependent Case in NP WAP Wackernagel adjectival poss.

GUN Uniform Gen AGE Adjectival Gen

EZ1 Generalized linker OPK Obligatory possessive with kinship noun
EZ2 Non-clausal linker TSP Split deictic demonstratives

EZ3 Non-genitive linker TSD Split demonstratives

GAD Adpositional Gen TAD Adjectival demonstratives

GFO GenO TDC Article-checking demonstratives
PGO Partial GenO TLC Loc-checking demonstratives

GFS GenS TNL NP over Loc

GIT Genitive-licensing iterator
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