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Abstract Using Phylogenetic Algebraic Geometry, we analyze computationally the phylogenetic tree of subfami-
lies of the Indo-European language family, using data of syntactic structures. The twomain sources of syntactic data
are the SSWL database and Longobardi’s recent data of syntactic parameters. We compute phylogenetic invariants
and estimates of the Euclidean distance functions for two sets of Germanic languages, a set of Romance languages,
a set of Slavic languages and a set of early Indo-European languages, and we compare the results with what is
known through historical linguistics.

Keywords Phylogenetic algebraic geometry · Syntactic parameters · Historical linguistics · Phylogenetic trees ·
Indo-European languages

Mathematics Subject Classification 91F20 · 92D15 · 05C85 · 60J10

1 Introduction

The use of commutative algebra and algebraic geometry in the study of phylogenetic trees and networks was
developed in recent years in the context of biological applications, see [35,36]. We argue in this paper that these
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methods have advantages over the other methods of phylogenetic reconstruction, such as Hamming distance and
neighbor-joining, when applied to the computational study of phylogenetic trees of world languages based on
syntactic data. Computational studies of phylogenetics in linguistics have been carried out recently in [4,52], using
lexical and morphological data and in [27,28] using syntactic data.

The main advantages of the algebro-geometric approach presented here can be summarized as follows.

(1) The use of Phylogenetic Algebraic Geometry to select a best candidate tree avoids some of the well known
possible problems (see Chapter 5 of [51]) that can occur in phylogenetic reconstructions based on Hamming
distance and neighbor-joining methods. While such methods were used successfully in phylogenetic inference
using syntactic data in [27] and [28], we argue that the geometric methods provide additional useful information,
as explained below.

(2) Phylogenetic Algebraic Geometry associates an actual geometric object to a best candidate phylogenetic tree
T , together with a boundary probability distribution at the leaves P = (pi1...in ) derived from the data. This
geometric object consists of a pair (VT , xT,P ) of an algebraic variety VT , which depends on the tree topology, and
a point xT,P ∈ VT on it, which depends on both the tree T and the boundary distribution P . Unlike what happens
with other phylogenetic methods that only provide a best candidate tree T , the geometry (VT , xT,P ) contains
more information: the position of the point P on the variety VT encodes information about the distribution of the
binary syntactic features across the language family. For example, one can have different language families with
topologically equivalent phylogenetic trees. In this case one obtains two different points on the same variety
VT whose relative positions encode in a quantitative geometric way the difference between how the evolution
of syntactic feature happened historically in the two families.

(3) The point xT,P is constrained to lie on the locus of real points VT (R) of the complex algebraic variety VT ,
and in particular on the sublocus VT (R+) of nonnegative real coordinates, since it is defined by a probability
distribution. In several cases, especially when analyzing sufficiently small trees, VT turns out to be a classical
and well studied algebraic variety, as in the case of the Secant varieties of Segre embeddings of products of
projective spaces that we encounter in this paper. In such cases, there are usually well understood and interesting
geometric subvarieties of VT and one can gain further insight by understanding when the point xT,P lies on
some of these subvarieties, in addition to being contained in the real locus. For example, this may suggest
compatibility of the boundary distribution P with respect to certain splitting of the tree into subfamilies and
subtrees, which may provide additional information on the underlying historical linguistics.

(4) The algebro-geometric method is compatible with admixtures and with phylogenetic networks that are not
necessarily trees. The algebraic varieties involved in this setting are different from the phylogenetic varieties
of trees VT discussed here, but they are analyzed with a similar method. Results on topological analysis of
data of syntactic structures (see [41]) indicate the presence of nontrivial cycles (first homology generators)
in certain language families. This can be seen as supporting evidence for the use of networks that are not
trees for phylogenetic analysis. The algebro-geometric formalism necessary to the discussion of more general
phylogenetic networks is discussed in [37] and [9].

1.1 Binary Variables and Syntactic Structure

The idea that the possible syntactic structure of human languages is governed by certain basic binary variables, or
syntactic parameters, is one of the fundamental ideas underlying the Principles and Parameters model in linguistics,
originally introduced by Chomsky [10,12]. The notion of syntactic parameter underwent successive theoretical
reformulation in the context of more recent minimalist models [11], but the main underlying conceptual idea
remains unchanged. A recent detailed overview of the state of ongoing research in comparative generative grammar
on the topic of syntactic parameters can be found in the collection of papers in the volume [22]. An introduction to
syntactic parameters aimed at a general audience with no prior linguistics background is given in [3].

Interesting questions regarding syntactic parameters include identifying a minimal set of independent variables
completely determining a language’s syntax and obtaining an explicit and complete description of the dependencies
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that exist among the known parameters. A rough analogy is that the set of syntactic parameters forms a kind of “basis
set” spanning the space of possible human languages (alternatively, grammars, since we are attempting to describe
language structure). Each choice of values for the parameters in this basis set fixes a distinct possible (presumably
learnable) human language. Typically, it is assumed that the parameter values can be learned from data available
from positive example sentences presented to a language learner (i.e., a child). These binary variables describing
syntactic structures can roughly be thought of as yes/no answers to questions about whether certain constructions
are possible in a given language or not. For a more precise description of parameters as instructions for triggering
syntactic operations see [44].

From a more precise mathematical perspective one can view the question of identifying dependencies between
syntactic parameters as trying to identify the correct “manifold of syntax” inside a large ambient space of binary
variables, in the same sense as constraints on a physical system determine the manifold structure of its configuration
space. Any existing relation between syntactic parameters determines a locus inside the space of all possible binary
values of these syntactic variables where the syntactic data of the actual human languages are constrained to lie.
Since identifying relations between syntactic parameters is an open problem, the resulting geometry cut out by these
relations is presently unknown. While the problem of the “geometry of syntax” in itself is not the main focus of the
present paper, the issue of dependencies between syntactic variables is relevant, because the phylogenetic models
we will be discussing are typically based on assuming that variables evolving according to a Markov process on a
tree behave like independent identically distributed (i.i.d.) random variables. While this assumption is good enough
to draw some reasonable linguistic conclusions, in a more refined analysis one would like to identify the extent
to which relations between syntactic parameters may cause deviations from this hypothesis. This problem will be
discussed elsewhere [17].

There are two existing databases of syntactic structures of world languages that we use in this paper: the SSWL
database [49] and the data of syntactic parameters collected by Giuseppe Longobardi and the LanGeLin collabora-
tion. The binary variables recorded in the SSWL database should not be regarded, from the linguistics perspective as
genuine syntactic parameters, although they still provide a very useful collection of binary variables describing dif-
ferent features of syntactic structures of world languages. The variables recorded in the SSWL database include a set
of 22 binary variables describingword order properties, 01–Subject Verb,. . ., 22–Noun Pronomial Possessor, a set of
4 binary variables A01–A04 describing relations of adjectives to nouns and degree words, a variable AuxSel01 about
the selection of auxiliary verbs, variables C01–C04 still related to word order properties on complementarizer and
clause and adverbial subordinator and clause, N201–N211 variables on properties of numerals, Neg01–Neg14 vari-
ables on negation, OrderN301–OrderN312 on word order properties involving demostratives, adjectives, nouns,
and numerals, Q01–Q15 regarding the structure of questions, Q16Nega–Q18Nega and Q19NegQ–Q22NegQ on
answers to negative questions, V201-V202 on declarative and interrogative Verb-Second, w01a–w01c indefinite
mass nouns in object position, w02a–w02c definite mass nouns in object position, w03a–w03d indefinite singular
count nouns in object position, w04a–w04c definite singular count nouns in object position, w05a–w05c indefinite
plural count nouns in object position, w06a–w06c definite plural count nouns in object position, w07a–w07d nouns
with (intrinsically) unique referents in object position, w08a–w08d proper names in object position, w09a–w09b
order of article and proper names in object position, w10a–w10c proper names modified by an adjective in object
position, w11a–w11b order of proper names and adjectives in object position, w12a–w12f order of definite articles
and nouns in object position, w20a–w20e singular count nouns in vocative phrases, w21a–w21e proper nouns in
vocative phrases, w22a–w22e plural nouns in vocative phrases. A detailed description of each of these binary vari-
ables can be found on the online site of the SSWL database [49]. While these are certainly not considered to be an
exhaustive list of binary variables associated to syntax, they contain a considerable amount of information on the
variability of syntactic structures across languages.

The LanGeLin data of Longobardi record a different set of syntactic features, which are independent of the
SSWL data. These variables should be regarded as genuine syntactic parameters and are based on the general
Modularized Global Parameterization approach developed by Longobardi [24,26], that considers reasonably large
sets of parameters within a single module of grammar, and their expression across a large number of languages. The
LanGeLin data presented in [24] that we use here include 91 parameters affecting the Determiner Phrases structure.
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The full list of the LanGeLin syntactic parameters used in this paper is reported in Appendix D, reproduced from
Appendix A of [21].

Unlike the SSWL data, which do not record any explicit relations between the variables, many explicit relations
between the Longobardi syntactic parameters are recorded in the LanGeLin data. A more detailed analysis of the
relations in the LanGeLin data is given in [21] and in [34]. In our analysis here we have removed those parameters
in the LanGeLin data that are explicitly dependent upon the configuration of other parameters.

1.2 Related Work

A long-standing, familiar approach to linguistic phylogenetics is grounded on the use of lexical (including phonemic)
features; see, e.g., [52] for a survey of phylogenetic methods applying such features on a carefully analyzed Indo-
European dataset. More recently, other researchers have suggested alternatives to bypass issues with lexical items,
such as the non-treelike behavior of lexical diffusion, sometimes rapid and different time scales for lexical change,
and the like. For example,Murawaki [32] used linguistic typological dependencies such asword order (OVvs.VO, in
theGreenbergian sense) or grammar type (synthetic vs. analytic), in order to build phylogenies over longer time scales
and acrosswidely different languages.Murawaki’s approach computes latent components from linguistic typological
features in the World Atlas of Languages, (WALS) and then feeds these into phylogenetic analysis. Longobardi
and colleagues have pursued a detailed linguistically-based analysis of, e.g., Noun Phrases (so-called Determiner
structure) across many different Western European languages to develop a fine-grained explicit parametric analysis
of what distinguishes each of these languages from the others, see [27] and subsequent work including the more
recent [29]. In effect, this is a “hand-tooled” version of a statistical, principal-components like approach. They have
used Jacquard distance metrics as the measure to feed into conventional distance-based phylogenetic programs.
The approach presented in the current work differs from either of these and from other more familiar phylogenetic
methods applied to linguistic datasets (such as maximum likelihood or Bayesian approaches) in that it adopts a
different approach to the structure of the phylogenetic space itself, rather than relying on conventional methods,
while retaining the non-lexical, typological information as the basis for describing the differences among languages.

1.3 Comments on the Data Sets

The two databases used in our analysis, namely the SSWL database [49] and the recent set of data published by
Longobardi and collaborators [24], are currently the only existing extensive databases of syntactic structures of
world languages. Therefore any computational analysis of syntax necessarily has to consider these data.

In the process of evaluating phylogenetic trees via the algebro-geometric method, we also perform a comparative
analysis of the two databases of syntactic variables that we use. As the extended version of the Longobardi dataset
has only recently become available [24], a comparative analysis of this dataset has not been previously considered, so
the one reported here is novel. Other methods of comparative analysis of these two databases of syntactic structures
will be discussed elsewhere. In the cases analyzed here we see specific examples (such as the second set of Germanic
languages we discuss) where Longobardi’s database appears to be more reliable for phylogenetic reconstructions
than the SSWL data, even though the latter dataset is larger.

1.4 Phylogenetics and Syntactic Data

The use of syntactic data for phylogenetic reconstruction of language families was developed in previous work of
Longobardi and collaborators, [27,28], see also [25,26]. Computational phylogenetic reconstructions of language
family trees based on lexical and morphological data were also obtained in [4,33,52]. It is well known that the use
of lexical data, in the form of Swadesh lists, is subject to issues related to synonyms, loan words, and false positives,
that may affect the measure of proximity between languages. Morphological information is much more robust, but
its encoding into binary data is not always straightforward. Syntactic data, on the other hand, are usually classified
in terms of binary variables (syntactic parameters), and provide a robust information about language structure.
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Thus, we believe that syntactic data should be especially suitable for the use of computational methods in historical
linguistics.

In [47] it was shown that, when using syntactic data of the SSWL database [49] with Hamming distances and
neighbor-joining methods to construct linguistic phylogenetic trees, several kinds of errors typically occur. These
are mostly due to a combination of two main factors:

• the fact that at present the SSWL data are very non-uniformly mapped across languages;
• errors propagated by the use of neighbor-joining algorithms based on the Hamming distance between the strings
of syntactic variables recorded in the SSWL data.

An additional source of problems is linguistic in nature, namely the existence of languages lying in historically
unrelated families that can have greater similarity than expected at the level of their syntactic structures. Another
possible source of problems is due to the structure of the SSWL database itself, where the syntactic binary variable
recorded are not what linguists would consider to be actual syntactic parameter in the sense of the Principles and
Parametersmodel [10,12], see also [44]: there are conflations of deep and surface structures thatmake certain subsets
of the syntactic variables of the SSWL data potentially problematic from the linguistic perspective. However, it was
also shown in [47] that several of these problems that occur in a naive use of computational phylogenetic methods
can be avoided by a more careful analysis. Namely, some preliminary evidence is given in [47] that, when a naive
phylogenetic reconstruction applied simultaneously to the entire SSWL database is replaced by a more careful
analysis applied to smaller groups of languages that are more uniformly mapped in the database, the phylogenetic
invariants of Phylogenetic Algebraic Geometry can identify the correct phylogenetic tree, despite the imperfect
nature of the SSWL data. The method of Phylogenetic Algebraic Geometry that we refer to here was developed in
[35,36] for applications to mathematical biology, see also a short survey in [5].

In the present paper we focus on certain subfamilies of the Indo-European language family, in particular the
Germanic languages, the Romance languages, and the Slavic languages. We apply the Phylogenetic Algebraic
Geometrymethod, by computing the phylogenetic invariants for candidate trees, and theEuclidean distance function.
We compare the results obtained by applying this method to the SSWL data and to a more recent set of data of
syntactic parameters collected by Longobardi [24], which are a largely extended version of the data previously
available in [27].

We list here the specific historical linguistics settings that we analyze in this paper.

1.5 The Germanic Family Tree

We consider the following two sets of Germanic languages:

(1) S1(G) = {Dutch, German, English, Faroese, Icelandic, Swedish}
(2) S2(G) = {Norwegian, Danish, Icelandic, German, English, Gothic, Old English}.
The first one only consists of modern languages, while in the second one we have included the data of the two
ancient languages Gothic and Old English. We analyze the first set S1(G) with the SSWL data, and we analyze
the second set first using the new Longobardi data and then using the SSWL data. In both cases we first generate
candidate trees using the software package PHYLIP [40], then using the Phylogenetic Algebraic Geometry method
we compute the phylogenetic invariants and an estimate of the Euclidean distance function for these candidate trees
and we select the best candidate.

For sufficiently small trees one can expect that other methods, including more conventional Bayesian analysis,
would be able to identify the correct candidate tree. However, we see here in specific examples that the algebro-
geometric method performs at least better than standard phylogenetic packages like PHYLIP when applied to the
same data.

Given the large number of alternative phylogenetic methods, why use PHYLIP as a baseline? There are two
main reasons. First of all, PHYLIP is selected here as an example of a well known and widely used phylogenetic
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package, hence it is an easy baseline for comparison. Moreover, we use PHYLIP to preselect a set of candidate
trees because likewise parsimony method is a standard starting point for Bayesian analysis, although maximum
likelihood inference is generally regarded as a more reliable method.

The estimates we consider here are based on the evaluation of phylogenetic invariants and on estimates of
Euclidean distance. A maximum likelihood degree, which counts the critical points of the likelihood function on
determinantal varieties, can in principle also be computed, see [23], but only in sufficiently small cases. Although
there are cases (such as Gaussian models) where the maximum likelihood degree and the Euclidean distance degree
match, there are also many examples where these solutions are different, as shown in [13].

We show that, for the set S1(G), the phylogenetic invariants suggest the correct tree among the six candidates
generated by PHYLIP, which is confirmed via the estimate of the Euclidean distance. The topology of this tree
correctly corresponds to the known historical subdivision of the Germanic languages intoWest Germanic and North
Germanic and the relative proximity of the given languageswithin these subtrees. In this sense the algebro-geometric
method applied to a baseline dataset can be confirmed, always a key step in advancing a novel phylogenetic approach
as [52] note.

For the other setS2(G)of seven languages,which are common toboth databases,we alsofind that the phylogenetic
invariants computed on a subset of the Longobardi syntactic data point to the correct best candidate tree, which is
confirmed by a lower bound estimate of the Euclidean distance. With the SSWL data the phylogenetic invariants
computed with respect to the �1 norm still identify the historically correct tree as the best candidate, but not when
computed with respect to the �∞ norm. This confirms in our setting a general observation of [8] on the better
reliability of the �1 norm in the computation of phylogenetic invariants. We see here an example where the lower
bound on the Euclidean distance correctly excludes some of the candidates, but fails to assign the smallest lower
bound to the best tree. This different behavior of the Longobardi and the SSWL data on this set of languages
presumably reflects the presence of a large number of dependencies in the SSWL variables.

In the last section of the paper we discuss a possible issue of the direct application of this algebraic phylogenetic
method to syntax, which is caused by neglecting relations between syntactic parameters and treating them, in this
model, like independent random variables. We suggest possible ways to correct for these discrepancies, which will
be analyzed in future work.We expect that such discrepancies may be resolved by a better approach taking syntactic
relations into account.

1.6 The Romance Family Tree

The case of the Romance languages is an interesting example of the limitations of these methods of phylogenetic
reconstructions. We considered as set of languages Latin, Romanian, Italian, French, Spanish, and Portugues, and
we used a combination of the SSWL and the Longobardi data, which are independent sets of data. We find that
PHYLIP produces a unique candidate tree, which is however not the one that is considered historically correct.
We compute the phylogenetic invariants and the Euclidean distance for both the PHYLIP tree and the historically
correct tree. The phylogenetic invariants computed with respect to the �1 norm identify the historically correct tree
as the favorite candidate, while they do not give useful information when computed in the �∞ norm. The estimate
of the Euclidean distance also favors the historically correct tree over the PHYLIP candidate tree.

1.7 The Slavic Family Tree

We also analyze with the same method the phylogenetic tree of a group of Slavic languages for which we use a
combination of SSWL data and the data of [27]: Russian, Polish, Slovenian, Serb-Croatian, Bulgarian. For this
set of languages, PHYLIP applied to the combined syntactic data produces five candidate trees with inequivalent
topologies. Using the phylogenetic invariants computed with the �1 norm we identify the historically correct tree as
the best candidate, while the computation in the �∞ norm does not select a unique best candidate. The lower bound
estimate of the Euclidean distance also correctly selects the linguistically accurate tree.
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1.8 The Early Indo-European Branchings and the Indo-European Controversy

The use of computational methods in historical linguistics has been the focus of considerable attention, and contro-
versy, in recent years, due to claims made in the papers [6,18] regarding the phylogenetic tree of the Indo-European
languages, based on a computational analysis of trees obtained from distances between binary data based on lexical
lists and cognate words. While this method of computational analysis of language families has been considered in
various contexts (see [16] for a collection of contributions), the result announced in [6,18] appeared to contradict
several results obtained by historical linguists by other methods, hence the ensuing controversy, see [39]. For com-
parison, a different reconstruction of the Indo-European tree, carried out by computational methods that incorporate
lexical, phonological, and morphological data, was obtained by Ringe, Warnow, and Taylor [43]. Neither of these
computational analysis makes any use of syntactic data about the Indo-European languages.

We focus here on some specific issues that occur in the phylogenetic tree of [6] compared with that of [43]:

• The relative positions of the Greco-Armenian subtrees;
• The position of Albanian in the tree;
• The relative positions of these languages with respect to the Anatolian-Tocharian subtrees.

This means that we neglect several other branches of the Indo-European tree analyzed in [6] and in [43] and we
focus on a five-leaf binary tree with leaves corresponding to the languages: Hittite, Tocharian, Albanian, Armenian,
and Greek. We will consider the tree topologies for this subset of languages resulting from the trees of [6] and [43]
and we will select between them on the basis of Phylogenetic Algebraic Geometry.

The set of languages considered here (Hittite, Tocharian, Albanian, Armenian, Greek) are listed in the SSWL
database [49], while not all of them are present in the Longobardi data [24]. Thus, in this case we have to base
our analysis on the SSWL data. With the exception of Armenian and Greek, which are extensively mapped in
the database, the remaining languages (especially Tocharian and Hittite) are very poorly mapped, and the set of
parameters that are completely mapped for all of them is very small, hence the resulting analysis should not be
considered very reliable, due to this significant problem.

Nonetheless, we compute the phylogenetic invariants for the Gray-Atkins tree and for the Ringe–Warnow–Taylor
tree and we also compute the Euclidean distance function to the relevant phylogenetic algebraic variety. We find
that, while the evaluation of the phylogenetic invariants with the �∞ norm does not give useful information, the
evaluation in the �1 norm favors the linguistically more accurate Ringe–Warnow–Taylor tree. Similarly the estimate
of the Euclidean distance selects the same Ringe–Warnow–Taylor tree.

The Gray-Atkins tree is not the one generally agreed upon by linguists, while the Ringe–Warnow–Taylor tree
is considered linguistically more reliable. A more recent discussion of the early Indo-European tree, which is also
considered linguistically very reliable, can be found in [2]. However, the part of the tree of [2] that we focus on
here agrees with the one of [52] (though the position of Albanian is not explicitly discussed in [2]), hence we refer
to [52] in our analysis.

2 Phylogenetic Algebraic Varieties and Invariants

Before we proceed to the analysis of the two sets of languages listed above, we recall briefly the notation and the
results we will be using from Phylogenetic Algebraic Geometry, see [1,35,36]. We also discuss the limits of the
applicability of this method to syntactic data of languages and some approaches to improve the method accordingly.

In order to apply the algebro-geometric approach, we think of each binary syntactic variable as a dynamical
variable governed by a Markov process on a binary tree. These binary Markov processes on trees generalize the
Jukes–Cantor model, in the sense that they do not necessarily assume a uniform distribution at the root of the tree.
The model parameters (π, Me) consist of a probability distribution (π, 1 − π) at the root vertex (the frequency of
expression of the 0 and 1 values of the syntactic binary variables at the root) and bistochastic transition matrices
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Me =
(
1 − pe pe

pe 1 − pe

)

along the edges.
For a binary tree with n leaves, the boundary distribution P = (pi1,...,in ) counts the frequencies of the occurrences

of binary vectors (i1, . . . , in) ∈ {0, 1}n of values of the binary syntactic variables for the languages {�1, . . . , �n} at
the leaves of the tree. This boundary distribution is the marginal distribution obtained after marginalizing over the
internal nodes of the tree. If N is the total number of syntactic binary variables available in the database (counting
only those that are completely mapped for all the n languages considered) and ni1,...,in is the number of occurrences
of the binary vector (i1, . . . , in) in the list of values of the N syntactic variables for these n languages, then the
frequencies in P are given by

pi1,...,in = ni1,...,in

N
.

The boundary distribution is a polynomial function of the model parameters

pi1,...,in = �(π, Me) =
∑

wv∈{0,1}
πwvr

∏
e

Me
ws(e),wt (e)

, (2.1)

with a sum over “histories”, that is, paths in the tree. This determines a polynomial map of affine spaces

�T : A4n−5 → A
2n

, (2.2)

where 4n − 5 is the number of model parameters for a binary tree T with n-leaves and binary variables. Dually, the
kernel of the map of polynomial rings

�T : C[zi1,...,in ] → C[x1, . . . , x4n−5] (2.3)

defines the phylogenetic ideal IT . This corresponds geometrically to the phylogenetic algebraic variety VT .
It is proved in [1] that, for these Markov models on trees with binary variables that generalize the Jukes–Cantor

model, the phylogenetic idealIT is generated by all the 3×3-minors of all the flattenings of the tensor P = (pi1,...,in ).
There is one such flattening for each internal edge of the binary tree, where each internal edge corresponds to a
subdivision of the leaves into a disjoint union of two sets of cardinality r and n − r . The flattening is a 2r × 2n−r

matrix defined by setting

Flate,T (P)(u, v) = P(u1, . . . , ur , v1, . . . , vn−r ), (2.4)

where P is the boundary distribution. The terminology corresponds to the fact that an n-tensor P is “flattened” into
a collection of 2-tensors (matrices).

These generators of the phylogenetic ideal can then be used as a test for the validity of a candidate phylogenetic
tree. If the tree is a valid phylogenetic reconstruction, then the boundary distribution P = (pi1,...,in ) should be a zero
of all the polynomials in the phylogenetic ideal (or very close to being a zero, allowing for a small error margin).

In the case of the binary Jukes–Cantor model, where one assumes a uniform root distribution, there are additional
invariants, as shown in [50]. For the purpose of linguistic applications it is more natural to work with the general
binary Markov models described above, where the root distribution (π, 1 − π) is not assumed to be uniform, than
with the more restrictive Jukes–Cantor model. Indeed, there is no reason to assume that parameters at the root of a
language phylogenetic tree would have equal frequency of expression of 0 and 1: the overall data on all languages,
ancient and modern, contained in the available database show a clear prevalence of parameters that are expressed
(value 1) rather than not. (This point was discussed in some detail in [48].)
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2.1 Phylogenetic Invariants

The Allman–Rhodes theorem [1] shows that the generators φT of the phylogenetic ideal IT are given by the minors
det(M) of all the size 3× 3-submatrices M of the flattening matrices Flate,T , with e ranging over the internal edges
of T .

In the following, we denote by M(3)
e,T the set of all 3 × 3 submatrices of the flattening matrix Flate,T , by

M(3)
T := ∪e∈E(T )M(3)

e,T and by D(3)
T := {det(M) | M ∈ M(3)

T }. We will also use the notation M(3)(A) for the set

of 3 × 3 submatrices of a given matrix A, and D(3)(A) := {det(M) | M ∈ M(3)(A)}.
To every candidate tree, one can also associate a computation of a discrepancy that measures how much the

polynomials φT fail to vanish at the point P . This can be done using different kinds of norms. Generally, one can
use either the �∞ norm and obtain an expression of the form

‖φT (P)‖�∞ = max
M∈M(3)

T

| det(M(P))|,

which we write equivalently in the following shorthand notation as

‖φT (P)‖�∞ = max
φ∈D(3)

T

|φ(P)|,

where the expression |φ(P)| stands for the absolute value of the determinant of the 3 × 3-minor evaluated at the
boundary distribution P . It is also natural to use the �1 norm and compute

‖φT (P)‖�1 =
∑

M∈M(3)
T

| det(M(P))|,

equivalently written in the rest of the paper as

‖φT (P)‖�1 =
∑

φ∈D(3)
T

|φ(P)|.

One can expect that the �∞ normwill be a veryweak invariant, because taking themaximum loses a lot of information
contained in the phylogenetic invariants φT (P). Indeed, this turns out to be the case. As analyzed in detail in [8],
the �1 norm is a more refined and reliable way to identify best phylogenetic trees on the basis of the computation
of phylogenetic invariants than the �∞ norm. We will see several explicit examples in the following sections where
the �∞ norm does not provide useful information to identify the correct candidate tree, while the �1 norm of the
phylogenetic invariants correctly identifies the unique best candidate tree.

For the best candidate tree T , the values of ‖φT (P)‖�∞ and ‖φT (P)‖�1 will in general be small but still non-zero.
It is possible that these non-zero values may partly reflect a small deviation from Markov evolution. Namely, the
observed distribution P of the syntactic parameters of the languages at the leaves of the tree may differ from a
distribution obtained by the evolution of i.i.d. random variables via a Markov model on the tree.

One of the important pointswewish to investigate in the longer term is how relations between syntactic parameters
affect their behavior as random variables in dynamical models of language change and evolution. To that purpose,
we can regard the values of phylogenetic invariants as a possible numerical indicator of discrepancies from the
standard i.i.d. Markov model assumption. As mentioned in the introduction, the presence of dependencies between
syntactic parameters is expected to cause at least some small deviations from the dynamics of an actual i.i.d. Markov
model. We do not analyze in the present paper how possible models of parameter dependencies affect the dynamics
and may be reflected in the value of the phylogenetic invariants. A more careful analysis of the Markov hypothesis
will appear elsewhere [17].
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2.2 Euclidean Distance

As a way to compare different candidate trees and select the best possible candidate, one can use the Euclidean
distance, in an ambient affine space, between the point P given by the boundary distribution and the variety VT

associated to the candidate tree T . The tree realizing the smallest distance will be the favorite candidate.
It is not always possible to compute the Euclidean distance exactly, but it can sometimes be estimated, as we

will discuss more explicitly in Sects. 3.6 and 3.11. We will compute Euclidean distances from certain Segre and
secant varieties, namely determinantal varieties of rank one and two, for which a direct computation is possible. In
some particular cases, like the first set of Germanic languages we analyze, we will show that a lower bound estimate
obtained in terms of these distances is sharp, under a conditional assumption, which we discuss more in detail in
Sect. 2.3.

The Euclidean distances of the flattening matrices from the corresponding determinantal varieties can be com-
puted using the Eckart–Young theorem, as in Example 2.3 of [13] and [35].

The Eckart–Young theorem describes a low-rank approximation problem, namely minimizing the Euclidean
distance ‖M − M ′‖ between a given n × m matrix M , seen as a vector in R

nm , and an n × m matrix M ′ with
rank(M ′) ≤ k, for a given k ≤ n ≤ m. One considers the singular value decomposition M = U�V where � is an
n × m diagonal matrix � = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and where U and V are, respectively
n × n and m × m orthogonal matrices. Then the minimum of the distance ‖M − M ′‖ is realized by M ′ = U�′V
where �′ = diag(σ1, . . . , σk, 0, . . . , 0) with the distance given by

min
M ′ ‖M − M ′‖ =

(
n∑

i=k+1

σ 2
i

)1/2

.

This can equivalently be stated as the fact that the minimum distance between a given n × m matrix M and the
determinantal variety Dk(n, m) of n × m matrices of rank ≤ k is given by

dist(M,Dk(n, m)) = ‖(σk+1, . . . , σn)‖, (2.5)

where the σi are the singular values of M . The point M ′ realizing the minimum is unique iff σk+1 
= σk , with k the
rank [31].

2.3 Conditional Cases and Distance Estimates

In the specific examples we discuss below, we usually consider a list of pre-selected candidate trees, obtained via
the use of the PHYLIP package and among themwe test for the most reliable candidate using the algebro-geometric
methods discussed here. Unlike the case where the search happens over all possible interpolating binary trees,
in these cases the pre-selected tree tend to all agree on certain proximity assignments of some of the leaves. For
example, in the first set of Germanic languages that we discuss below, all the candidate trees agree on the proximity
of Dutch and German and on the proximity of Icelandic and Faroese, though they disagree in the relative placements
of these subtrees with respect to the other languages in the set. This agreement among the candidate trees results in
two of the flattening matrices being common to all of the candidates.

In a situation like this one it is reasonable to consider a “conditional case” where we assume that the incidence
condition that these common flattenings lie on the respective determinantal varieties already holds. We then aim at
identifying the best candidate tree among those with these constraints already assumed.

We outline more precisely the reasoning behind the kind of estimation we are going to perform. We have a
preselected small list of candidate trees Ti , i = 1, . . . , N and we assume that one of them is the correct phylogenetic
tree. This assumption means that the point P given by the boundary distribution of i.i.d. variables that evolved
according to a Markov model on this tree will lie on its phylogenetic variety. Thus, there is a Ttrue among the Ti

for i = 1, . . . , N such that P ∈ VTtrue . If we also assume (as will be the case in specific examples we consider) that
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all the phylogenetic varieties VTi are intersections of the form VTi = W ∩ Vi , where W is common to all the Ti

while the other varieties Vi depend on the tree Ti , then this assumption together with the previous one then gives
P ∈ VTtrue = W ∩ Vtrue so necessarily P ∈ W . Thus, in this case the question about which of the varieties VTi the
point P lies on is reduced to the question of which of the Vi the point lies on, as it will lie on W anyway. This would
imply that it would suffice to check the Euclidean distances between P and the Vi .

However, because of possible noise in the data and other effects such as possible small discrepancies from the
Markov hypothesis for syntactic parameters, we will in general have only a close proximity of P to the variety VTi

of the correct phylogenetic tree, rather than exact incidence. We can account for possible small discrepancies by
assuming that there is a sufficiently small ε > 0 such that P ∈ Uε(VTtrue), where Ttrue is correct phylogenetic tree
and VTtrue = Vtrue ∩ W , and Uε(VTtrue) is an ε-tubular neighborhood of VTtrue inside the ambient Euclidean space.
With only this proximity estimate available, one can no longer necessarily relate which Ti realizes the minimum
among the distances dist(P, Vi ) or the minimum among the dist(P, Vi ∩ W ), as one could now have a situation
where dist(P, V1 ∩ W ) < dist(P, V2 ∩ W ) while dist(P, V2) < dist(P, V1).

Nonetheless, if we compute the minimum Euclidean distances dist(P, Vi ), instead of directly obtaining the
minimum among the distances dist(P, W ∩ Vi ), this will provide a lower bound on the Euclidean distance
dist(P, VTtrue). Indeed, we can simply obtain an estimate using the fact that the lower bound dist(P, V ∩ W ) ≥
max{dist(P, V ), dist(P, W )}, for two subvarieties V, W in the same ambient space. Since this is only a lower
bound, which is in general not expected to be sharp, one can at best hope to use this estimate to exclude candidates
for which the computed max{dist(P, V ), dist(P, W )} is large (within the set of given candidates), while a small
value of this maximum will not necessarily imply that the corresponding candidate is optimal as dist(P, V ∩ W )

could easily be significantly larger. We see however that in many cases this lower bound suffices to exclude most
candidates hence it provides a useful estimate.

A more general theoretical discussion of these estimation methods and their range of validity, compared to
other phylogenetic invariants and tree reconstruction algorithms (such as discussed in [8,14,45]) will be discussed
elsewhere, separately from the present application, since they are not restricted to the specific linguistic setting
considered here.

2.4 Limits of Applicability to Syntax

One of the purposes of this paper is also to better understand the limits of the applicability of these phylogenetic
models to syntactic data. One of the main assumptions that need to be more carefully questioned is treating syntactic
parameters as i.i.d. random variables evolving under the same Markov model on the tree. We know that there are
relations between syntactic parameters. While the complete structure of the relations is not known, and is in fact
one of the crucial questions in the field, one can detect the presence of relations through various computational
methods applied to the available syntactic data.

In [30] and [46], a quantitative test was devised, aimed at measuring how the distribution of syntactic parameters
over a group of languages differs from the result of i.i.d. random variables. Using coding theory, one associates
a binary code to the set of syntactic parameters of a given group of languages and computes the position of the
resulting code in the space of code parameters (the relative rate of the code and its relative minimum distance). If
the distribution of the syntactic features across languages were the effect of an evolution of identically distributed
independent random variables, one would expect to find the code points in the region of the space of code parameters
populated by random codes in the Shannon random code ensembles, that is, in the region below the Gilbert–
Varshamov curve. However, what one finds (see [46]) is the presence of many outliers that are not only above the
Gilbert–Varshamov curve, but even above the symptotic bound and the Plotkin bound. This provides quantitative
evidence for the fact that the evolutionary process that leads to the boundary distribution P of code parameters may
differ significantly from the hypothesis of the phylogenetic model.

In [38] it was shown, using Kanerva networks, that different syntactic parameters in the SSWL database have
different degrees of recoverability, which can be seen as another numerical indicator of the presence of relations, with
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parameters with lower recoverability counting as closer to being truly independent variables and those with higher
recoverability seen as dependent variables. One possible modification of the evolutionarymodel on the phylogenetic
tree may then be obtained by computing the observed distribution P at the leaves, by introducing different weights
for the different parameters, which depend on the recoverability factor, so that parameters that are more likely to
be independent variables would weight more in determining the boundary distribution and parameters that have
higher recoverability, and are therefore considered dependent variables, would contribute less to determining P .

A further issue worth mentioning, though we will not discuss it in this paper, is whether the hypothesis that the
evolutionary dynamics happens on a tree is the best model. There are more general phylogenetic reconstruction
techniques based on graphs that are not trees, see [19] and the algebro-geometric models in [9]. It was shown in [41]
that the persistent topology of the SSWL data of some language families (the Indo-European) contain non-trivial
persistent generators of the H1 homology group. While the persistent generators of H0 appear to be related to the
structure of a candidate phylogenetic tree, the presence of a persistent H1 points to the presence of loops, hence
to graphs that are not trees. Persistent generators of the H1 are also visible in the Longobardi data. This is further
discussed in [42].

We discuss some possible modifications of the evolutionary Markov model on the tree in the last section of the
paper.

3 Phylogenetic Algebraic Varieties of the Germanic Language Family

As discussed in the Introduction, we first analyze the phylogenetic tree for the set of Germanic languages S1(G):
Dutch, German, English, Faroese, Icelandic, and Swedish.

These six languages are mapped with different levels of accuracy in the SSWL database: we have Dutch (100%),
German (75%), English (75%), Faroese (62%), Icelandic (62%), Swedish (75%). There are 90 syntactic variables
that are completely mapped for all of these six languages: the list is reported in Appendix A. We will use only these
90 variables for the analysis carried out here.

We then consider the set S2(G) consisting of seven Germanic languages: Norwegian, Danish, Icelandic, German,
English, Gothic, Old English. These are chosen so that they are covered by both the SSWL database [49] and the
new data of Longobardi [24], and so that they contain some ancient languages, in addition to modern languages
situated on both theWest and the North Germanic branches. In this way we can test both the effect of using different
syntactic data and the effect of including ancient languages and their relation to problem of the location of the root
vertex mentioned above.

The Germanic languages in the set S2(G) have a total of 68 SSWL variables that are completely mapped for
all the seven languages in the set. This is significantly smaller than the 90 variables used for the set S1(G). This
does not depend on the languages being poorly mapped: the levels of accuracy are comparable with the previous set
with Danish (76%), Norwegian (75%), German (75%), English (75%), Old English (75%) Icelandic (62%), Gothic
(62%). However, the regions of the overall 115 SSWL variables that are mapped is less uniform across this set of
languages creating a smaller overlap. The set of completely mapped SSWL variables for this set of languages is
reported in Appendix B.

3.1 Candidate PHYLIP Trees

When using the full but incomplete data for the six Germanic languages in S1(G), we obtain with PHYLIP a list
of six candidate phylogenetic trees, respectively given (in bracket notation) by



Phylogenetics of Indo-European Language Families 815

pars1 = ((�1, �2), (�3, (�4, �5)), �6)

pars2 = ((�3, (�1, �2)), (�4, �5), �6)

pars3 = (�3, ((�1, �2), (�4, �5)), �6)

bnb1 = (�6, ((�5, �4), (�3, (�2, �1))))

bnb2 = (�6, (((�5, �4), �3), (�1, �2)))

bnb3 = (�6, (((�5, �4), (�1, �2)), �3))

where �1 =Dutch, �2 =German, �3 =English, �4 =Faroese, �5 = Icelandic, �6 =Swedish. The Newick
representation of binary trees used by PHYLIP lists the leaves in the order specified by the choice of a planar
embedding of the tree, with brackets and commas indicating the joining together of branches. In the rest of the
paper, for convenience, we will spell out explicitly the form of the tree graphically, rather than writing them in the
Newick bracket notation. In the case of the trees listed here we obtain the following.

The trees pars1, pars2, and pars3 given above in the Newick representation have the form

�1 �2

�3 �4 �5

�6
�3 �1 �2

�4 �5
�6 �3

�1 �2 �4 �5

�6

Note that pars1 is a binary tree, while pars2 and pars3 are not binary trees. We will discuss how to resolve
the non-binary structure. The remaining trees bnb1, bnb2, and bnb3 are binary trees of the form

�6

�5 �4 �3 �2 �1

�6

�5 �4
�3 �1 �2

�6

�5 �4 �1 �2

�3

Note how all of these candidate trees agree on the proximity of Dutch and German (�1 and �2) and of Faroese and
Icelandic (�4 and �5), while they differ in the relative placement of these two pairs with respect to one another and
with respect to the two remaining languages, English and Swedish.

In phylogenetic linguistics the presence of a non-binary tree denotes an ambiguity, which should eventually be
resolved into one of its possible binary splits. As shown in [15], the phylogenetic algebraic variety of a non-binary
tree can be seen as the intersection of the phylogenetic algebraic varieties of all of its possible binary splits. Thus,
the phylogenetic ideal (for the binary Jukes-Cantor model) is generated by all the 3× 3 minors of all the flattening
matrices of all the binary splits of the given non-binary tree. Being the intersection of the varieties defined by each
of the binary splits corresponds exactly to the notion of ambiguity mentioned above.

The resolution of a non-binary structure of the type shown in pars2 and pars3 is obtained by replacing the
first tree below with the different possibilities given by its three possible binary splits that follow:

A B C A B C A B C A C B

Thus, for the tree pars2 we obtain the three binary trees

�3 �1 �2 �4 �5
�6

�3 �1 �2
�4 �5

�6

�3 �1 �2

�6
�4 �5

Note, however, that these three binary trees are equivalent up to a shift in the position of the root, which however
does not affect the phylogenetic invariants, see [1] and Proposition 2.16 in [5]. Thus, we need only consider one
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of them for the purpose of computing the generators of the phylogenetic ideal. For the tree pars3 we obtain the
three binary trees

�3

�1 �2 �4 �5

�6 �3

�1 �2 �4 �5

�6 �3 �6
�1 �2 �4 �5

Again these three binary trees only differ by a shift of the position of the root, which does not affect the computation
of the phylogenetic invariants, hence we need only consider one of them for that purpose. Notice, moreover, that
the binary tree bnb1 is the same as the second binary tree for pars2. Also the tree bnb2 has the same topology as
the tree pars1, up to a shift in the position of the root, which does not affect the phylogenetic invariants. Similarly,
the tree bnb3 is the same as the second binary tree of pars3.

All of the binary trees considered here have three internal edges, hence all of themhave threeflatteningsFlate,T (P)

of the boundary distribution P = (pi1,...,i6).

• The flattenings for pars1 are given by a 4 × 16 matrix Flate1,pars1(P), an 8 × 8 matrix Flate2,pars1(P) and
a 16 × 4 matrix Flate3,pars1(P). These correspond to the separating the leaves into two components when
deleting the internal edge ei according to

e1 : {�1, �2} ∪ {�3, �4, �5, �6}
e2 : {�1, �2, �6} ∪ {�3, �4, �5}
e3 : {�1, �2, �3, �6} ∪ {�4, �5}.

• The flattenings for any of the three binary trees for pars2 are also given by a 4 × 16 matrix Flate1,pars2(P),
an 8 × 8 matrix Flate2,pars2(P) and a 16 × 4 matrix Flate3,pars2(P), which in this case correspond to the
subdivisions

e1 : {�1, �2} ∪ {�3, �4, �5, �6}
e2 : {�1, �2, �3} ∪ {�4, �5, �6}
e3 : {�1, �2, �3, �6} ∪ {�4, �5},

which only differ from the previous case in the e2 flattening.
• The flattenings for any of the three binary trees for pars3 are given by a 4 × 16 matrix Flate1,pars3(P), a

16 × 4 matrix Flate2,pars3(P) and a 16 × 4 matrix Flate3,pars3(P), which correspond to the subdivisions

e1 : {�1, �2} ∪ {�3, �4, �5, �6}
e2 : {�1, �2, �3, �6} ∪ {�4, �5}
e3 : {�1, �2, �4, �5} ∪ {�3, �6}.

• The bnb1 tree is the same as one of binary trees for pars2, hence their flattenings are also the same.
• The flattenings for bnb2 are the same as the flattening of pars1, since the two tree differ only by a shift in
the position of the root vertex.

• The bnb3 tree is the same as one of binary trees for pars3, hence their flattenings are also the same.

Thus, in order to compare the phylogenetic invariants of these various trees, we need to compute the 3×3 minors of
the matrices Flate,T (P) for the splits {�1, �2} ∪ {�3, �4, �5, �6}, {�1, �2, �6} ∪ {�3, �4, �5}, {�1, �2, �3, �6} ∪ {�4, �5},
{�1, �2, �3} ∪ {�4, �5, �6}, {�1, �2, �4, �5} ∪ {�3, �6}. We will compute these in the next subsection.

3.2 Flattenings

As discussed above, there are five matrices Flate,T (P) that occur in the computation of the phylogenetic ideals of
the candidate phylogenetic trees listed above. In fact, we do not need to compute all of them, as some occur in all
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the trees, hence do not contribute to distinguishing between them. This corresponds to the observation we already
made above, that all the candidate trees agree on the proximity of �1 and �2 and of �4 and �5.

To simplify keeping track visually of which flattening is being considered, we replace here the edge notation
e of the flattening matrices Flate,T (P) with the explicit splitting of the leaves of T that corresponds to the edge
e. Thus, for example, instead of writing Flate1,pars1(P) we write Flat{�1,�2}∪{�3,�4,�5,�6}(P). This notation has the
advantage that, when the same flattening matrix (with the same subdivision of leaves) occurs in different trees, this
will be immediately evident from the notation. We will continue to use the more concise notation Flate,T (P) when
more convenient.

• The 4× 16 matrix Flat{�1,�2}∪{�3,�4,�5,�6}(P), contributes to the phylogenetic ideals of all the trees, hence it will
not help discriminate between them.

• The same is true about the 16 × 4 matrix Flat{�1,�2,�3,�6}∪{�4,�5}(P).
• The 8 × 8 matrix Flat{�1,�2,�6}∪{�3,�4,�5}(P) contributes to the phylogenetic invariants of pars1 and bnb2. It
is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p000000 p000100 p001000 p001100 p000010 p000110 p001010 p001110
p010000 p010100 p011000 p011100 p010010 p010110 p011010 p011110
p100000 p100100 p101000 p101100 p100010 p100110 p101010 p101110
p110000 p110100 p111000 p111100 p110010 p110110 p111010 p111110
p000001 p000101 p001001 p001101 p000011 p000111 p001011 p001111
p010001 p010101 p011001 p011101 p010011 p010111 p011011 p011111
p100001 p100101 p101001 p101101 p100011 p100111 p101011 p101111
p110001 p110101 p111001 p111101 p110011 p110111 p111011 p111111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• The 8× 8 matrix Flat{�1,�2,�3}∪{�4,�5,�6}(P) contributes to the phylogenetic invariants of pars2 and bnb1 and
it is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p000000 p000010 p000100 p000110 p000001 p000011 p000101 p000111
p010000 p010010 p010100 p010110 p010001 p010011 p010101 p010111
p100000 p100010 p100100 p100110 p100001 p100011 p100101 p100111
p110000 p110010 p110100 p110110 p110001 p110011 p110101 p110111
p001000 p001010 p001100 p001110 p001001 p001011 p001101 p001111
p011000 p011010 p011100 p011110 p011001 p011011 p011101 p011111
p101000 p101010 p101100 p101110 p101001 p101011 p101101 p101111
p111000 p111010 p111100 p111110 p111001 p111011 p111101 p111111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• The 16×4 matrix Flat{�1,�2,�4,�5}∪{�3,�6}(P) contributes to the phylogenetic invariants of pars3 and bnb3 and
is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p000000 p000001 p001000 p001001
p010000 p010001 p011000 p011001
p100000 p100001 p101000 p101001
p110000 p110001 p111000 p111001
p000010 p000011 p001010 p001011
p010010 p010011 p011010 p011011
p100010 p100011 p101010 p101011
p110010 p110011 p111010 p111011
p000100 p000101 p001100 p001101
p010100 p010101 p011100 p011101
p100100 p100101 p101100 p101101
p110100 p110101 p111100 p111101
p000110 p000111 p001110 p001111
p010110 p010111 p011110 p011111
p100110 p100111 p101110 p101111
p110110 p110111 p111110 p111111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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3.3 Boundary Distribution and Phylogenetic Invariants

Next we compute the boundary distribution P = (pi1,...,i6) of the syntactic variables. We use only the 90 completely
mapped syntactic variables, for which we find occurrences

n110111 = 3 n000011 = 1 n000010 = 4 n000000 = 40
n110000 = 2 n001110 = 1 n000100 = 2 n111111 = 22
n111110 = 1 n000110 = 1 n111101 = 3 n100000 = 2
n010000 = 1 n111001 = 2 n110110 = 1 n010111 = 1
n001000 = 2 n000111 = 1

while all the remaining cases do not occur, ni1,...,i6 = 0 for (i1, . . . , in) not in the above list.
With the boundary distribution determined by the occurrences above the three matrices of F1 = Flat{�1,�2,�6}∪{�3,

�4, �5}(P), F2 = Flat{�1,�2,�3}∪{�4,�5,�6}(P), and F3 = Flat{�1,�2,�4,�5}∪{�3,�6}(P) are, respectively, given by

F1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
9

1
45

1
45 0 2

45
1
90 0 1

90

1
90 0 0 0 0 0 0 0

1
45 0 0 0 0 0 0 0

1
45 0 0 0 0 1

90 0 1
90

0 0 0 0 1
90

1
90 0 0

0 0 0 0 0 1
90 0 0

0 0 0 0 0 0 0 0

0 0 1
45

1
30 0 1

30 0 11
45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
9

2
45

1
45

1
90 0 1

90 0 1
90

1
90 0 0 0 0 0 0 1

90

1
45 0 0 0 0 0 0 0

1
45 0 0 1

90 0 0 0 1
30

1
45 0 0 1

90 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1
90

1
45 0 1

30
11
45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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F3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
9 0 1

45 0

1
90 0 0 0

1
45 0 0 0

1
45 0 0 1

45

2
45

1
90 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
45 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
30

1
90

1
90

1
90 0

0 1
90 0 0

0 0 0 0

1
90

1
30

1
90
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45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.4 Phylogenetic Invariants

As we discussed above, the splits

{�1, �2} ∪ {�3, �4, �5, �6} and {�1, �2, �3, �6} ∪ {�4, �5}
occur in all the candidate trees, hence the minors coming from the flattening matrices

Flat{�1,�2}∪{�3,�4,�5,�6}(P) and Flat{�1,�2,�3,�6}∪{�4,�5}(P)

do not discriminate between the given candidates (preselected by PHYLIP). Thus it is reasonable to proceed by
assuming that the condition that these two flattenings lie on the corresponding determinantal varieties is satisfied
and only discriminate between the candidate trees on the basis of the position of the remaining flattenings. There
is only one additional flattening involved in each tree, once these common ones are excluded. Thus, we estimate
the phylogenetic invariants by evaluating the 3 × 3 minors of the remaining flattening matrix for each of the trees,
using both the �∞ and the �1 norm. We obtain the following:

(1) For the tree T1 = pars1 (and equivalently bnb2) we have

‖φT1(P)‖�∞ = max
φ∈D(3)

T1

|φ(P)| = 22

18225

‖φT1(P)‖�1 =
∑

φ∈D(3)
T1

|φ(P)| = 3707

364500

(2) For the tree T2 = pars2 (equivalently bnb1) we have

‖φT2(P)‖�∞ = max
φ∈D(3)

T2

|φ(P)| = 419

364500

‖φT2(P)‖�1 =
∑

φ∈D(3)
T2

|φ(P)| = 2719

364500
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(3) For the tree T3 = pars3 (and equivalently bnb3) we have

‖φT3(P)‖�∞ = max
φ∈D(3)

T3

|φ(P)| = 22

18225

‖φT3(P)‖�1 =
∑

φ∈D(3)
T3

|φ(P)| = 949

91125

Thus, in terms of the evaluation of the phylogenetic invariants, the binary trees of pars2 and the binary tree
bnb1 are favored over the other possibilities. (We discuss the position of the root vertex below.) Note that the �∞
norm does not distinguish between the other two remaining candidates and only singles out the preferred candidate
pars2. We compute the Euclidean distance function in Sect. 3.7.

3.5 The Problem with the Root Vertex

As we have seen above, the computation of the phylogenetic invariants helps selecting between different candidate
tree topologies. However, the phylogenetic invariants by themselves are insensitive to changing the position of
the root in binary trees with the same topology. In terms of phylogenetic inference about linguistics, however, it
is important to locate more precisely where the root vertex should be. In the case of languages belonging to a
subfamily of the Indo-European languages this can be done, as in the example we discussed in [47], by introducing
the data of some of the ancient languages in the same subfamily as a new leaf of the tree, that will help locating
more precisely the root vertex of the original tree based on the modern languages. For language families for which
there are no data of ancient languages available, however, this kind of phylogenetic analysis will only identify a
tree topology as an unrooted binary tree. We will return to this point in the following section, where we analyze the
set S2(G) which includes two ancient languages.

Note that when one or more ancient languages are included in the data (as in the second case of the Germanic
languages, or the Romance languages discussed here) that suffices to constrain the position of the root vertex, while
in other cases like the example discussed here, additional independent information is needed.

3.6 Varieties

In the discussion above we reduced the question of distinguishing between the candidate trees to an evaluation of
the phylogenetic invariants coming from the 3 × 3 minors of one of the three matrices Flat{�1,�2,�6}∪{�3,�4,�5}(P),
Flat{�1,�2,�3}∪{�4,�5,�6}(P), and Flat{�1,�2,�4,�5}∪{�3,�6}(P). In the first two cases, the phylogenetic ideal defines the 28-
dimensional determinantal variety of all 8×8 matrices of rank at most two, while in the third case the phylogenetic
ideal defines the 36-dimensional determinantal variety of all 16×4matrices of rank atmost two, [7]. These are not the
actual phylogenetic varieties associated to the candidate trees, which are further cut out by the remaining equations
coming from the 3 × 3 minors of the other flattenings Flat{�1,�2}∪{�3,�4,�5,�6}(P), and Flat{�1,�2,�3,�6}∪{�4,�5}(P).
The varieties associated to each individual tree are intersections of three different determinantal varieties inside a
common ambient space A26 . Since all the polynomials defining the phylogenetic ideals are homogeneous, they can
also be considered as projective varieties in the ambient projective space P26−1.

In the case of the trees considered here, two of the three determinantal varieties stay the same, since the
flattenings Flat{�1,�2}∪{�3,�4,�5,�6}(P), and Flat{�1,�2,�3,�6}∪{�4,�5}(P) are common to all candidate trees, while
the third component varies among the three choices determined by the flattenings Flat{�1,�2,�6}∪{�3,�4,�5}(P),
Flat{�1,�2,�3}∪{�4,�5,�6}(P), and Flat{�1,�2,�4,�5}∪{�3,�6}(P).

In general, letDr (n, m) denote the determinantal variety of n×m matrices of rank≤ r . As an affine subvariety in
A

nm it has dimension r(n + m − r). It will be convenient to considerDr (n, m) as a projective subvariety of Pnm−1,
thoughwewill maintain the same notation. In the case r = 1, the determinantal varietyD1(n, m) is the Segre variety
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S(n, m) given by the embedding P
n−1 × P

m−1 ↪→ P
nm−1 realized by the Segre map (xi , y j ) �→ (ui j = xi y j ). In

the case r = 2 the determinantal variety D2(n, m) is the secant variety of lines (chord variety) Sec(S(n, m)) of the
Segre variety S(n, m), see §9 of [20].

Thus, we obtain the following simple geometric description of the three cases considered above:

• Flat{�1,�2,�6}∪{�3,�4,�5}(P) (tree topology of pars1 and bnb2): the relevant variety is the secant variety
Sec(S(8, 8)) of the Segre variety S(8, 8) = P

7 × P
7, embedded in P

63 via the Segre embedding ui1,...,i6 =
xi1,i2,i6 yi3,i4,i5 .

• Flat{�1,�2,�3}∪{�4,�5,�6}(P) (tree topology of pars2 and bnb1): the relevant variety is again Sec(S(8, 8)), where
S(8, 8) is embedded in P63 via ui1,...,i6 = xi1,i2,i3 yi4,i5,i6 .

• Flat{�1,�2,�4,�5}∪{�3,�6}(P) (tree topology of pars3 and bnb3): the relevant variety is the secant variety
Sec(S(16, 4)) of the Segre variety S(16, 4) = P

15 × P
3, embedded in P

63 via the Segre embedding
ui1,...,i6 = xi1,i2,i4,i5 yi3,i6 .

The evaluation of the phylogenetic invariants at the boundary distribution determined by the SSWL data selects the
second choice, Sec(S(8, 8)) with the Segre embedding ui1,...,i6 = xi1,i2,i3 yi4,i5,i6 .

As a general procedure, given a subfamily of languages, {�1, . . . , �n} and a set of candidate phylogenetic trees
T1, . . . , Tm produced by computational methods from the syntactic variables of these n languages, one can construct
with the method above a collection Y1, . . . , Ym of algebraic varieties, where each Yk associated to the tree Tk is
obtained by considering the determinantal varieties associated to all those flattenings Flate,Tk (P) of Tk that are not
common to all the other trees Tj .

The test for selecting one of the candidate trees, given the boundary distribution P = (pi1,...,in ) of the syntactic
variables, is then to estimate which of the varieties Yk the point P is closest to, where a suitable test of closeness
is used, for instance through the Euclidean distance function. Assuming that this procedure does not result in
ambiguities (that is, that there is a unique closest Yk to the given distribution P), then this method selects a best
candidate T among the m trees Tk . It also selects an associated algebraic variety Y = Y (T ), which is larger than
the usual phylogenetic algebraic variety XT of T , since we have neglected flattenings that occur simultaneously in
all the m candidate trees Tk .

3.7 The Euclidean Distance

According to the discussion of the previous subsection, on the geometry of the varieties involved in distinguishing
between the candidate trees, we compute here

• the Euclidean distance of the point Flat{�1,�2,�6}∪{�3,�4,�5}(P) and the determinantal variety D2(8, 8) =
Sec(S(8, 8)),

• the Euclidean distance of the point Flat{�1,�2,�3}∪{�4,�5,�6}(P) from the same determinantal variety D2(8, 8) =
Sec(S(8, 8)),

• the Euclidean distance of the point Flat{�1,�2,�4,�5}∪{�3,�6}(P) from the determinantal variety D2(16, 4) =
Sec(S(16, 4)).

Using the Eckart-Young theorem, we compute these distances using the singular values of these three matrices.
These are given by

�(Flat{�1,�2,�6}∪{�3,�4,�5}(P)) ∼
diag(0.44940, 0.25001, 0.19237 × 10−1, 0.96007 × 10−2, 0.21595 × 10−2, 0.88079 × 10−3, 4.6239 × 10−19, 0)

�(Flat{�1,�2,�3}∪{�4,�5,�6}(P)) ∼
diag(0.44956, 0.25018, 0.14729 × 10−1, 0.44229 × 10−2, 0.27802 × 10−2, 0.24881 × 10−17, 0)

�(Flat{�1,�2,�4,�5}∪{�3,�6}(P)) ∼
diag(0.44939, 0.24994, 0.20625 × 10−1, 0.94442 × 10−2).
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Using (2.5) we then obtain

dist(Flat{�1,�2,�6}∪{�3,�4,�5}(P),Sec(S(8, 8)))2 = σ 2
3 + · · · + σ 2

8 = 0.46768 × 10−3

dist(Flat{�1,�2,�3}∪{�4,�5,�6}(P),Sec(S(8, 8)))2 = σ 2
3 + · · · + σ 2

8 = 0.24424 × 10−3

dist(Flat{�1,�2,�4,�5}∪{�3,�6}(P),Sec(S(16, 4)))2 = σ 2
3 + σ 2

4 = 0.51457 × 10−3

The second Euclidean distance is the smallest, hence this more reliable distance test again favors the binary trees
of pars2 and the binary tree bnb1.

The computation of these Euclidean distances provides a selection between the candidate trees in the following
way. The first distance measures how far the point determined by the data (in the form of the boundary distribution
P and the flattening matrix F1(P)) is from the determinantal variety D2(8, 8) determined by the tree pars1.
The second distance measures how far the point determined by the data, through the flattening F2(P), is from the
determinantal variety determined by the tree pars2, and the third distance measures how far the point, through
the flattening F3(P) is from the determinantal variety D2(16, 4) determined by the tree pars3. Since as observed
above the remaining flattenings of P occur in all trees and do not help distinguishing between them, it suffices to
find the best matching condition between the three possibilities listed here, for which we select the one realizing
the smallest Euclidean distance.

The Euclidean distances computed above provide lower bound estimates for the distances dist(P, VTi ). Even
though these are just lower bounds, they do agree with the phylogenetic invariants test in the selection of the
candidate trees. Heuristically, we can think of this as reflecting the fact that the determinantal varieties associated
to the flattening matrices

Flat{�1,�2}∪{�3,�4,�5,�6}(P) and Flat{�1,�2,�3,�6}∪{�4,�5}(P)

that are common to all the tree candidates are not contributing in discriminating among the different Ti (though see
the more precise discussion in Sect. 2.3 above).

3.8 The West/North Germanic Split from SSWL Data

Note that the tree topology selected in this way, which (up to the position of the root vertex) is equivalent to the tree

Swedish
Icelandic Faroese

English
Dutch German

is also the generally acknowledged correct subdivision of the Germanic languages into the North Germanic and the
West Germanic sub-branches. The North Germanic in turn splits into a sub-brach that contains Swedish (but also
Danish which we have not included here) and another that contains Icelandic and Faroese (and also Norwegian,
which we have not included, in order to keep the number of leaves more manageable). The West Germanic branch
is split into the Anglo-Frisian sub-branch (of which here we are only considering English, but which should also
contain Frisian) and the Netherlandic-Germanic branch that contains Dutch and German. Thus, the analysis through
phylogenetic invariants and the estimate of the Euclidean distance have selected the correct tree topology among
the candidates produced by the computational analysis of the SSWL data obtained with PHYLIP.

3.9 Longobardi Data and Phylogenetic Invariants of Germanic Languages

Now we analyze the set S2(G) consisting of Norwegian, Danish, Icelandic, German, English, Gothic, and Old
English, using the syntactic parameters collected in the new data of Longobardi [24].
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The DNA parsimony algorithm of PHYLIP based solely on the new Longobardi data produces a single candidate
phylogenetic tree for the set S2(G) of Germanic languages, of the form

Danish Norwegian
Icelandic

Gothic Old-English

English German

In fact, because of the presence of a vertex of higher valence in this tree, one should resolve it into the possible
binary trees and compare the resulting candidates. Moreover, the placement of the ancient languages as “leaves” of
the tree is an artifact, and needs to be resolved into the appropriate placement of the root of the binary trees.

We see here that the fact that ancient languages are treated as leaves in the tree although they really are intermediate
nodes creates some problems in the reconstruction provided by PHYLIP. In the PHYLIP tree above Gothic and Old
English are grouped as nearby leaves in the tree, since the reconstruction correctly identifies the closer proximity
of the two ancient languages with respect to the modern ones. However, this causes an error in the proposed tree
topology when these are placed as two nearby leaves. The standard way of resolving the higher valence vertex,
as discussed in the previous section, would maintain this problem. We propose here a simple method for avoiding
this problem, via a simple topological move in the resulting trees that restores the role of these two languages as
intermediate nodes of the tree (and suggests a position of the root vertex) while maintaining their relation to the
rest of the tree.

In particular, this means that we are going to consider possible candidate trees of the following form, where we
set �1 = Norwegian, �2 = Danish, �3 = Gothic, �4 = Old English, �5 = Icelandic, �6 = English, �7 = German.

Wefirst visualize the trees obtained by resolving the triple vertex. To simplify the picture, let uswrite A = {�1, �2}
for the end of the tree containing this pair of adjacent leaves, and similarly for B = {�3, �4},C = {�5}, D = {�6, �7},
so that we can visualize the the three possible binary splits of the vertex in the PHYLIP tree as the trees

B

A C D

B

A C D

B

A D C

We then want to input the extra piece of information concerning the fact that the leaves in the set B = {�3, �4}
are not really leaves but inner vertices of the tree, whose proximity is describing the fact that they are in closer
proximity to the root of the tree than the other leaves, rather than their proximity as leaves. We argue that this can
be done effectively by introducing a simple topological move on these trees that achieves exactly this effect, while
preserving the relation to the rest of the tree, namely the following operation:

More explicitly, thismeans the following. Suppose that a configuration as in the left-hand-side appears in a candidate
tree, where the two bottom leaves are ancient languages placed as nearby leaves of the tree, and the two top directions
continue to other branches of the tree. One replaces it, without changing the rest of the tree, with the configuration on
the right-hand-side. In this configuration, the two bottom leaves are still labelled by the same two ancient languages
and the two top directions are still attached to the same other branches of the tree to which they were connected in the
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left-hand-side. The configuration obtained in this way represents more correctly the role of the ancient languages,
by assigning to each of them an internal vertex of the tree, the vertex to which the leaf is now attached. Note that
on the right-hand-side there are two choices of how to place the labels in the two lower leaves: permuting the two
lower leaves in the left-hand-side has no effect, but permuting them on the right-hand-side gives rise to two different
tree candidates, both of which need to be taken into consideration. In a case like the present one, where these are
the only two ancient languages in the tree, this also suggests that the root vertex should be placed in between these
two points. Applying this operation produces the following list of candidate trees, with (1) and (2) derived from the
first binary tree above, (3) and (4) from the second binary tree above and (5) and (6) from the third one. Note that
each of these pairs corresponds to the two possible choices of labels in the right-hand-side, as mentioned above.

(1) The first candidate tree T1(G) has Icelandic (incorrectly) grouped together with the West Germanic (German,
English) instead of the North Germanic (Norwegian, Danish) languages. The labels �3 and �4 should be thought
of not as leaves but as intermediate vertices placed, respectively, above the {�1, �2} subtree and above the
{�5, �6, �7} subtree.

�1 �2
�3 �4

�5 �6 �7

(2) The second candidate tree T2(G) has the same structure as the previous list (with the incorrect placement of
Icelandic), but with the reversed placement of the two ancient languages �3 and �4, this time with Old English
placed at the top of the North Germanic instead of the West Germanic subtree:

�4 �1 �2
�3

�5 �6 �7

(3) The third candidate tree T3(G) has the correct placement of Icelandic in the North Germanic subtree, with
Gothic above the North Germanic and Old English above the West Germanic subtrees:

�3
�5 �1 �2

�4 �6 �7

(4) The fourth candidate tree T4(G) also has the correct placement of Icelandic in the North Germanic subtree,
now with Old English above the North Germanic and Gothic above the West Germanic subtrees:

�4
�5 �1 �2

�3 �6 �7

(5) The fifth candidate incorrectly places the sets {�1, �2} and {�6, �7} in closer proximity and �5 in a separate
branch away from the ancient languages {�3, �4}, placing �4 as the ancient language in closer proximity to �5:

�5 �4
�3

�6 �7 �1 �2
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(6) The sixth candidate tree also incorrectly places �5 as a separate branch and {�1, �2} and {�6, �7} in the same
branch, while placing �3 as the ancient language in closer proximity to �5:

�5 �3
�4

�6 �7 �1 �2

We first discuss the candidate trees (1)–(4) as these have a lot of common structure that simplifies a common
analysis. We then show what changes for the last two cases.

When considering the new Longobardi data for the purpose of computing phylogenetic invariants, we need to
eliminate from the list all those parameters that have value either 0 (undefined in the terminology of Longobardi’s
data table) or ? (unknown). The reason for eliminating not just the unknown parameters but also those rendered
undefined by entailment relations lies in the fact that the result of [1] that we use for the computation of the
phylogenetic invariants holds for a binary Jukes-Cantor model but not for a ternary one. Thus, we stick to only
those parameters that are defined with binary values ±1 in Longobardi’s table, for all the languages �1, . . . , �7 in
our list of Germanic languages. After the change of notation to binary form, obtained by replacing 1 �→ 1 and
−1 �→ 0, we obtain the following list of parameters

�1 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0]
�2 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0]
�3 = [1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]
�4 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]
�5 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]
�6 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
�7 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
Notice how one is left with a shorter list of only 42 parameters, where most of them have the same value for all
the languages in this group. The only non-zero frequencies for binary vectors (a1, . . . , a7) ∈ F

7
2 that arise in the

boundary distribution at the leaves of the trees are

n1111111 = 12 n0000000 = 24 n1101111 = 1 n1111101 = 1
n1111100 = 1 n1111011 = 1 n1100111 = 1 n0011111 = 1

with probabilities

p1111111 = 2
7 p0000000 = 4

7 p1101111 = 1
42 p1111101 = 1

42

p1111100 = 1
42 p1111011 = 1

42 p1100111 = 1
42 p0011111 = 1

42

and all other pa1···a7 = 0.
We need to consider Flattenings of the boundary tensor P = (pa1···a7) of the form

(1) Flat{�5,�6,�7}∪{�1,�2,�3,�4}
(2) Flat{�1,�2,�3}∪{�4,�5,�6,�7}
(3) Flat{�1,�2,�4}∪{�3,�5,�6,�7}
(4) Flat{�1,�2,�5}∪{�3,�4,�6,�7}
(5) Flat{�4,�6,�7}∪{�1,�2,�3,�5}
(6) Flat{�3,�6,�7}∪{�1,�2,�4,�5}
Note that we do not need to consider the flattenings Flat{�6,�7}∪{�1,�2,�3,�4,�5} and Flat{�1,�2}∪{�3,�4,�5,�6,�6}, as these
are common to all the candidate trees and would not help discriminating between them.

All the flattenings above correspond to 8 × 16 matrices as in Fig. 1, where in each of the cases listed above the
matrix indices (abcde f g) correspond, respectively, to

(1) (abcde f g) = (a5a6a7a1a2a3a4)
(2) (abcde f g) = (a1a2a3a4a5a6a7)
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Fig. 1 Flattenings 8 × 16 matrices

(3) (abcde f g) = (a1a2a4a3a5a6a7)
(4) (abcde f g) = (a1a2a5a3a4a6a7)
(5) (abcde f g) = (a4a6a7a1a2a3a5)
(6) (abcde f g) = (a3a6a7a1a2a4a5)

The probability distributions corresponding to the permutations listed above are respectively given by

(1) n1111101 = 1, n1011111 = 1, n1001111 = 1, n0111111 = 1, n1111100 = 1, n1110011 = 1
(2) n1101111 = 1, n1111101 = 1, n1111100 = 1, n1111011 = 1, n1100111 = 1, n0011111 = 1
(3) n1110111 = 1, n1111101 = 1, n1111100 = 1, n1111011 = 1, n1100111 = 1, n0011111 = 1
(4) n1110111 = 1, n1111101 = 1, n1111100 = 1, n1101111 = 1, n1110011 = 1, n0011111 = 1
(5) n1111101 = 1, n1011111 = 1, n1001111 = 1, n1111110 = 1, n0111101 = 1, n1110011 = 1
(6) n0111111 = 1, n1011111 = 1, n1001111 = 1, n1111110 = 1, n0111101 = 1, n1110011 = 1

while all six cases have the common values n1111111 = 12 and n0000000 = 24.
The corresponding flattening matrices are given by

Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
42 0 0 0 0 1

42 0 1
42 0 0 2

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�1,�2,�3}∪{�4,�5,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

1
42

0 0 0 0 0 1
42 0 0 0 0 0 0 1

42
1
42 0 2

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42 0

0 0 0 0 0 1
42 0 0 0 0 0 0 1

42
1
42

1
42

2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 1
42 0 0 0 0 1

42 0 1
42 0 1

42
2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
42 0 0 0 0 1

42
1
42

1
42 0 0 2

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
42 0 0 1

42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
42

1
42 0 0 0 2

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The trees T5(G) and T6(G) have a slightly different structure, since in addition to placing in closest proxim-
ity the pairs {�1, �2} and {�6, �7} like all other trees they also identify pairs {�4, �5} in the case of T5(G) and
{�3, �5} in the case of T6(G). Thus, while these two trees also have the flattenings Flat{�6,�7}∪{�1,�2,�3,�4,�5} and
Flat{�1,�2}∪{�3,�4,�5,�6,�6} common to all the other trees, they also have a flattening

Flat{�3,�4,�5}∪{�1,�2,�6,�7}
common to both trees T5(G) and T6(G) and

F5 := Flat{�4,�5}∪{�1,�2,�3,�6,�7} for T5(G)

F6 := Flat{�3,�5}∪{�1,�2,�4,�6,�7} for T6(G).
(3.1)

We have as corresponding matrices

Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
42 0 1

42 0 0 0 0 0 0 0 0 1
42

2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

while the matrices (written in transpose form) for F5 and F6 are given in Appendix C.

3.10 Computation of the Phylogenetic Invariants

We compute the phylogenetic invariants using the �∞ and the �1 norm.

(1) The tree T1(G) with flattenings M1 = Flat{�5,�6,�7}∪{�1,�2,�3,�4} and M2 = Flat{�1,�2,�3}∪{�4,�5,�6,�7} gives

‖φT1(P)‖�∞ = max{ max
φ∈D(3)(M1)

|φ(P)| , max
φ∈D(3)(M2)

|φ(P)|} = 4

1029

‖φT1(P)‖�1 =
∑

φ∈D(3)(M1)

|φ(P)| +
∑

φ∈D(3)(M2)

|φ(P)| = 83

8232

(2) The tree T2(G) with flattenings M1 = Flat{�5,�6,�7}∪{�1,�2,�3,�4} and M3 = Flat{�1,�2,�4}∪{�3,�5,�6,�7} gives

‖φT2(P)‖�∞ = max{ max
φ∈D(3)(M1)

|φ(P)| , max
φ∈D(3)(M3)

|φ(P)|} = 4

1029

‖φT2(P)‖�1 =
∑

φ∈D(3)(M1)

|φ(P)| +
∑

φ∈D(3)(M3)

|φ(P)| = 233

24696

(3) The tree T3(G) with flattenings M4 = Flat{�1,�2,�5}∪{�3,�4,�6,�7} and M5 = Flat{�4,�6,�7}∪{�1,�2,�3,�5} gives

‖φT3(P)‖�∞ = max{ max
φ∈D(3)(M4)

|φ(P)| , max
φ∈D(3)(M5)

|φ(P)|} = 1

3087

‖φT3(P)‖�1 =
∑

φ∈D(3)(M4)

|φ(P)| +
∑

φ∈D(3)(M5)

|φ(P)| = 16

3087



Phylogenetics of Indo-European Language Families 829

(4) The tree T4(G) with flattenings M4 = Flat{�1,�2,�5}∪{�3,�4,�6,�7} and M6 = Flat{�3,�6,�7}∪{�1,�2,�4,�5} gives

‖φT4(P)‖�∞ = max{ max
φ∈D(3)(M4)

|φ(P)| , max
φ∈D(3)(M6)

|φ(P)|} = 4

1029

‖φT4(P)‖�1 =
∑

φ∈D(3)(M4)

|φ(P)| +
∑

φ∈D(3)(M6)

|φ(P)| = 181

18522

(5) The tree T5(G) with flattenings F5 of Appendix C and M7 = Flat{�3,�4,�5}∪{�1,�2,�6,�7} gives

‖φT5(P)‖�∞ = max{ max
φ∈D(3)(F5)

|φ(P)| , max
φ∈D(3)(M7)

|φ(P)|} = 4

1029

‖φT5(P)‖�1 =
∑

φ∈D(3)(F5)

|φ(P)| +
∑

φ∈D(3)(M7)

|φ(P)| = 233

24696

(6) The tree T6(G) with flattenings F6 of Appendix C and M7 = Flat{�3,�4,�5}∪{�1,�2,�6,�7} gives

‖φT6(P)‖�∞ = max{ max
φ∈D(3)(F6)

|φ(P)| , max
φ∈D(3)(M7)

|φ(P)|} = 4

1029

‖φT6(P)‖�1 =
∑

φ∈D(3)(F6)

|φ(P)| +
∑

φ∈D(3)(M7)

|φ(P)| = 83

8232

In this case we see that both the �∞ and the �1 norm provide a good test that selects the historically correct tree
T3(G). Note that the �∞ has the same value 4/1029 on all the other candidates and the lower value 1/3087 only
for the correct tree T3(G).

3.11 Estimates of Euclidean Distance for the S2(G) Germanic Languages

We obtain an evaluation of the candidate trees based on computing a lower bound for the Euclidean distance in
terms of distances between the flattening matrices Flate,T (P) of the boundary distribution P and the determinantal
varieties they are expected to lie on. As before, we use the notation with the explicit split of the leaves for the
flattening matrices. More concretely, we have the following:

(1) The Euclidean distance estimate for the tree T1(G) is given by dist(P, VT1) ≥ L1 with

L1 = max{d(Flat{�1,�2,�3}∪{�4,�5,�6,�7}(P),D2(8, 16)), d(Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P),D2(8, 16))}
(2) The Euclidean distance estimate of T2(G) is given by dist(P, VT2) ≥ L2 with

L2 = max{d(Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P),D2(8, 16)), d(Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P),D2(8, 16))}
(3) The Euclidean distance estimate of T3(G) is given by dist(P, VT3) ≥ L3 with

L3 = max{d(Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P),D2(8, 16)), d(Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P),D2(8, 16))}
(4) The Euclidean distance estimate of T4(G) is given by dist(P, VT4) ≥ L4 with

L4 = max{d(Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P),D2(8, 16)), d(Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P),D2(8, 16))}
(5) The Euclidean distance estimate of T5(G) is given by dist(P, VT5) ≥ L5 with

L5 = max{d(Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P),D2(8, 16))
2, d(F5(P),D2(4, 32))

2}
(6) The Euclidean distance estimate of T6(G) is given by dist(P, VT6) ≥ L6 with

L6 = max{d(Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P),D2(8, 16))
2, d(F6(P),D2(4, 32))

2}.
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The singular value decomposition of the flattening matrices gives � = diag(σ1, . . . , σ8) with

�(Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P))

∼ diag(0.57143, 0.291548, 0.58333 × 10−2, 0.12240 × 10−17,

0.10572 × 10−34, 0.16149 × 10−51, 0.63652 × 10−68, 0)

�(Flat{�1,�2,�3}∪{�4,�5,�6,�7})(P))

∼ diag(0.57143, 0.29059, 0.23973 × 10−1, 0.33558 × 10−2, 0.64145 × 10−19, 0.60260 × 10−31, 0, 0)

�(Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P))

∼ diag(0.57143, 0.29061, 0.23809 × 10−1, 0.33787 × 10−2, 0, 0, 0, 0)

�(Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P))

∼ diag(0.57143, 0.29155, 0.54996 × 10−2, 0, 0, 0, 0, 0)

�(Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P))

∼ diag(0.57143, 0.29155, 0.54996 × 10−2, 0, 0, 0, 0, 0)

�(Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P))

∼ diag(0.57143, 0.29059, 0.23892 × 10−1, 0.38881 × 10−2, 0.12435 × 10−17, 0.73417 × 10−19,

0.32257 × 10−34, 0).

�(Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P))

∼ diag(0.57143, 0.29155, 0.58333 × 10−2, 0.18608 × 10−17, 0.32093 × 10−33, 0, 0, 0)

�(F5(P)) = (0.57143, 0.29061, 0.23809 × 10−1, 0.33787 × 10−2)

�(F6(P)) = (0.57143, 0.29060, 0.23973 × 10−1, 0.33558 × 10−2)

By the Eckart-Young theorem we then have

d(Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.34027 × 10−4

d(Flat{�1,�2,�3}∪{�4,�5,�6,�7})(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.58597 × 10−3

d(Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.57831 × 10−3

d(Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.30245 × 10−4

d(Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.30245 × 10−4

d(Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.58595 × 10−3

d(Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P),D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.34027 × 10−4

d(F5(P),D2(4, 32))
2 = σ 2

3 + σ 2
4 = 0.57831 × 10−3

d(F6(P),D2(4, 32))
2 = σ 2

3 + σ 2
4 = 0.58597 × 10−3.

Thus, we obtain

L1 = 0.58597 × 10−3, L2 = 0.57831 × 10−3, L3 = 0.30245 × 10−4, L4 = 0.58595 × 10−3,

L5 = 0.57831 × 10−3, L6 = 0.58597 × 10−3.

Thus, the computation of the phylogenetic invariants selects the tree T3(G) as the preferred candidate phy-
logenetic tree. The estimate of the Euclidean distance shows that the lower bounds obtained for the trees
T1(G), T2(G), T4(G), T5(G), T6(G) are comparable and only T3(G) has a significantly smaller estimate. Thus,
this criterion, even if it is only based on lower bounds, also suggests T3(G) as the most favorable candidate. The
tree T3(G) is indeed the closest to what is regarded as the correct linguistic phylogenetic tree.
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3.12 Comparison with SSWL Data

The DNA parsimony algorithm of PHYLIP produced the following two candidate phylogenetic trees for the set
S2(G) of Germanic languages based on the combination of the Longobardi data and the SSWL data.

English German

Old-English Gothic Icelandic
Danish Norwegian

English German

Old-English Gothic
Icelandic Danish Norwegian

In this case, the inclusion of the additional SSWL data resolves the ambiguity of the PHYLIP tree discussed in
Sect. 3.9. In terms of our treatment of the positioning of the ancient languages, the two trees shown here should be
regarded as corresponding to the possible trees in cases (3) and (4) discussed above in §3.9, for the first tree and
cases (5) and (6) for the second one.

Thus, the set of possible binary trees we should consider for a comparison between the phylogenetic invariants
evaluated on the Longobardi and on the SSWL data, consists of the trees T3(G) and T4(G) and T5(G) and T6(G)

of the previous section. We will evaluate here the phylogenetic invariants and estimate the Euclidean distance
function of these candidate trees (including for completeness also T1(G) and T2(G) of the previous section) using
the boundary distribution based on the SSWL data.

3.13 Boundary Distribution for S2(G) Based on SSWL Data

The Germanic languages in the set S2(G) have a total of 68 SSWL variables that are completely mapped for all
the seven languages in the set. This is significantly smaller than the 90 variables used for the set S1(G). This does
not depend on the languages being poorly mapped: the levels of accuracy are comparable with the previous set
with Danish (76%), Norwegian (75%), German (75%), English (75%), Old English (75%) Icelandic (62%), Gothic
(62%). However, the regions of the overall 115 SSWL variables that are mapped is less uniform across this set of
languages creating a smaller overlap. The set of completely mapped SSWL variables for this set of languages is
reported in Appendix B.
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The occurrences of binary vectors at the leaves is given by

n0,0,0,0,0,0,0 = 26 n1,1,1,1,1,1,1 = 16 n0,0,1,1,0,0,1 = 2
n0,0,1,0,0,0,0 = 3 n1,1,0,1,0,0,0 = 1 n0,0,1,1,1,1,0 = 1
n0,0,1,1,1,0,0 = 1 n0,0,1,0,1,0,0 = 1 n1,1,0,1,0,1,1 = 2
n1,0,1,1,1,0,0 = 1 n1,1,1,1,1,0,1 = 1 n1,1,1,1,1,0,0 = 1
n1,1,1,1,0,1,1 = 3 n1,1,0,1,1,0,1 = 1 n0,0,0,0,1,0,0 = 1
n1,1,0,0,1,1,1 = 1 n0,0,0,0,0,1,0 = 1 n0,0,0,1,0,0,0 = 2
n0,0,0,0,0,0,1 = 1 n0,0,1,1,0,0,0 = 1 n1,1,0,1,1,1,1 = 1

Thus, the boundary probability distribution for the SSWL data for these seven Germanic languages is given by

p0,0,0,0,0,0,0 = 13
34 p1,1,1,1,1,1,1 = 4

17 p0,0,1,1,0,0,1 = 1
34

p0,0,1,0,0,0,0 = 3
68 p1,1,0,1,0,0,0 = 1

68 p0,0,1,1,1,1,0 = 1
68

p0,0,1,1,1,0,0 = 1
68 p0,0,1,0,1,0,0 = 1

68 p1,1,0,1,0,1,1 = 1
34

p1,0,1,1,1,0,0 = 1
68 p1,1,1,1,1,0,1 = 1

68 p1,1,1,1,1,0,0 = 1
68

p1,1,1,1,0,1,1 = 3
68 p1,1,0,1,1,0,1 = 1

68 p0,0,0,0,1,0,0 = 1
68

p1,1,0,0,1,1,1 = 1
68 p0,0,0,0,0,1,0 = 1

68 p0,0,0,1,0,0,0 = 1
34

p0,0,0,0,0,0,1 = 1
68 p0,0,1,1,0,0,0 = 1

68 p1,1,0,1,1,1,1 = 1
68

The six flattening matrices corresponding to the different trees of the previous section are in this case of the
following form.

Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34 0 0 3

68
1
34 0 0 0 0 0 1

68 0 1
68 0 0 0

1
68 0 0 1

68 0 0 0 0 0 0 1
68 0 0 1

68 0 1
68

1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
68 0 0 0 0 0 0 0 0 0 1

34 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
34 0 0 3

68

0 0 0 0 0 0 0 0 0 0 0 0 1
68 0 0 1

68

0 0 0 0 0 0 0 0 0 0 1
68 0 0 0 0 0

0 0 0 0 0 1
68 0 0 0 0 0 0 1

68 0 0 4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�1,�2,�3}∪{�4,�5,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34

1
34

1
68

1
68

1
68 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
68

1
68

1
68 0 0 1

68 0 1
34 0 0 0 1

68 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68 0 0 0 0 0 0 0 0 0 0

0 1
68 0 0 0 0 0 0 0 0 0 0 1

68
1
34

1
68

1
68

0 0 0 0 0 1
68 0 0 0 0 0 0 1

68
3
68 0 4

17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34

3
68

1
68

1
68

1
68

1
68 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
34

1
68 0 0 0 1

68 0 1
34 0 0 0 1

68 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
68 0

1
68 0 0 0 0 1

68 0 0 0 1
68

1
34 0 1

68
3
68

1
68

4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34

3
68

1
34

1
68

1
68

1
68 0 0 0 0 0 0 1

34 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
68

1
68 0 0 0 1

68 0 0 0 0 0 1
68 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68 0 0 0 0 0 0 0 0 0 0

0 0 1
68 0 0 0 0 0 0 0 0 0 0 0 1

34
3
68

0 0 0 0 0 1
68 0 0 0 1

68
1
68 0 1

68 0 1
68

4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34 0 0 3

68
1
68 0 0 0 0 0 1

68 0 0 0 0 0
1
34 0 0 1

68 0 1
68 0 0 0 0 1

68 0 0 1
68 0 1

68
1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
68 0 0 0

0 0 0 1
34 0 0 0 0 0 0 0 0 1

68 0 0 1
68

0 0 0 0 0 0 0 0 0 0 1
68 0 0 0 0 0

0 0 0 0 0 1
34 0 0 0 0 0 3

68
1
68 0 0 4

17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34 0 0 1

34
1
68 0 0 0 0 0 0 1

68 0 0 0 0
3
68 0 0 1

68
1
68 0 0 0 0 0 1

68 0 0 1
68 0 1

68
1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

68

0 0 0 0 0 0 0 0 0 0 0 1
34

1
68 0 0 1

68

0 0 0 1
34 0 0 0 0 0 0 0 0 0 0 0 1

68

0 0 0 0 0 0 0 0 0 0 1
68 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3
68 0 0 0 4

17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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3.13.1 The Trees T5 and T6

For the two remaining trees we have the flattening matrix

Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34 0 0 0 1

68
1
68 0 0

1
34 0 0 1

68 0 0 0 0
3
68 0 0 0 0 0 0 0
1
68 0 0 0 0 1

34 0 0
1
68 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
68 0 0 0 0 0 0 0
1
68

1
68 0 1

68
1
68 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
34

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3
68

0 0 0 0 0 0 0 1
68

0 0 0 0 0 0 1
68

1
68

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
68

4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrices for the flattenings F5 and F6 given in the Appendix C.

3.14 Phylogenetic Invariants

We compute the phylogenetic invariants, using either the �∞ or the �1 norm. This case shows, as observed already
in [8], that the �1 norm gives more reliable results than the �∞ norm.

• For the first tree T1(G) we consider all 3 × 3 minors of the flattenings

M1 = Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P) and M2 = Flat{�1,�2,�3}∪{�4,�5,�6,�7}(P)

and we obtain

‖φT1(P)‖�∞ = max
D(3)(M1)∪D(3)(M2)

|φ(P)| = 13

4913

‖φT1(P)‖�1 =
∑

D(3)(M1)∪D(3)(M2)

|φ(P)| = 8811

157216

• For the second tree T2(G) we consider all 3 × 3 minors of the flattenings

M1 = Flat{�5,�6,�7}∪{�1,�2,�3,�4}(P) and M3 = Flat{�1,�2,�4}∪{�3,�5,�6,�7}(P)

and we obtain

‖φT2(P)‖�∞ = max
D(3)(M1)∪D(3)(M3)

|φ(P)| = 13

4913

‖φT2(P)‖�1 =
∑

D(3)(M1)∪D(3)(M3)

|φ(P)| = 7103

157216
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• For the third tree T3(G) we consider all 3 × 3 minors of the flattenings

M4 = Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P) and M5 = Flat{�4,�6,�7}∪{�1,�2,�3,�5}(P)

and we obtain

‖φT3(P)‖�∞ = max
D(3)(M4)∪D(3)(M5)

|φ(P)| = 13

4913

‖φT3(P)‖�1 =
∑

D(3)(M4)∪D(3)(M5)

|φ(P)| = 5439

157216

• For the fourth tree T4(G) we consider all 3 × 3 minors of the flattenings

M4 = Flat{�1,�2,�5}∪{�3,�4,�6,�7}(P) and M6 = Flat{�3,�6,�7}∪{�1,�2,�4,�5}(P)

and we obtain

‖φT4(P)‖�∞ = max
D(3)(M4)∪D(3)(M6)

|φ(P)| = 13

4913

‖φT4(P)‖�1 =
∑

D(3)(M4)∪D(3)(M6)

|φ(P)| = 5739

157216

• For the fifth tree T5(G) we consider all 3 × 3 minors of the flattenings

M7 = Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P) and F5 (as in Appendix C)

and we obtain

‖φT5(P)‖�∞ = max
D(3)(M7)∪D(3)(F5)

|φ(P)| = 13

4913

‖φT5(P)‖�1 =
∑

D(3)(M7)∪D(3)(F5)

|φ(P)| = 25

578

• For the sixth tree T6(G) we consider all 3 × 3 minors of the flattenings

M7 = Flat{�3,�4,�5}∪{�1,�2,�6,�7}(P) and F6 (as in Appendix C)

and we obtain

‖φT6(P)‖�∞ = max
D(3)(M7)∪D(3)(F6)

|φ(P)| = 207

78608

‖φT6(P)‖�1 =
∑

D(3)(M7)∪D(3)(F6)

|φ(P)| = 11795

314432

When we evaluate the minimum among these candidate trees we see that using the �∞ norm in this case would
incorrectly select the tree T6(G) as the best candidate, while using the �1 norm correctly selects T3(G)

min
T

‖φT (P)‖�∞ = 207

78608
= ‖φT6(P)‖�∞

min
T

‖φT (P)‖�1 = 5439

157216
= ‖φT3(P)‖�1 .

The �∞ norm also does not distinguish at all between the trees T1(G), . . . , T5(G).

3.15 Euclidean Distance Function Estimates

The Euclidean distance lower bound estimate can be obtained as in §3.11 by replacing the boundary probability
based on the Longobardi data with the one based on SSWL data. We obtain the following.
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The singular value decompositions � = diag(σk) are now of the form

�(M1) = (0.38754, 0.24162, 0.36255 × 10−1, 0.29457 × 10−1,

0.17913 × 10−1, 0.18822 × 10−2, 0.44554 × 10−3, 0.81454 × 10−18)

�(M2) = (0.38705, 0.24121, 0.40755 × 10−1, 0.35206 × 10−1,

0.13458 × 10−1, 0.25922 × 10−17, 0.30537 × 10−18, 0.12727 × 10−32)

�(M3) = (0.38779, 0.24265, 0.37646 × 10−1, 0.14679 × 10−1,

0.13520 × 10−1, 0.72298 × 10−17, 0.10019 × 10−18, 0.15015 × 10−30)

�(M4) = (0.38833, 0.23760, 0.54943 × 10−1, 0.25989 × 10−1,

0.11091 × 10−1, 0.37355 × 10−17, 0.11876 × 10−18, 0.41814 × 10−32)

�(M5) = (0.38730, 0.24267, 0.35401 × 10−1, 0.25107 × 10−1,

0.13409 × 10−1, 0.10671 × 10−1, 0.83305 × 10−3, 0.63417 × 10−18)

�(M6) = (0.38735, 0.24147, 0.34918 × 10−1, 0.29212 × 10−1,

0.23098 × 10−1, 0.10765 × 10−1, 0.17668 × 10−2, 0.31311 × 10−3)

�(M7) = (0.38775, 0.24257, 0.29048 × 10−1, 0.26515 × 10−1,

0.14181 × 10−1, 0.11708 × 10−1, 0.13047 × 10−2, 0.60234 × 10−18)

�(F5) = (0.38710, 0.24296, 0.44347 × 10−1, 0.15179 × 10−1)

�(F6) = (0.39170, 0.23723, 0.30854 × 10−1, 0.20237 × 10−1)

One obtains from these the Euclidean distances

d(M1,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.25068 × 10−2

d(M2,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.30816 × 10−2

d(M3,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.18155 × 10−2

d(M4,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.38172 × 10−2

d(M5,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.21780 × 10−2

d(M6,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.27252 × 10−2

d(M7,D2(8, 16))
2 = σ 2

3 + · · · + σ 2
8 = 0.18867 × 10−2

d(F5,D2(4, 32))
2 = σ 2

3 + σ 2
4 = 0.21971 × 10−2

d(F6,D2(4, 32))
2 = σ 2

3 + σ 2
4 = 0.13615 × 10−2.

From these distances, computed using the Eckart–Young theorem, one derives then estimates for the Euclidean
distance of the form dist(P, VTi ) ≥ Li where the Li are computed as maxima of the distances in the list above that
occur in the case of the tree Ti , in the same way as shown in Sect. 3.11.

We find that, in the case of the SSWL data for these Germanic languages, the lower bound on the Euclidean
distance gives a less reliable answer. While it correctly excludes the candidates T1(G), T2(G), T4(G), T5(G), it
assigns the lowest value to the tree T6(G) rather than to the correct tree T3(G) selected by the phylogenetic
invariants (computed with the �1-norm). Thus, we see here an example where the lower bound is an unreliable
predictor of the actual Euclidean distance. This example confirms the expectation that Longobardi’s LanGeLin data
behave better for phylogenetic reconstruction than the SSWL data.

A possible explanation for this phenomenon lies in the fact that, although the list of SSWL variables for this
set of languages is longer than the list of variables in the Longobardi data, there is a high degree of dependency
between the SSWL data. This was also observed in [38] where the dependencies between SSWL variables were
studied using Kanerva networks. Thus, the actual number of independent variables that contribute to the boundary
distribution may be smaller in the use of the SSWL data. The fact that the languages in the set S2(G) have a smaller
overlap in the regions of the SSWL variables that are uniformly mapped for all languages, compared to those in
the set S1(G) further explains why the �∞-phylogenetic invariants and the Euclidean distance evaluated on the
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boundary distribution of SSWL data correctly identify the best tree in the S1(G) case but not in the S2(G) case and
the �1-phylogenetic invariant identifies the correct tree in the case of S2(G) only by a small margin. We will return
to discuss this point in §8 below.

4 Phylogenetic Algebraic Varieties of the Romance Languages

We consider here the case of the Romance subfamily of the Indo-European language family. In particular, we focus
of the relative position of the languages �1 = Latin, �2 = Romanian, �3 = French, �4 = Italian, �5 = Spanish,
and �6 = Portuguese. We use the combined data of the SSWL and the Longobardi databases for this phylogenetic
analysis, where we retain only those features of the SSWL database that are completely mapped for all of these
languages.

When run on this set of syntactic data, the PHYLIP phylogenetic program produces a unique most parsimonious
tree candidate, which is given by the tree T1

�1
�2

�5
�6 �3 �4

with the additional linguistic information that �1 (Latin) should be considered as the root vertex, since the tree
produced by PHYLIP is unrooted. There is clearly a problem with this tree, since the topology one expects based
on historical linguistics is instead given by the tree T2

�1
�2

�4
�3 �5 �6

4.1 Flattening Matrices of the PHYLIP Tree

There are three flattening matrices associated to the tree T1, given by the three possible splits e1 = {�1, �2} ∪
{�3, �4, �5, �6}, e2 = {�1, �2, �5} ∪ {�3, �4, �6} and e3 = {�1, �2, �5, �6} ∪ {�3, �4}. With the boundary probability
distribution given by the combined SSWL and Longobardi data, these are given by

Flate1,T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2 0.0121 0.0606 0.0121
0 0 0 0.0061
0 0 0.0061 0
0 0 0.0061 0
0 0 0 0.0061
0 0 0 0
0 0 0 0
0 0 0 0.0182

0.0242 0 0.0182 0
0 0.0061 0 0
0 0 0 0
0 0 0.0061 0

0.0061 0 0 0.0061
0 0 0 0

0.0061 0 0 0.0061
0.0364 0.1091 0.0364 0.4121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Flate2,T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2 0 0.0121 0 0.0606 0 0.0121 0.0061
0 0 0 0 0.0061 0.0061 0 0
0 0 0 0 0 0 0.0061 0
0 0 0 0 0 0 0 0.0182

0.0242 0 0 0.0061 0.0182 0 0 0
0 0 0 0 0 0.0061 0 0

0.0061 0 0 0 0 0 0.0061 0
0.0061 0.0364 0 0.1091 0 0.0364 0.0061 0.4121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

while the third flattening Flate3,T1 is given by⎛
⎜⎜⎝

0.2 0 0.0121 0 0 0 0 0 0.0606 0 0.0121 0.0061 0.0061 0.0061 0 0
0 0 0 0 0 0 0 0 0 0 0.0061 0 0 0 0 0.0182

0.0242 0 0 0.0061 0 0 0 0 0.0182 0 0 0 0 0.0061 0 0
0.0061 0 0 0 0.0061 0.0364 0 0.1091 0 0 0.0061 0 0 0.0364 0.0061 0.4121

⎞
⎟⎟⎠

4.2 Flattening Matrices of the Historically Correct Tree

When we consider the linguistically correct tree T2, instead of the tree T1 computed by PHYLIP, using the same
syntactic data for the boundary distribution, we find the flattening matrices which correspond to the splittings
e′
1 = {�1, �2} ∪ {�3, �4, �5, �6}, e′

2 = {�1, �2, �4} ∪ {�3, �5, �6} and e′
3 = {�1, �2, �3, �4} ∪ {�5, �6}.

Flate′
1,T2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2 0 0 0
0.0121 0 0 0
0.0606 0 0.0061 0.0061
0.0121 0.0061 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0.0061 0 0 0.0182
0.0242 0 0 0

0 0.0061 0 0
0.0182 0 0 0.0061

0 0 0 0
0.0061 0 0.0061 0.0364

0 0 0 0.1091
0 0 0 0.0364

0.0061 0 0.0061 0.4121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flate′
2,T2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2 0 0 0 0.0242 0 0 0
0.0121 0 0 0 0 0.0061 0 0
0.0606 0 0.0061 0.0061 0.0182 0 0 0.0061
0.0121 0.0061 0 0 0 0 0 0

0 0 0 0 0.0061 0 0.0061 0.0364
0 0 0 0 0 0 0 0.1091
0 0 0 0 0 0 0 0.0364

0.0061 0 0 0.0182 0.0061 0 0.0061 0.4121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and with the third flattening matrix Flate′
3,T2

given by⎛
⎜⎜⎝

0.2 0 0 0 0 0 0 0 0.0242 0 0 0 0.0061 0 0.0061 0.0364
0.0121 0 0 0 0 0 0 0 0 0.0061 0 0 0 0 0 0.1091
0.0606 0 0.0061 0.0061 0 0 0 0 0.0182 0 0 0.0061 0 0 0 0.0364
0.0121 0.0061 0 0 0.0061 0 0 0.0182 0 0 0 0 0.0061 0 0.0061 0.4121

⎞
⎟⎟⎠
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4.3 Phylogenetic Invariants

We compare the phylogenetic invariants of these two trees computed with respect to the �∞ and the �1 norm.

(1) from the PHYLIP tree T1 we obtain:

‖�T1(P)‖�∞ = max{ max
φ∈D(3)

e1,T1

|φ(P)|, max
φ∈D(3)

e2,T1

|φ(P)|, max
φ∈D(3)

e3,T1

|φ(P)|} = 0.89579 × 10−3

‖�T1(P)‖�1 =
∑

φ∈D(3)
e1,T1

|φ(P)| +
∑

φ∈D(3)
e2,T1

|φ(P)| +
∑

φ∈D(3)
e3,T1

|φ(P)| = 0.24790 × 10−1

(2) for the historically correct tree T2 we find:

‖�T2(P)‖�∞ = max{ max
φ∈D(3)

e′1,T2

|φ(P)|, max
φ∈D(3)

e′2,T2

|φ(P)|, max
φ∈D(3)

e′3,T2

|φ(P)|} = 0.89579 × 10−3

‖�T2(P)‖�1 =
∑

φ∈D(3)
e′1,T2

|φ(P)| +
∑

φ∈D(3)
e′2,T2

|φ(P)| +
∑

φ∈D(3)
e′3,T2

|φ(P)| = 0.22681 × 10−1

Once againwe see that the �1 norm reliably distinguishes the historically correct tree T2 over the incorrect PHYLIP
candidate, while the �∞ norm gives the same result for both candidate trees and does not help distinguishing them.

4.4 Estimate of the Euclidean Distance

We also compute a lower bound estimate on the Euclidean distance. In the case of the first tree T1 The Euclidean
distances of the flattening matrices from the respective determinantal varieties are given by

D1,1 = dist(Flate1,T1 ,D2(4, 16)), D1,2 = dist(Flate2,T1 ,D2(8, 8)), D1,3 = dist(Flate3,T1 ,D2(16, 4)).

The singular values of the flattening matrices are given, respectively, by

�(Flate1,T1) = (0.4320, 0.2075, 0.14766 × 10−1, 0.8211 × 10−2)

while the singular values of Flate2,T1 are given by

(0.4299, 0.2115, 0.1390 × 10−1, 0.8586 × 10−2, 0.7806 × 10−2, 0.4896 × 10−2, 0.8464 × 10−3, 0.1867 × 10−3)

and

�(Flate3,T1) = (0.4299, 0.2118, 0.1332 × 10−1, 0.7593 × 10−2).

Thus, the Euclidean distances are given, respectively, by

D2
1,1 = 0.2854 × 10−3

D2
1,2 = 0.3525 × 10−3

D2
1,3 = 0.2351 × 10−3

For the second tree T2 the Euclidean distances of the flattening matrices to the corresponding determinantal
varieties are given by

D2
2,1 = 0.1390 × 10−3,

which is computed using the singular values

�(Flate1,T2) = (0.4300, 0.2119, 0.8567 × 10−2, 0.8102 × 10−2),

D2
2,2 = 0.3390 × 10−3
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computed using the singular values �(Flate2,T2) given by

(0.4299, 0.2115, 0.14218 × 10−1, 0.6889 × 10−2, 0.6061 × 10−2, 0.6007 × 10−2, 0.4070 × 10−2, 0.7823 × 10−19)

and

D2
2,3 = 0.2854 × 10−3

with singular values

�(Flate3,T2) = (0.4320, 0.2075, 0.1477 × 10−1, 0.8211 × 10−2).

Thus if we compare the two models T1 and T2 using the maximum between the distances as a lower bound for
the Euclidean distance to the phylogenetic variety we find

L1 = max{D2
1,1, D2

1,2, D2
1,3} = 0.3525 × 10−3

L2 = max{D2
2,1, D2

2,2, D2
2,3} = 0.3390 × 10−3,

hence L2 < L1, which also favors the historically correct tree T2:

Latin

Romanian

Italian

French
Spanish Portuguese

5 Phylogenetic Algebraic Varieties of the Slavic Languages

We then consider a set of Slavic languages: �1 = Russian, �2 = Polish, �3 = Bulgarian, �4 = Serb-Croatian, �5 =
Slovenian, for which we again use a combination of SSWL and Longobardi data. The PHYLIP most parsimonious
trees algorithm produces in this case five candidate trees when run on this combination of syntactic data. We use
additional linguistic information on where the root vertex should be placed, separating the West-Slavic branch
where Polish resides from the part of the tree that contains both the East-Slavic branch and the South-Slavic branch.

We see then that the candidate trees are respectively given by

T4 =
�2 �3 �1 �4 �5

T5 =
�2

�1 �3 �4 �5

(1) The first tree T1 incorrectly places Bulgarian in closer proximity to Serb-Croatian than Slovenian.
(2) The second tree T2 has a similar misplacement, with Bulgarian appearing to be in greater proximity to Slovenian

than Serb-Croatian.
(3) The third tree T3 correctly places Slovenian and Serb-Croatian in closest proximity, and it also correctly places

Bulgarian in the same South-Slavic subbranch with the pair of Slovenian and Serb-Croatian, so it corresponds
to the correct tree topology that matches what is known from historical linguistics.

(4) The fourth tree T4 misplaces Bulgarian in the West-Slavic branch with Polish instead of placing it in the
South-Slavic branch.

(5) The fifth tree T5 misplaces Bulgarian in the East-Slavic branch with Russian instead of placing it in the South-
Slavic branch.
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5.1 Flattening Matrices

We write here the flattening matrices using either the edge and tree subscript of the split notation as in Sect. 3,
according to how it is more convenient: the following list makes it clear how these two notations match. The splits
for the trees above are given by

T1 : e1 = {�1, �2} ∪ {�3, �4, �5}, e2 = {�1, �2, �5} ∪ {�3, �4}
T2 : e1 = {�1, �2} ∪ {�3, �4, �5}, e2 = {�1, �2, �4} ∪ {�3, �5}
T3 : e1 = {�1, �2} ∪ {�3, �4, �5}, e2 = {�1, �2, �3} ∪ {�4, �5}
T4 : e1 = {�2, �3} ∪ {�1, �4, �5}, e2 = {�1, �2, �3} ∪ {�4, �5}
T5 : e1 = {�1, �3} ∪ {�2, �4, �5}, e2 = {�1, �2, �3} ∪ {�4, �5}.

(5.1)

The flattening matrices for these trees are given by the following

(1) For the tree T1 the flattening matrices are

Flate1,T1 = Flat{�1,�2}∪{�3,�4,�5} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5122 0.0 0.0122 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0610
0.0854 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3049

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flate2,T1 = Flat{�1,�2,�5}∪{�3,�4} =

⎛
⎜⎜⎝
0.5122 0.0 0.0 0.0 0.0122 0.0 0.0 0.0
0.0 0.0122 0.0 0.0 0.0 0.0 0.0 0.0610

0.0854 0.0 0.0 0.0 0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3049

⎞
⎟⎟⎠

(2) For the tree T2 the flattening matrices are Flate1,T2 = Flat{�1,�2}∪{�3,�4,�5} as above and

Flate2,T2 = Flat{�1,�2,�4}∪{�3,�5} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5122 0.0 0.0854 0.0
0.0 0.0122 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0610 0.0 0.3049

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3) For the tree T3 the flattening matrices are Flate1,T3 = Flat{�1,�2}∪{�3,�4,�5} as above and

Flate2,T3 = Flat{�1,�2,�3}∪{�4,�5} =

⎛
⎜⎜⎝
0.5122 0.0 0.0122 0.0 0.0854 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0610 0.0 0.0 0.0 0.3049

⎞
⎟⎟⎠

(4) For the tree T4 the flattening matrices are Flate2,T4 = Flat{�1,�2,�3}∪{�4,�5} as above and

Flate1,T4 = Flat{�2,�3}∪{�1,�4,�5} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5122 0.0122 0.0854 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(5) For the tree T5 the flattening matrices are Flate2,T5 = Flat{�1,�2,�3}∪{�4,�5} as above and

Flate1,T5 = Flat{�1,�3}∪{�2,�4,�5} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5122 0.0 0.0854 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0122 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.2 Phylogenetic Invariants

When evaluating the phylogenetic invariant for the boundary probability distribution given by the combination of
the SSWL and Longobardi data we have the following result

(1) For the tree T1:

‖�T1(P)‖�∞ = max{ max
φ∈D(3)

e1,T1

|φ(P)|, max
φ∈D(3)

e2 .T1

|φ(P)|} = 0.19043 × 10−2

‖�T1(P)‖�1 =
∑

φ∈D(3)
e1,T1

|φ(P)| +
∑

φ∈D(3)
e2,T1

|φ(P)| = 0.31794 × 10−2

(2) For the tree T2:

‖�T2(P)‖�∞ = max{ max
φ∈D(3)

e1,T2

|φ(P)|, max
φ∈D(3)

e2,T2

|φ(P)|} = 0.19043 × 10−2

‖�T2(P)‖�1 =
∑

φ∈D(3)
e1,T2

|φ(P)| +
∑

φ∈D(3)
e2,T2

|φ(P)| = 0.36582 × 10−2

(3) For the tree T3:

‖�T3(P)‖�∞ = max{ max
φ∈D(3)

e1,T3

|φ(P)|, max
φ∈D(3)

e2,T3

|φ(P)|} = 0.38087 × 10−3

‖�T3(P)‖�1 =
∑

φ∈D(3)
e1,T3

|φ(P)| +
∑

φ∈D(3)
e2,T3

|φ(P)| = 0.90864 × 10−3

(4) For the tree T4:

‖�T4(P)‖�∞ = max{ max
φ∈D(3)

e1,T4

|φ(P)|, max
φ∈D(3)

e2,T4

|φ(P)|} = 0.38087 × 10−3

‖�T4(P)‖�1 =
∑

φ∈D(3)
e1,T4

|φ(P)| +
∑

φ∈D(3)
e2,T4

|φ(P)| = 0.13621 × 10−2

(5) For the tree T5:

‖�T5(P)‖�∞ = max{ max
φ∈D(3)

e1,T5

|φ(P)|, max
φ∈D(3)

e2,T5

|φ(P)|} = 0.38087 × 10−3

‖�T5(P)‖�1 =
∑

φ∈D(3)
e1,T5

|φ(P)| +
∑

φ∈D(3)
e2,T5

|φ(P)| = 0.17175 × 10−2

For this set of languages we see again, as observed in [8], that the �1 norm is a better test than the �∞ norm for the
evaluation of the phylogenetic invariants. While the �∞ norm does not distinguish between the trees T3, T4, T5, the
�1 norm correctly singles out T3 as the preferred candidate.
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5.3 Estimates of Euclidean Distance

The matrix Flat{�1,�2}∪{�3,�4,�5} has singular values

�(Flat{�1,�2}∪{�3,�4,�5}) = (0.5195, 0.3111, 0.2023 × 10−2, 0.2577 × 10−17, 0, 0, 0, 0).

The matrix Flat{�1,�2,�3}∪{�4,�5} has singular values

�(Flat{�1,�2,�3}∪{�4,�5}) = (0.5196, 0.3110, 0.2391 × 10−2, 0).

The remaining matrices have

�(Flate2,T1) = (0.5194, 0.3112, 0.1196 × 10−1, 0.2003 × 10−2),

�(Flate2,T2) = (0.5194, 0.3112, 0.1220 × 10−1, 0.2004 × 10−2, 0, 0, 0, 0),
�(Flate1,T4) = (0.5195, 0.3111, 0.2438 × 10−2, 0.1964 × 10−2, 0, 0, 0, 0),
�(Flate1,T5) = (0.5195, 0.3111, 0.2834 × 10−2, 0.2390 × 10−2, 0, 0, 0, 0).

The computation of the Euclidean distances then gives

(1) For the tree T1

dist(Flate1,T1 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.4094 × 10−5

dist(Flate2,T1 ,D2(8, 4))
2 = σ 2

3 + σ 2
4 = 0.1470 × 10−3

(2) For the tree T2

dist(Flate1,T2 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.4094 × 10−5

dist(Flate2,T2 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.1527 × 10−3

(3) For the tree T3

dist(Flate1,T3 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.4094 × 10−5

dist(Flate2,T3 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.5718 × 10−5

(4) For the tree T4

dist(Flate1,T4 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.9803 × 10−5

dist(Flate2,T4 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.5718 × 10−5

(5) For the tree T5

dist(Flate1,T5 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.1374 × 10−4

dist(Flate2,T5 ,D2(4, 8))
2 = σ 2

3 + · · · σ 2
8 = 0.5718 × 10−5

The lower bounds on the Euclidean distance function obtained above indicate as preferred candidate the tree T3,
which is the correct linguistic tree:

Polish

Russian

Bulgarian

Serb-Croatian Slovenian
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6 Phylogenetic Algebraic Varieties of the Early Indo-European Tree

We now discuss the last phylogenetic problem listed in the Introduction, namely the early branchings of the Indo-
European tree involving the set of languages Hittite, Tocharian, Albanian, Armenian, and Greek. We analyze here
the difference between the trees of [6] and [43], when seen from the point of view of Phylogenetic Algebraic
Geometry.

6.1 Trees and Phylogenetic Invariants

Once we restrict our attention to the five languages listed above, the trees of [6] and [43] that we wish to compare
result in the smaller five-leaf trees

Hittite

Tocharian Armenian Albanian Greek

for the case computed by [6], and the tree

Hittite

Tocharian

Albanian
Armenian Greek

for the case computed by [43].
Forgetting momentarily the position of the root vertex (which is in both trees adjacent to the Anatolian branch),

we are comparing two trees of the form

�3

�1 �2 �4 �5

�3
�1

�4 �2 �5

where we have �1 = Tocharian, �2 = Armenian, �3 = Hittite, �4 = Albanian, �5 = Greek. The splits correspond
to

T1 : e1 = {�1, �2} ∪ {�3, �4, �5} e2 = {�1, �2, �3} ∪ {�4, �5}
T2 : e1 = {�1, �3} ∪ {�4, �2, �5} e2 = {�1, �3, �4} ∪ {�2, �5}.
In order to compare the two possibilities then,we evaluate the phylogenetic invariants on the boundary distribution

obtained from the data of SSWL variables for the five languages, distributed in the leaves of the tree in one of the
two ways described above, and we compute estimates of the Euclidean distance function.

6.2 Syntactic Structures and Boundary Distributions

One of the main problems with the SSWL database is that the binary variables of syntactic structures are very
non-uniformly mapped across languages. In order to use the data for phylogenetic reconstruction, it is necessary
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Fig. 2 The SSWL syntactic
parameters P that are
completely mapped for the
set languages Tocharian A,
Hittite, Albanian,
Armenian, Ancient Greek,
and their values on each
language

P [Tocharian A, Hittite, Albanian, Armenian, A.Greek]
01 [1,1,1,1,1]
06 [1,1,0,1,1]
11 [1,0,1,1,1]
12 [1,1,1,1,1]
13 [1,1,0,1,1]
15 [1,1,1,1,1]
17 [1,1,1,1,1]
19 [1,1,0,1,1]
21 [1,1,0,1,1]
A01 [1,1,1,0,1]
A02 [1,1,1,0,1]
Neg 01 [1,1,1,1,1]
Neg 03 [0,0,0,1,0]
Neg 04 [0,0,0,0,0]
Neg 07 [0,0,0,0,0]
Neg 08 [0,0,0,0,0]
Neg 09 [0,0,0,0,0]
Neg 10 [0,0,0,0,0]
Neg 12 [0,0,0,0,0]
Neg 13 [0,0,0,0,0]
Neg 14 [0,0,0,0,0]
Order N3 01 [1,1,1,1,1]

to restrict to only those variables that are completely mapped for all the languages considered. In our present case,
some of the languages are very poorly mapped in the SSWL database: Tocharian A is only 19%mapped, Tocharian
B 18%, Hittite is 32%mapped, Albanian 69%, Armenian 89% and (Ancient) Greek is also 89%mapped. Moreover,
not all the 29 binary syntactic variables that are mapped for Tocharian A are also among the variables mapped for
Hittite. This reduces the list of syntactic variables that are completely mapped for all five of these languages to a
total of only 22 variables. The variables (listed with the name used in the SSWL database) and the resulting values
are given in the table in Fig. 2. Based on these data, the boundary distribution for the two cases considered above
is given by the following. In the first case the frequencies are given by

p00000 = 4/11, p11111 = 3/11, p11101 = 2/11,
p11011 = 1/22, p10111 = 1/11, p01000 = 1/22

with pi1,...,i5 = 0 for all the remaining binary vectors in {0, 1}5. In the second case we have frequencies

p00000 = 4/11, p11111 = 3/11, p11011 = 2/11,
p10111 = 1/22, p11101 = 1/11, p00010 = 1/22

with pi1,...,i5 = 0 for all the remaining binary vectors in {0, 1}5.
For the first case, the flattening matrices evaluated at the boundary distribution P give the matrices

Flate1,T1 =

⎛
⎜⎜⎜⎜⎜⎝

4
11 0 0 0 0 0 0 0
1
22 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
11

0 0 0 1
22 0 2

11 0 3
11

⎞
⎟⎟⎟⎟⎟⎠



846 K. Shu et al.

Flate2,T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
11 0 0 0

0 0 0 0
1
22 0 0 0

0 0 0 0
0 0 0 0

0 0 0 1
11

0 0 0 1
22

0 2
11 0 3

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the second case, on the other hand, we obtain the matrices

Flate1,T2 =

⎛
⎜⎜⎜⎜⎜⎝

4
11 0 1

22 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
22

0 0 0 2
11 0 1

11 0 3
11

⎞
⎟⎟⎟⎟⎟⎠

Flate2,T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
11 0 1

22 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
22

0 0 0 2
11

0 1
11 0 3

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6.3 Phylogenetic Invariants

The evaluation of the phylogenetic invariants on these two boundary distributions by evaluating the 3 × 3 minors
of the matrices above gives

(1) For the Gray-Atkins tree T1:

‖�T1(P)‖�∞ = max
φ∈D(3)

e1,T1
∪D(3)

e2,T1

|φ(P)| = 8

1331

‖�T1(P)‖�1 =
∑

φ∈D(3)
e1,T1

∪D(3)
e2,T1

|φ(P)| = 61

2662

(2) For the Ringe–Warnow–Taylor tree T2:

‖�T1(P)‖�∞ = max
φ∈D(3)

e1,T2
∪D(3)

e2,T2

|φ(P)| = 8

1331

‖�T1(P)‖�1 =
∑

φ∈D(3)
e1,T2

∪D(3)
e2,T2

|φ(P)| = 18

1331
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On the basis of this naive test of evaluation of the phylogenetic invariants, the �∞ norm does not distinguish the
two trees while the �1 norm prefers the Ringe–Warnow–Taylor tree T2. We show below that this preference is also
confirmed by an estimation of the Euclidean distance.

6.4 Estimate of the Euclidean Distance Function

In this case, in order to obtain a lower bound estimate of the Euclidean distance for the two trees T1 and T2, we
compute the distances

D1,1 = dist(Flate1,T1(P),D2(4, 8)), D1,2 = dist(Flate2,T2(P),D2(8, 4))

with the Euclidean distance estimate of T1 given by L1 = max{D1,1, D1,2} and
D2,1 = dist(Flate1,T2(P),D2(4, 8)), D2,1 = dist(Flate2,T2(P),D2(8, 4))

with the Euclidean distance estimate of T2 given by L2 = max{D2,1, D2,2}.
The computation of the singular values � = (σ1, . . . , σ4) of the flattening matrices Flatei ,Tj (P) gives

�(Flate1,T1(P)) = diag(0.3664662612, 0.3394847389, 0.5018672314 × 10−1, 0)

�(Flate2,T1(P)) = diag(0.3664662612, 0.3388120907, 0.5454321492 × 10−1, 0)

�(Flate1,T2(P)) = diag(0.3664662613, 0.3421098124, 0.2700872640 × 10−1, 0)

�(Flate2,T2(P)) = diag(0.3664662613, 0.3394847388, 0.5018672301 × 10−1, 0).

Since the last singular value is always zero, the Euclidean distances are given by the σ3 value

D1,1 = 0.5018672314 × 10−1, D1,2 = 0.5454321492 × 10−1,

D2,1 = 0.2700872640 × 10−1, D2,1 = 0.5018672301 × 10−1

This gives L1 = 0.5454321492 × 10−1 and L2 = 0.5018672301 × 10−1.
Thus, the Euclidean distance estimate also favors the Ringe–Warnow–Taylor tree T2 over the Gray-Atkins tree

T1. The fact that there are very few parameters that are mapped (at present time) for all of these languages in the
SSWL database, and that these parameters largely agree on this set of languages, however make this analysis not
fully reliable. A more extensive set of syntactic data for these languages would be needed to confirm whether the
phylogenetic reconstruction based on syntactic data and the algebro-geometric method is reliable.

7 Towards Larger Phylogenetic Trees: Grafting

As we have seen in the previous sections, Phylogenetic Algebraic Geometry is a procedure that associates to a
given language family L = {�1, . . . , �n} an algebraic variety Y = Y (L, P) constructed on the basis of the syntactic
variables (listed in the distribution P).

A possible geometric viewpoint on comparative historical linguistics can then be developed, by considering
the geometry of the varieties Y (L, P) for different language families. This contains more information than the
topology of the tree by itself, in the sense that one can, for example, look more specifically for the position of
the point P on the variety. The point P contains precise information on how the binary syntactic variables change
across the languages in the family. For example, in the case of the six Germanic languages in the set S1(G), we see
from our table of occurrences that only very few possibilities for the binary vector (i1, . . . , i6) occur for these six
languages. We also see that, apart from the cases where the value of a syntactic variable agrees in all six languages
(40 occurrences where the feature is not expressed, and 22 where it is), we find that it is more likely for Icelandic
to have a feature that differs from the other languages in the group (4 occurrences of (0, 0, 0, 0, 1, 0) of lacking
a features the others have and 3 occurrences of (1, 1, 1, 1, 0, 1) for having a feature that the others lack). Thus,
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the location of the point P on the variety contains information that is related to the spreading of syntactic features
across the language family considered. This geometric way of thinking may be compared with the coding theory
approach of [30,46] to measuring the spread of syntactic features across a language family.

As we have seen in the example discussed above of a small set of Germanic languages, as well as in the examples
with Romance and Slavic languages, the use of SSWL data is suitable for phylogenetic reconstruction, provided
only the subset of the completely mapped syntactic variables (for the given set of languages) is used and the
candidate phylogenetic trees are selected through the computation of phylogenetic invariants, and their evaluation
at the boundary distribution determined by the syntactic variables.

This method works very well for small trees and for a set of languages that is well mapped in the available
databases (with enough binary syntactic variables that are mapped for all the languages in the given set). However,
one then needs a way to combine phylogenetic trees of smaller subfamilies into those of larger families.

We give a very brief sketch of how this procedure can be articulated in terms of Phylogenetic Algebraic Geometry,
and we refer the readers to §5–8 of [1] for more details. Although we do not need to use this method directly in
the present paper, we mention this for completeness, since it is a natural question how to proceed towards larger
trees. Given two binary trees T ′ and T ′′, respectively with n and m leaves, the grafting T = T ′ �� T ′′ at a leaf �

is the binary tree obtained by gluing together a leaf of T ′ with marking � to a leaf of T ′′ with the same marking.
The resulting tree T has n + m − 2 leaves. It is shown in [1] how the phylogenetic invariants of T depend on the
invariants of T ′ and T ′′. Consider the maps �T ′ and �T ′′ , defined as in (2.2) using (2.1), with values in C

2n
and

C
2m
, respectively. We identify C2n = C

2n−1 ⊗C
2, where the last binary variable corresponds to the leaf �. We then

identify the affine space C2n−1 ⊗ C
2 � Hom(C2n−1∨

,C2) with the space of matrices M2n−1×2(C), and similarly
with C

2m � M2×2m−1(C). One then defines �T = �T ′ � �T ′′ as the matrix product of the elements in the range
of �T ′ , seen as matrices in M2n−1×2(C) with the elements in the range of �T ′′ , seen as matrices in M2×2m−1(C).
This results in a matrix in M2n−1×2m−1(C)), which gives a map �T with values in C

n+m−2. The domain variables
of �T are obtained as follows. For those edges of T not involved in the grafting operation, we define the 2 × 2
matrices Me to be the same as those originally associated to the edges of T ′ or T ′′, respectively. For the edge of
T ′ and the edge of T ′′ that are glued together in the grafting, we replace the respective matrices Me′

and Me′′
by

their product Me = Me′
Me′′

. Dually, as in (2.3), this determines the map �T of polynomial rings, whose kernel is
the phylogenetic ideal of T . The closure in Cn+m−2 of the image of �T is the phylogenetic algebraic variety of the
grafted tree T = T ′ �� T ′′.

Suppose we are interested in the phylogenetic tree of a language family L, for which we assume that we already
know (from other linguistic input) a subdivision into several subfamilies L = L1 ∪ · · · ∪LN . Suppose also that for
the language families taken into consideration there are sufficient data available about the ancient languages. (This
requirement will limit the applicability of the algorithm discussed here to families like the Indo-European, where
significant amount of data about ancient languages is available.) We can then follow the following procedure to
graft phylogenetic trees of the subfamilies Lk into a larger phylogenetic tree for the family L. For the procedure
described here we need to assume that one knows a priori (via historical linguistic information) that the members
of the subfamilies Lk should remain together in a clade of the grafted tree.

(1) For each subfamily Lk = {�k,1, . . . , �k,nk }, consider the list of SSWL data that are completely mapped for all
the languages �k, j in the subfamily Lk .

(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic tree Tk is constructed
based on the method illustrated above in the example of the Germanic languages.

(3) Use the procedure discussed in Sect. 3.5 above to identify the best location of the root vertex for each tree Tk ,
and regard each tree Tk as a tree with nk + 1 leaves, including one leaf attached to the root vertex.

(4) Let {λ1, . . . , λN } be the ancient languages located at the root vertex of each tree T1, . . . , TN . Consider the list
of SSWL parameters that are completely mapped for all the ancient languages λk .

(5) On the basis of that set of binary syntactic variables, select preferred candidate phylogenetic tree T with N
leaves, by evaluating the phylogenetic invariants of these trees on the boundary distribution given by this set of
binary syntactic variables.
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(6) Graft the best candidate tree T to the trees Tk by gluing the leaf λk of T to the root of Tk .
(7) The phylogenetic invariants of the resulting grafted tree T ′ = T �N

k=1 Tk can be computed with the grafting
procedure of [1] described above and evaluation at the boundary distribution given by the leaves {�k, j | j =
1, . . . , nk, k = 1, . . . , N } of T ′ (coming from the smaller set of syntactic variables that are completely mapped
for all the �k, j ) can confirm the selected tree topology T ′.
The advantage of this procedure is that it is going to work even in the absence of a sufficient number of binary

syntactic variables in the SSWL database that are completely mapped for all of the languages �k, j at the same
time, provided there are enough for each subset Lk and for the λk . In cases where the number of variables that are
completely mapped for all the �k, j is significantly smaller compared to those that are mapped within each group, the
last test on the tree T ′ becomes less significant. This method also has the advantage that one works with the smaller
subtrees Tk and T , rather than with the bigger tree given by their grafting, so that the computations of phylogenetic
invariants is more tractable.

In the case of language families where one does not have syntactic data of ancient languages available, one
can still adapt the procedure described above, provided there is a reasonable number of SSWL variables that are
completely mapped for all the languages �k, j in L. One can proceed as follows.

(1) For each subfamily Lk = {�k,1, . . . , �k,nk }, consider the list of data that are completely mapped for all the
languages �k, j in the subfamily Lk .

(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic tree Tk is constructed
based on the method illustrated above in the example of the Germanic languages.

(3) Consider all possible choices of a root vertex for each Tk (there are as many choices as the number of internal
edges of Tk).

(4) Consider all the possible candidate tree topologies T with N leaves.
(5) For each choice of a root vertex in each Tk graft a choice of T to the give roots of the trees Tk to obtain a

candidate tree T ′ = T �N
k=1 Tk .

(6) Compute the phylogenetic invariants of T ′ = T �N
k=1 Tk using the procedure of [1] recalled above.

(7) Evaluate the phylogenetic invariants of each candidate T ′ on the boundary distribution determined by the binary
syntactic variables that are completely mapped for all the languages {�k, j | j = 1, . . . , nk, k = 1, . . . , N }, to
select the best candidate among the T ′.
There are serious computational limitations to this procedure, however, because of how fast the number of trees

on N leaves grows. While the grafting procedure discussed above makes it possible to work with smaller trees
and then consider the problem of grafting them into a larger tree, this would still only work computationally for
small size trees, and cannot be expected to handle, for example, the entire set of languages recorded in the SSWL
database.

8 Modifying the Setting to Account for Syntactic Relations

In a followup to this paper, based on the ongoing analysis of [34], we will discuss how to adjust these phylogenetic
models to incorporate deviations from the assumption that the syntactic parameters are i.i.d. random variables
evolving according to the same Markov model on a tree.

Indeed, we know from various data analysis of the syntactic variables, including topological data analysis
[41,42], methods of coding theory [46], and recoverability in Kanerva networks [38], that the syntactic parameters
are certainly not i.i.d. variables. Thus, it is likely that some discrepancies we observed in this paper, in the application
of the Phylogenetic Algebraic Geometry method (for example in the case of the Romance languages or the early
Indo-European languages where the tree selected by the Euclidean distance is not the same as the tree favored by
the phylogenetic invariants) may be an effect of the use of this overly simplified assumption.

The approachwe plan to follow to at least partially correct for this problem, is tomodify the boundary distribution
on the tree by attaching to the different syntactic parameters aweight that comes fromsomemeasure of its dependence
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from other parameters, in such a way that parameters that are more likely to be dependent variables according to
one of these tests will weight less in the boundary distribution than parameters that are more likely to be truly
statistically independent variables.

The main idea on how to achieve this goal is to modify the boundary distribution P by counting occurrences
ni1,...,in of parameter values (i1, . . . , in) at the n leaves of the tree by introducing weights for different parameters
that measure their degree of independence. An example of such a weight would be the degree of recoverability in
a Kanerva network, as in [38], or a computation of clustering coefficients as in [34].

This means that, instead of assigning to a given binary vector (i1, . . . , in) the frequency

pi1,...,in = ni1,...,in

N

with N total number of parameters and ni1,...,in number of parameters that have values (i1, . . . , in) on the n languages
at the leaves of the tree, we replace this by a new distribution

p′
i1,...,in

= Z−1
ni1,...,in∑

r=1

w(πr )

where for a syntactic parameter π the weight w(π) measures the degree of independence of π , for example with
w(π) close to 1 the more π can be regarded as an independent variable and close to 0 the more π is recoverable
from the other variables, with Z a normalization factor so that p′

i1,...,in
is again a probability distribution.

With this new boundary distribution P ′ we will recompute the Euclidean distances of the flattening matrices
Flate,T (P ′) from the varietiesD2(a, b) by computing the singular values (σ1, . . . , σa) of Flate,T (P ′) and computing
the square-distance as σ 2

3 +· · ·+σ 2
a , and compare the new distances obtained in this way with those of the original

boundary distribution P .
Results on this approach will be presented in forthcoming work.
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Appendix A: SSWL Syntactic Variables of the Set S1(G) of Germanic Languages

We list here the 90 binary syntactic variables of the SSWL database that are completelymapped for the six Germanic
languages �1 =Dutch, �2 =German, �3 =English, �4 =Faroese, �5 = Icelandic, �6 =Swedish. The column
on the left in the tables lists the SSWL parameters P as labeled in the database.
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Appendix B: SSWL Syntactic Variables of the Set S2(G) of Germanic Languages

We list here the 90 binary syntactic variables of the SSWL database that are completely mapped for the seven
Germanic languages �1 =Norwegian, �2 =Danish, �3 =Gothic, �4 =Old English, �5 = Icelandic, �6 =
English, �7 =German. The column on the left in the tables lists the SSWL parameters P as labeled in the database.
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Appendix C: Flattening Matrices F5 and F6

The flattening matrices of (3.1) (written in transpose form for convenience) for the T5 and T6 trees, in the case of
the Longobardi data are given by the following:
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Ft
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

42 0 1
42

0 0 0 1
42

0 0 0 0
0 0 0 0
0 0 1

42
2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ft
6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

42 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 1

42
1
42

2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The same flattening matrices of (3.1) for the SSWL data are given by the following.

Ft
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34

1
68

1
34 0

0 0 0 0
0 0 0 0
0 0 1

68 0
3
68

1
68

1
68

1
68

0 0 0 0
0 0 0 1

68
0 0 0 1

68
1
68 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 1

34 0
0 0 0 0
0 0 0 0
0 0 0 1

68
1
68 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

68
1
34

1
68

0 0 0 0
0 0 0 0
0 0 0 0
0 0 3

68
4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ft
6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
34

1
68

3
68

1
68

0 0 0 0
0 0 0 0
0 0 0 0
1
34 0 1

68
1
68

0 0 0 0
0 0 0 1

68
1
68 0 0 1

68
1
68 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1

34 0
0 0 0 0
0 0 0 0
0 1

68 0 1
68

1
68 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

68 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
34

1
68

3
68

4
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix D: List of LanGeLin Syntactic Parameters
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FGP Gramm. person GSI Grammaticalised inalienability
FGM Gramm. Case ALP Alienable possession
FPC Gramm. perception GST Grammaticalised Genitive
FGT Gramm. temporality GEI Genitive inversion
FGN Gramm. number GNR Non-referential head marking
GCO Gramm. collective number STC Structured cardinals
PLS Plurality spreading GPC Gender polarity cardinals
FND Number in D PMN Personal marking on numerals
FSN Feature spread on N CQU Cardinal quantifiers
FNN Number in N PCA Number spread through cardinal adjectives
SGE Semantic gender PSC Number spread from cardinal quantifiers
FGG Gramm. gender RHM Head-markong on Rel
CGB Unbounded sg N FRC Verbal relative clauses
DGR Gramm. amount NRC Nominalized relative clause
DGP Gramm. text anaphora NOR NP over verbal rel clauses/adpos gen
CGR Strong amount AER Relative extrap.
NSD Strong person ARR Free reduced rel
FVP Variable person DOR def on relatives
DGD Gramm. distality NOD NP over D
DPQ Free null partitive Q NOP NP over non-genitive arguments
DCN Article-checking N PNP P over complement
DNN Null-N-licensing art NPP N-raising with obl. pied-piping
DIN D-controlled infl. on N NGO N over GenO
FGC Gramm. classifier NOA N over As
DBC Strong classifier NM2 N over M2 As
XCN Conjugated nouns NM1 N over M1 As
GSC c-selection EAF Fronted high As
NOE N over ext. arg. NON N over numerals
HMP NP-heading modifier FPO Feature spread to genitive postpositions
AST Structured APs ACM Class MOD
FFS Feature spread to struct. APs DOA def on all +N
ADI D-controlled infl. on A NEX Gramm. expletive article
DMP def matching pron. poss. NCL Clitic poss.
DMG def matching genitives PDC Article-checking poss.
GCN Posso-checking N ACL Enclitic poss. on As
GFN Gen-feature spread to Posso APO Adjectival poss.
GAL Dependent Case in NP WAP Wackernagel adjectival poss.
GUN Uniform Gen AGE Adjectival Gen
EZ1 Generalized linker OPK Obligatory possessive with kinship noun
EZ2 Non-clausal linker TSP Split deictic demonstratives
EZ3 Non-genitive linker TSD Split demonstratives
GAD Adpositional Gen TAD Adjectival demonstratives
GFO GenO TDC Article-checking demonstratives
PGO Partial GenO TLC Loc-checking demonstratives
GFS GenS TNL NP over Loc
GIT Genitive-licensing iterator
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