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Based on:

e Adam Ball, Matilde Marcolli, Spectral Action Models of Gravity
on Packed Swiss Cheese Cosmology, arXiv:1506.01401
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Homogeneity versus Isotropy in Cosmology
e Homogeneous and isotropic: Friedmann universe R x S3
+dt? + a(t)? (0’% + 03 + J%)

with round metric on S3 with SU(2)~invariant 1-forms {o;}
satisfying relations
doj = oj N\ oy

for all cyclic permutations (i, , k) of (1,2,3)
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e Homogeneous but not isotropic:
Bianchi IX mixmaster models R x S3

2 2 2
o g (o
1 2 3

W2(e) " WR() T Wi (D)

F(t) (+dt? +

)

with a conformal factor F(t) ~ Wy (t)Wa(t)Ws(t)

e Isotropic but not homogeneous?
= Swiss Cheese Models
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Main Idea:

e M.J. Rees, D.W. Sciama, Large-scale density inhomogeneities in
the universe, Nature, Vol.217 (1968) 511-516.

Cut off 4-balls from a FRW spacetime and replace with different
density smaller region outside/inside patched across boundary with
vanishing Weyl curvature tensor (isotropy preserved)
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Packed Swiss Cheese Cosmology

e lterate construction removing more and more balls = Apollonian
sphere packing of 3-dimensional spheres

e Residual set of sphere packing is fractal

e Proposed as explanation for possible fractal distribution of
matter in galaxies, clusters, and superclusters

@ F. Sylos Labini, M. Montuori, L. Pietroneo, Scale-invariance of
galaxy clustering, Phys. Rep. Vol. 293 (1998) N. 2-4, 61-226.

e J.R. Mureika, C.C. Dyer, Multifractal analysis of Packed Swiss
Cheese Cosmologies, General Relativity and Gravitation,
Vol.36 (2004) N.1, 151-184.
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Apollonian sphere packings

e best known and understood case: Apollonian circle packing

Configurations of mutually tanget circles in the plane, iterated on
smaller scales filling a full volume region in the unit 2D ball:
residual set volume zero fractal of Hausdorff dimension 1.30568...
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e Many results (geometric, arithmetic, analytic) known about
Apollonian circle packings: see for example

@ R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks,
C.H.Yan, Apollonian circle packings: number theory, J.
Number Theory 100 (2003) 1-45

@ A. Kontorovich, H. Oh, Apollonian circle packings and closed
horospheres on hyperbolic 3-manifolds, Journal of AMS, Vol
24 (2011) 603-648.

e Higher dimensional analogs of Apollonian packings: much more
delicate and complicated geometry
@ R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks,
C.H.Yan, Apollonian Circle Packings: Geometry and Group
Theory Ill. Higher Dimensions, Discrete Comput. Geom. 35
(2006) 37-72.
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Some known facts on Apollonian sphere packings

e Descartes configuration in D dimensions: D + 2 mutually
tangent (D — 1)-dimensional spheres

e Example: start with D + 1 equal size mutually tangent SP—1
centered at the vertices of D-simplex and one more smaller sphere
in the center tangent to all

4-dimensional simplex
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e Quadratic Soddy—Gosset relation between radii aj

e curvature-center coordinates: (D + 2)-vector

x> —a% 1 1 1
7777X17"-77XD)
a a a

w=(

a
(first coordinate curvature after inversion in the unit sphere)

e Configuration space Mp of all Descartes configuration in D
dimensions = all solutions W to equation

0 -4 O
WEQpWwW=[-4 0 0
0 0 2Ip

with left and a right action of Lorentz group O(D + 1,1)



e Dual Apollonian group Qé generated by reflections: inversion
with respect to the j-th sphere

SjL = ID+2 +2 1D+ert — 4ejejt

ej = j-th unit coordinate vector

e D # 3: only relations in G3 are (SJ-L)2 =1

e G discrete subgroup of GL(D + 2,R)

e Apollonian packing Pp = an orbit of G5 on Mp

= iterative construction: at n-th step add spheres obtained from
initial Descartes configuration via all possible

ijsji e Sj%’ Jk ?éjk-i-la Vk

there are N,, spheres in the n-th level

N, = (D +2)(D 4 1)"*
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iterative construction of sphere packings
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e Length spectrum: radii of spheres in packing Pp
L=L(Pp)={ank : neN,1< k< (D+2)(D+1)"1}

radii of spheres 55;1
e Melzak’s packing constant op(Pp) exponent of convergence of

series
oo (D+2)(D+1)""1

s) = Z Z ai,k

k=1
e Residual set: R(Pp) = BP ~ U,,kB ok with
88‘3“ = Saan € Pp
e Packing = Volp(R(Pp)) =0 = >, a, < oo = op(Pp) <D
e packing constant and Hausdorff dimension:

dimy(R(Pp)) < op(Pp)

for Apollonian circles known to be same
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e Sphere counting function: spheres with given curvature bound
Na(PD) = #{SaDn;l €Pp : apk = a}

curvatures ¢, x = a;i <t

e for Apollonian circles power law (Kontorovich-Oh)

Na(PZ) ~as0 O dimy(R(P2))

e for higher dimensions (Boyd): packing constant

|
lim sup _log Na(Po)
a—0 log o

= op(Pp)

if limit exists No(Pp) ~a—o o~ (7o(Pp)+o(1))
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Screens and Windows

e in general (£, (s) need have analytic continuation to
meromorphic on whole C

e J screen S: curve S(t) + it with S: R — (—o0,0p(Pp)]

e window VW = region to the right of screen & where analytic
continuation

e M.L. Lapidus, M. van Frankenhuijsen, Fractal geometry,
complex dimensions and zeta functions. Geometry and
spectra of fractal strings, Second edition. Springer
Monographs in Mathematics. Springer, 2013.
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Screens and windows
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Some additional assumptions
e Definition:
Apollonian packing Pp of (D — 1)-spheres is analytic if
© (r(s) has analytic to meromorphic function on a region W
containing Ry
@ (,(s) has only one pole on Ry at s = op(Pp).
© pole at s = op(Pp) is simple

e Also assume: 3 lim,_s0 —logﬁ% =op(Pp)
e Question: in general when are these satisfied for packings Pp?

e focus on D = 4 cases with these conditions
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Rough estimate of the packing constant
e P = P4 Apollonian packing of 3-spheres ngk
e at level n: average curvature

6-5"— 1

XT: 5nlz

an,k

e estimate 04(P4) with averaged version: >, Nn(3F)~*

n

| . gn—1
04ar(P) = lim log(6-5""7)
)= I g ()

e generating function of the v, known (Mallows)

[e.9]
1—x)(1—4x)u
s — o
D=4 EZIPYn 172372)(75)(2

u = sum of the curvatures of initial Descartes configuration
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e obtain explicitly (u = 1 case)

(114 V/166)"(—64 + 9v/166) + (11 — /166)"(64 + 91/166)
= 3710 - /166

e this gives a value

04.2,(P) = 3.85103...

e in Apollonian circle case where o(P) known this method gives
larger value, so expect o4(P) < 04 2 (P)

e constraints on the packing constant:

3 < dimy(R(P)) < 04(P) < 04,2, (P) = 3.85193....
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Models of (Euclidean, compactified) spacetimes
© Homogeneous Isotropic cases: Sé x §3

@ Cosmic Topology cases: Sé x Y with Y a spherical space

form S3/T or a flat Bieberbach manifold T3/I" (modulo finite
groups of isometries)

© Packed Swiss Cheese: Sé x P with Apollonian packing of
3-spheres S3 |

@ Fractal arrangements with cosmic topology
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Fractal arrangements with cosmic topology

e Example: Poincaré homology sphere, dodecahedral space
53/I120, fundamental domain dodecahedron
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e considered a likely candidate for cosmic topology

e S. Caillerie, M. Lachieze-Rey, J.P. Luminet, R. Lehoucq,
A. Riazuelo, J. Weeks, A new analysis of the Poincaré
dodecahedral space model, Astron. and Astrophys. 476
(2007) N.2, 691-696

e build a fractal model based on dodecahedral space
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Fractal configurations of dodecahedra (Sierpinski dodecahedra)
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e spherical dodecahedron has VoI(Y) = VoI(S3/T120) = 76%33

e simpler than sphere packings because uniform scaling at each
step: 20" new dodecahedra, each scaled by a factor of (2 + ¢)™"

log(20)

—= = 2.32053...
log(2 + ¢)

dimH(lezo) =

e close up all dodecahedra in the fractal identifying edges with
Th20: get fractal arrangement of Poincaré spheres Yo 4)-n

e zeta function has analytic continuation to all C

n —n 1
Cels) = 20"(249) " = 1= 20(2 + ¢)~°
exponent of convergence o = dimy(Pzy,,) = I;Z%éio%) and poles
2mwim
T mez
7" Jog(2+ )

Matilde Marcolli Swiss Cheese Spectral Action



Spectral action models of gravity (modified gravity)
e Spectral triple: (A, H, D)
@ unital associative algebra A
@ represented as bounded operators on a Hilbert space H

© Dirac operator: self-adjoint D* = D with compact resolvent,
with bounded commutators [D, a]

e prototype: (C*®(M), L2(M,S), Pu)

e extends to non smooth objects (fractals) and noncommutative
(NC tori, quantum groups, NC deformations, etc.)
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Action functional

e Suppose finitely summable ST = (A, H, D)

¢p(s) = Tr(|D[7%) <00, R(s) >>0
e Spectral action (Chamseddine—Connes)

Sst(N) =Te(F(D/N) = Y Mult(A)f(A/A)

A€Spec(D)

f = smooth approximation to (even) cutoff
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Asymptotic expansion (Chamseddine—Connes) for
(almost) commutative geometries:

DN~ S N ][\D\ % 4 £(0)¢n(0)

562
e Residues )
][|D|_B = EResszg CD(S)
e Momenta f3 = fo v) v~ ldv

e Dimension Spectrum ZST poles of zeta functions
Ca,n(s) = Tr(a|D[7*)
e positive dimension spectrum Z;rT =YsT NRY

Warning: for fractal spaces also oscillatory terms coming from part
of g7 off the real line
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Zeta function and heat kernel (manifolds)

e Mellin transform

1 e 2 s
|D|~* = / e D2 1gt
[(s/2) Jo

e heat kernel expansion

2
*tD Zt Co for t—0

e zeta function expansion

¢p(s) = Tr(|D|"?) =

4+ holomorphic

za; M(s/2)(a+s/2)

e taking residues

2¢c,
M(—a)
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Example spectral action of the round 3-sphere S3

Sss(N) = Tr(f(Dss/N)) = Y n(n+1)f((n + )//\)

neZ
e zeta function
3
(pg(s) = 2¢(s — 2, 5) - §C(57 5)

((s, g) = Hurwitz zeta function

e by asymptotic expansion

1
Ss3(N) ~ N3 — M

e can also compute using Poisson summation formula
(Chamseddine—Connes): estimate error term O(A™°)
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Example: round 3-sphere S3 radius a
3, 1 3
— S _ —) — — —
CDsg (5) =4 (2<(5 2, 2) 2((57 2))
1
Ssi() ~ (A’ — ; (Aa)fh

Example: spherical space form Y = S3/I" (Caci¢, Marcolli, Teh)

1

Sy(A) ~ A

Ss3(N)
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Why a model of (Euclidean) Gravity?

e M compact Riemannian 4-manifold
Tr(F(D/N)) ~ 2A*fha0 + 2N Frap + foas

coefficients ag, a> and ay:
@ cosmological term

ﬁ;/\“][\D\ 48f“ /\Fd“

@ Einstein—Hilbert term
96 HHA?
2 -2 _ 2 4
an [ 1012 = 220 [ RvEd'x

e modified gravity terms (Weyl curvature and Gauss—Bonnet)

fb 11 * * vVpo
£(0)¢p(0) = 107T2/(6R R* —3Cps CHP7) /g d*x
CH¥P? = Weyl curvature and R*R* = Let/roe 0y ROSRTS,

momenta: (effective) gravitational and cosmolog|ca| constant
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Spectral action on a fractal spacetime:
° Sé x P: Apollonian packing

° Sé X Py: fractal dodecahedral space

@ Construct a spectral triple for the geometries P and Py
@ Compute the zeta function

© Compute the asymptotic form of the spectral action

@ Effect of product with Sé

= look for new terms in the spectral action (in additional to usual
gravitational terms) that detect presence of fractality

Matilde Marcolli Swiss Cheese Spectral Action



The spectral triple of a fractal geometry
e case of Sierpinski gasket: Christensen, Ivan, Lapidus

e similar case for P and Py

e for D-dim packing
Po={Sy' neN,1<k<(D+2)(D+1)""}
(Arp, Hrp, Dpp) = ©nk(App, /Hsaf;jkl ) Dsaf;jkl)
e for Py with Y, = S3/Z120:
(Apy, Hpy, Dpy) = (Apy, &nHy,,, ®nDy,,)

with a, = a(2+ ¢) ™"
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Zeta functions for Apollonian packing of 3-spheres:
e Lengths zeta function (fractal string)

6'5"71

SIS

neN k=1
with £L= L4 ={apx|neN, ke {l,...,6-5"1}}
e zeta function of Dirac operator of the spectral triple

oo 6571

Te(|Dp| )= > Ti( (IDsz ,17°)

n=1 k=1
each term Tr(|D53n’k ™) = a; k(2¢(s — 2, %) — 3((s, %)) gives

3 1 3
(el ) = (25 - 2.3) - 3605 3)) Sai
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Spectral action for Apollonian packing of 3-spheres:
(under good conditions on (,(s))

e Positive Dimension Spectrum: Z;Tpsc ={1,3,04(P)}

e asymptotic spectral action

TH(F(Dp/N) ~ A Ce(3) s — A Ce(1)

3 1 3

A (G0 —2,5) = 500, ) Ro fy + S5

2 4

o = 04(’P) packing constant; residue R, = Ress—,(.(s), and
momenta f3 = [;° v/~ f(v)dv

e additional term SR*¢ coming from series of contributions of poles
of zeta function off the real line: oscillatory terms
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Oscillatory terms (fractals)

e zeta function (,(s) on fractals in general has additional poles off
the real line (position depends on Hausdorff and spectral
dimension: depending on how homogeneous the fractal)

e best case exact self-similarity: s = o + 2|gg"? meZ

e heat kernel on fractals has additional log-oscillatory terms in
expansion

t%(l +Acos(|§gglogt+¢)) +--

for constants C, A, ¢: series of terms for each complex pole
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Log-oscillatory terms in expansion of the spectral action:

e G.V. Dunne, Heat kernels and zeta functions on fractals, J. Phys.
A 45 (2012) 374016 [22p]

e M. Eckstein, B. lochum, A. Sitarz, Heat kernel and spectral
action on the standard Podlés sphere, Comm. Math. Phys. 332
(2014) 627-668

e M. Eckstein, A. Zajag, Asymptotic and exact expansion of heat
traces, arXiv:1412.5100
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effect of product with S} (leading term without oscillations)

e case of S} x S3 (Chamseddine-Connes)

0 Dss @1+ i ® Dg1
Ds1, 53 = , ’ g
%7 \Ds; ®1—i® Dy 0

Spectral action

Te(h(Dgy 53/N) ~ 2BNTx(5(D3/N)).

test function h(x), and test function

nuﬂzém%+ﬁmy

Matilde Marcolli Swiss Cheese Spectral Action



e Case of Sé X P:
Sspep(N) ~ 20 (N Ge(3) 2 = N2 vy

o 3. 1. 3
#2884 (o -2.3) - 600 D)) Rabe

with momenta

b3 :=7r/0 h(p®)p>dp, b1:= 2%/0 h(p*)pdp

ho =2 /O h(p*)p”dp
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Interpretation:

o Term 2A*Ba%hs — %/\2631)1, cosmological and
Einstein—Hilbert terms, replaced by

2A* B¢, (3)h3 — %/\zﬁcc(l)bl

zeta regularization of divergent series of spectral actions of
3-spheres of packing

@ Additional term in gravity action functional: corrections to
gravity from fractality

o 3. 1., 3
200 (40 = 2.3) = 3¢(0:3)) Rato
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Case of fractal dodecahedral space Py

e Zeta functions

epyy(s) =D 2072+ ¢)”

n>0

aS

Con, (5) = g5 (2605 = 2.3) = 5¢(5. ) ) eap (9

e Spectral action:

3 1
Te(F(Dpy /) ~ (/\a)3<£(71)2Y())( . /\aCE(f;())( )4
5 3 1 3
+(Aa)g<(0- 27 2) 4 (07 2) f + Sosc

120 log(2 + &)

o = dimp(Py) = 22529 = 2.3296...
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e on product geometry Sé X Py

a*Cepy)(3) aCr(py)(1)
Ssppy () ~ 25 ("4120*)3 N

(G0 —2,3) — 3¢(0,3))

a
2 /\U+1
+25 12010g(2 + 9)

osc
bo + Sslxv A

e Note: correction term now at different o than Apollonian P

e oscillatory terms S?,SA more explicit than in the Apollonian case
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Oscillatory terms: dodecahedral case

e zeros of zeta function (.(s)

2wim

~7 g2+ 9)°

with o = log(20)/ log(2 + ¢)
e contribution to heat kernel expansion of non-real zeros:

Sm me7Z

C .
F(ao + 2%(31 t_27”/ |0g(2+¢)) W )

with coefficients a,, proportional to I'(sp,): for fixed real part o
decays exponentially fast along vertical line

e oscillatory terms are small
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Slow-roll inflation potential from the spectral action

e perturb the Dirac operator by a scalar field D? + ¢? = spectral
action gives potential V/(¢)

o)
Inflate whils

rolling slowly
here Slow-roll ends

and reheating
occurs

e shape of V(¢) distinguishes most cosmic topologies: spherical
forms and Bieberbach manifolds (Marcolli, Pierpaoli, Teh)
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Fractality corrections to potential V(o)
e additional term in potential
U (x) = / D2 by + x) — h(u))du
0
depends on o fractal dimension

e size of correction depends on (leading term)

3 1 3

(7 =2,3) - 73R

e further corrections to U, come from the oscillatory terms

= presence of fractality (in this spectral action model of gravity)
can be read off the slow-roll potential (hence the slow-roll
coefficients, which depend on V, V', V")
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