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“Space” is always decorated with adjec-
tives (like numbers: integer, rational, real, complex)

• Linear space

• Topological space

• Metric space

• Projective space

• Measure space

• Noncommutative space
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Space is a kind of structure

Often (not always) a set (points of space) with

some relational properties

•Operations: adding vectors, cutting and past-

ing, measuring size, intersections and unions

• Proximity relation: neighborhoods, closeness,

convergence, distance

• Hierarchy of structures: Smooth ⇒ Topo-

logical ⇒ Measure space

• Symmetries: transformations preserving all

the structure (very different symmetries for dif-

ferent kinds of spaces)

• Telling spaces apart: invariants (numerical,

algebraic structures, discrete)
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Philosophical digression: Absolute vs.

Relational view of space

- Relational/Transformational viewpoint:

Heraclitus, Democritus, Descartes, Leibniz,

Bergson

- Absolute view of space: Eleatic school

(Parmenides, Zeno), Aristotle, Kant, Newton,

Comte

Mathematical reconciliation of philosophical

dichotomy:

- Felix Klein (Erlangen Program 1872):

emphasis on transformation groups
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Linear spaces (or vector spaces):

set of vectors with dilations and

composition of vectors

Examples: straight lines, planes, . . .

Classical mechanics: equilibrium of forces

Dimension: Maximal number of linearly inde-

pendent vectors
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Paul Klee, Mural from the Temple of Longing,

1922

Vector spaces and sets of independent direc-

tions
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Paul Klee, Unstable Equilibrium, 1922

Vector calculus: equilibrium of forces
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Eric Doeringer, Sol LeWitt, Wall Drawing 118,

2009

Vector calculus: vector compositions
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Mitchell Chan, Studio F Minus, Sol LeWitt,

Wall Drawing 118, 2013
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Projective spaces:
non-zero vectors up to scaling:
(identify v = (x1, x2, x3) and λv = (λx1, λx2, λx3), scaled

by nonzero λ)

Renaissance perspective drawings

Projective Transformations

- map lines to lines
- preserve incidence relations
- do not preserve parallelism
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Projective geometry in Renaissance art:

- Perspective

- Anamorphosis
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Perspective

a computational device for drawing based on

the axioms of projective geometry

The Ideal City, 1470
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Tony Robbins, Drawing 50, 2009
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Rebecca Norton and Jeremy Gilbert-Rolfe,

Awkward X2, 2010
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Anamorphosis

Cylindrical Anamorphosis

a computational device for deforming shapes

according to projective transformations
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Hans Holbein the Younger, The Ambassadors,
1533

Holbein skull undistorted
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Linda Besemer, Big Corner Bulge, 2008
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Sara Willett, Anamorphosis, 2010
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Jean-Max Albert, Reflet Anamorphose,1985
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Projective spaces
1-dimensional real projective space = circle
1-dimensional complex projective space = sphere

More interesting shapes:
2-dimensional real projective space:

Identifying diametrically opposite points on the
boundary of a disk
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Projective Spaces over Finite Fields

Different kinds of numbers (fields) ⇒ different

kinds of projective spaces

Finite projective spaces

(discrete versus continuum in geometry)

Relational properties: lines through given points,

lines intersecting, planes containing lines, . . .
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Sarah Walker, Extrapolator, 2010
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Sarah Walker, Everywhere is Always, 2010
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Topological spaces formalize the relation of

“being near” a point

(qualitative: does not quantify how near)

Open condition: stable under small variations

(close condition: being on the border of two regions)

Transformations: continuous deformations

a donut is topologically the same as a cup of coffee
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Salvador Daĺı, The Persistence of Memory, 1931
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Knots and links

Topologically different: cannot be deformed
one into the other without cutting
- Invariants of knots
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Attilio Pierelli, Theory of the Universes: Knots,

1986
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Topology of knots and DNA

Topoisomerases enzymes act on the topology:

unknotting DNA prior to replication
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Nice topological spaces: triangulations

Essential to computer graphics

Graphs: simplest class of “piecewise linear” spaces
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Examples of graphs:

San Francisco subway system

Moscow subway system
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The most interesting graph of today:
the world wide web

Methods of topology for internet connectivity
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Hashime Kinoko, Cell, 2014
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Marcus Sendlinger, Tristar, 2008
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Matjuska Teja Krasek, Double Star, 2005
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More examples of topological spaces:

- Sphere:

- Torus:

- Klein bottle:

- Real projective plane:
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Alan Bennett, Klein Bottle, 1995
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Alan Bennett, Glass Vessel, 1995
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How to distinguish topological spaces?

• Euler characteristic

χ = #Faces−#Edges + #Vertices

is a topological invariant

- Sphere: χ = 2, orientable

- Real projective space: χ = 1, non-orientable

- Klein bottle: χ = 0, non-orientable

- Torus: χ = 0, orientable

- Genus g surface: χ = 2− 2g, orientable
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• Orientability

Max Bill: Möbius band sculpture

Maurits Cornelis Escher: Möbius band
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Alan Bennett, Single Surface, 1995

Higher genus non-orientable surface
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Smooth spaces (or smooth manifolds):
Topological spaces locally indistinguishable from
a vector space
Example: the Earth from ground level looks flat

Tangent space

Local coordinates: number of independent
parameters describing a physical system

- Dimension from tangent space (linear space)
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Local versus global properties:

locally like flat space (linear space)

but globally: nontrivial topology

View from inside a 3-torus

(Jeff Weeks “The shape of space”)
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Smooth space ⇒ Topological space

but beware . . .

Exotic smoothness:

4-dimensional flat space has infinitely many

different smooth structures (Donaldson)

- small: contained inside ordinary flat space

- large: do not fit in ordinary space

Dimension 3 and 4 are the most complicated!!

Poincaré conjecture (Perelman):

there is only one type of 3-dimensional sphere

Smooth 4-dimensional sphere?? Unknown
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... but exotic spheres in dimension 7 (Milnor)

Niles Johnson, A slice of S7
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Exotic smoothness can affect our

understanding of the distant universe

(gravitational lensing)

passing through a small exotic space changes lensing
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What detects exotic smoothness?

Not topological invariants (Euler characteristic etc)

Different properties of particle physics!

Compare solutions of equations of motion for

elementary particles:

- Donaldson invariants (1980s)

from electroweak forces

- Seiberg–Witten invariants (1990s)

from string theory
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Dawn Meson, Collisions II, ca.2000

46



Metric spaces topological space where can

measure distance between points

(Not just near but how near)

Voronoi cells: points closer to one of the “centers”

Metric space ⇒ topological space

but not all topological spaces can be metric
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Hohyon Ryu, Voronoi map of World Weather

Stations, 2011
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Unit ball: distance one from a point

Sergels Torg Stockholm:

unit ball in distance d((x, y), (0,0)) = (x4 + y4)1/4
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Smooth spaces can be metric: Riemannian
manifolds ⇒ General Relativity, spacetime

Lorentzian metric: light cones

50



Peter Kogler, Warped Room, 2011
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What kind of space is space?

(3-dimensional section of spacetime)

Metric properties (positive/negative curvature)

related to cosmological constant

The problem of Cosmic topology

Dodecahedral universe: Poincaré sphere
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Searching for dodecahedral topology in the

cosmic microwave background radiation

Trying to match sides of polyhedron
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Attilio Pierelli, Theory of the Universes:

Octahedral Universe, 1979
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Singular spaces

Algebraic varieties: polynomial equations

yx(x2 + y − z) = 0

(If polynomial homogeneous: inside projective spaces)
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Kazuko Miyamoto Black Poppy, 1978
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Measure spaces and fractals

Measure the size of regions of space:

area, volume, length

Also measuring probability of an event

⇒ Quantum mechanics, observables

(theory of von Neumann algebras)
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Dimension: Hausdorff dimension

(real number)

Sierpinski carpet: dimension log 3
log 2 ∼ 1.585

(union of three copies scaled down by a factor of two)

⇒ Fractal: dimension not an integer

Mandelbrot (1980s)
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fractal painting generated by Electric Sheep
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Transformations of measure spaces
Anything that preserves measure of sets even
if it cuts and rearranges pieces

Non-measurable sets: Banach-Tarski paradox
(cut ball in finitely many pieces and reassemble them by

rotating and translating into a ball twice as big)

Property of group of transformations
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Attilio Marcolli, Deconstruction, 1986
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Noncommutative spaces (Connes 1980s)

Quantum mechanics: Heisenberg uncertainty

principle: positions and velocities do not

commute (cannot be measured simultaneously)

∆x ·∆v ≥ ~

Quotients (gluing together points) of

topological/smooth/metric/measure spaces

⇒ noncommutative spaces

Models for particle physics
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Examples of noncommutative spaces:

Space of Penrose tilings ⇒ Quasicrystals
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Quasiperiodic tilings were used in traditional

Islamic architecture

64



Aluminium-Palladium-Manganese quasicrystal

Quasicrystals were first discovered in the 1982

(Dan Schechtman)

The modern mathematical theory of quasi-periodic

tilings was developed in the 1960s and 1970s

(Hao Wang, Roger Penrose)
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Matjuska Teja Krasek, Quasicube, 2005
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Tony Robbin, COAST, 1994

Modern uses of quasicrystals in architecture
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Tony Robbin, Pattern, 2013
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Do we need all these notions of space?

Yes: interplay of different structures

- Topological spaces can be smooth in different

ways or not at all (exotic smoothness).

- Topological spaces acquire a new notion of

dimension when seen as measure spaces

(fractals).

- Riemannian manifolds (like spacetime) can

be locally isometric but globally different due

to topology (cosmic topology).

- Different physics on different spaces.
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