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“Space’” iIs always decorated with adjec-
tives (like numbers: integer, rational, real, complex)

e Linear space

e Measure space mme

e Noncommutative space



Space is a kind of structure

Often (not always) a set (points of space) with
some relational properties

e Operations: adding vectors, cutting and past-
ing, measuring size, intersections and unions

e Proximity relation: neighborhoods, closeness,
convergence, distance

e Hierarchy of structures: Smooth = Topo-
logical = Measure space

e Symmetries: transformations preserving all
the structure (very different symmetries for dif-
ferent kinds of spaces)

e Telling spaces apart: invariants (numerical,
algebraic structures, discrete)




Philosophical digression: Absolute vs.
Relational view of space

- Relational/Transformational viewpoint:
Heraclitus, Democritus, Descartes, Leibniz,
Bergson

- Absolute view of space: Eleatic school
(Parmenides, Zeno), Aristotle, Kant, Newton,
Comte

Mathematical reconciliation of philosophical
dichotomy:

- Felix Klein (Erlangen Program 1872):
emphasis on transformation groups



Linear spaces (or vector spaces):

set of vectors with dilations and
composition of vectors

Examples: straight lines, planes, ...

Classical mechanics: equilibrium of forces
Dimension: Maximal number of linearly inde-
pendent vectors



Projective spaces:
non-zero vectors up to scaling:
(identify v = (x1,z2,23) and v = (Ax1, Ax2, Ax3), scaled

by nonzero \)

Renaissance perspective drawings

1-dimensional real projective space = circle

1-dimensional complex projective space = sphere
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More interesting shapes:
2-dimensional real projective space:

Identifying diametrically opposite points on the
boundary of a disk
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Different kinds of numbers (fields) = different
kinds of projective spaces

Finite projective spaces
(discrete versus continuum in geometry)

Relational properties: lines through given points,
lines intersecting, planes containing lines, ...



Topological spaces formalize the relation of
“being near’” a point
(qualitative: does not quantify how near)

Open condition: stable under small variations
(close condition: being on the border of two regions)

Transformations: continuous deformations
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a donut is topologically the same as a cup of coffee




Knots and links
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Topologically different: cannot be deformed
one into the other without cutting
- Invariants of knots



Topology of knots and DNA

Topoisomerases enzymes act on the topology:
unknotting DNA prior to replication
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Nice topological spaces: triangulations

Essential to computer graphics

Graphs: simplest class of “piecewise linear’” spaces
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The most interesting graph of today:
the world wide web

Methods of topology for internet connectivity
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More examples of topological spaces:

- Klein bottle:

- Real projective plane: S

A
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How to distinguish topological spaces?

e Euler characteristic

x = #Faces — #Edges + #Vertices

IS a topological invariant

Sphere: x = 2, orientable

Real projective space: x = 1, non-orientable

Klein bottle: x = 0, non-orientable

Torus: x = 0, orientable

Genus g surface: y = 2 — 2g, orientable
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e Orientability

Max Bill: Mobius band sculpture

Maurits Cornelis Escher:

Mobius band
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Smooth spaces (or smooth manifolds):
Topological spaces locally indistinguishable from
a vector space

Example: the Earth from ground level looks flat

Tangent space

lLLocal coordinates: number of independent
parameters describing a physical system

- Dimension from tangent space (linear space)
17



LLocal versus global properties:
locally like flat space (linear space)
but globally: nontrivial topology

View from inside a 3-torus
(Jeff Weeks “The shape of space”)
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Smooth space = Topological space
but beware ...

Exotic smoothness:
4-dimensional flat space has infinitely many
different smooth structures (Donaldson)
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- small: contained inside ordinary flat space
- large: do not fit in ordinary space

Dimension 3 and 4 are the most complicated!!

Poincaré conjecture (Perelman):
there is only one type of 3-dimensional sphere

Smooth 4-dimensional sphere?? Unknown
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Exotic smoothness can affect our
understanding of the distant universe
(gravitational lensing)

passing through a small exotic space changes lensing
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What detects exotic smoothness?
Not topological invariants (Euler characteristic etc)

Different properties of particle physics!
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target electron

Compare solutions of equations of motion for

elementary particles:

- Donaldson invariants (1980s)
from electroweak forces

- Seiberg—Witten invariants (1990s)
from string theory
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Metric spaces topological space where can
measure distance between points
(Not just near but how near)

Voronoi cells: points closer to one of the ‘‘centers”

Metric space = topological space
but not all topological spaces can be metric
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Unit ball: distance one from a point

Opan unit dsc an i Chabyshav matic

Sergels Torg Stockholm:

unit ball in distance d((z,y), (0,0)) = (a* + y*)/4
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Smooth spaces can be metric: Riemannian
manifolds = General Relativity, spacetime

Lorentzian metric: light cones
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What kind of space is space?

(3-dimensional section of spacetime)

Metric properties (positive/negative curvature)
related to cosmological constant

The problem of Cosmic topology

Dodecahedral universe: Poincaré sphere
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Searching for dodecahedral topology in the
cosmic microwave background radiation

Trying to match sides of polyhedron
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Singular spaces

Algebraic varieties: polynomial equations

yr(z? +y—2) =0

(If polynomial homogeneous: inside projective spaces)

Singularities: black holes, big bang,
gravitational lensing
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Measure spaces and fractals

Measure the size of regions of space:
area, volume, length

AlsoO measuring probability of an event
= Quantum mechanics, observables

(theory of von Neumann algebras)
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Dimension: Hausdorff dimension
(real number)

¥

Sierpinski carpet: dimension :883 ~ 1.585

(union of three copies scaled down by a factor of two)

= Fractal: dimension not an integer
Mandelbrot (1980s)
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Transformations of measure spaces
Anything that preserves measure of sets even
if it cuts and rearranges pieces

Non-measurable sets: Banach-Tarski paradox
(cut ball in finitely many pieces and reassemble them by
rotating and translating into a ball twice as big)
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Property of group of transformations
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Noncommutative spaces (Connes 1980s)

Quantum mechanics: Heisenberg uncertainty
principle: positions and velocities do not
commute (cannot be measured simultaneously)

Ax-Av>h

Quotients (gluing together points) of
topological/smooth/metric/measure spaces
= noncommutative spaces

Models for particle physics
31



Examples of nhoncommutative spaces:
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Do we need all these notions of space?
Yes: interplay of different structures

- Topological spaces can be smooth in different
ways or not at all (exotic smoothness).

- Topological spaces acquire a new notion of
dimension when seen as measure spaces
(fractals).

- Riemannian manifolds (like spacetime) can
be locally isometric but globally different due

to topology (cosmic topology).

- Different physics on different spaces.
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