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The spectral action functional
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A good action functional for noncommutative geometries

Tr(f (D/Λ))

D Dirac, Λ mass scale, f > 0 even smooth function (cutoff approx)
Simple dimension spectrum ⇒ expansion for Λ→∞

Tr(f (D/Λ)) ∼
∑
k

fk Λk

∫
− |D|−k + f (0) ζD(0) + o(1),

with fk =
∫∞

0 f (v) vk−1 dv momenta of f
where DimSp(A,H,D) = poles of ζb,D(s) = Tr(b|D|−s)
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Asymptotic expansion of the spectral action

Tr(e−t∆) ∼
∑

aα t
α (t → 0)

and the ζ function
ζD(s) = Tr(∆−s/2)

Non-zero term aα with α < 0 ⇒ pole of ζD at −2α with

Ress=−2α ζD(s) =
2 aα

Γ(−α)

No log t terms ⇒ regularity at 0 for ζD with ζD(0) = a0
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Get first statement from

|D|−s = ∆−s/2 =
1

Γ
(
s
2

) ∫ ∞
0

e−t∆ ts/2−1 dt

with
∫ 1

0 tα+s/2−1 dt = (α + s/2)−1.

Second statement from

1

Γ
(
s
2

) ∼ s

2
as s → 0

contrib to ζD(0) from pole part at s = 0 of∫ ∞
0

Tr(e−t∆) ts/2−1 dt

given by a0

∫ 1
0 ts/2−1 dt = a0

2
s
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Spectral action with fermionic terms

S = Tr(f (DA/Λ)) +
1

2
〈 J ξ̃,DA ξ̃〉 , ξ̃ ∈ H+

cl ,

DA = Dirac with unimodular inner fluctuations, J = real structure,
H+

cl = classical spinors, Grassmann variables

Fermionic terms
1

2
〈J ξ̃,DAξ̃〉

antisymmetric bilinear form A(ξ̃) on

H+
cl = {ξ ∈ Hcl | γξ = ξ}

⇒ nonzero on Grassmann variables

Euclidean functional integral ⇒ Pfaffian

Pf (A) =

∫
e−

1
2
A(ξ̃)D[ξ̃]

avoids Fermion doubling problem of previous models based on
symmetric 〈ξ,DAξ〉 for NC space with KO-dim=0
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Grassmann variables
Anticommuting variables with basic integration rule∫

ξ dξ = 1

An antisymmetric bilinear form A(ξ1, ξ2): if ordinary commuting
variables A(ξ, ξ) = 0 but not on Grassmann variables
Example: 2-dim case A(ξ′, ξ) = a(ξ′1ξ2 − ξ′2ξ1), if ξ1 and ξ2

anticommute, with integration rule as above∫
e−

1
2
A(ξ,ξ)D[ξ] =

∫
e−aξ1ξ2dξ1dξ2 = a

Pfaffian as functional integral: antisymmetric quadratic form

Pf (A) =

∫
e−

1
2
A(ξ,ξ) D[ξ]

Method to treat Majorana fermions in the Euclidean setting
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Fermionic part of SM Lagrangian
Explicit computation of

1

2
〈J ξ̃,DAξ̃〉

gives part of SM Larangian with
• LHf = coupling of Higgs to fermions
• Lgf = coupling of gauge bosons to fermions
• Lf = fermion terms
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Bosonic part of the spectral action

S =
1

π2
(48 f4 Λ4 − f2 Λ2 c +

f0
4
d)

∫ √
g d4x

+
96 f2 Λ2 − f0 c

24π2

∫
R
√
g d4x

+
f0

10π2

∫
(

11

6
R∗R∗ − 3Cµνρσ C

µνρσ)
√
g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2√g d4x

+
f0a

2π2

∫
|Dµϕ|2

√
g d4x

− f0a

12π2

∫
R |ϕ|2√g d4x

+
f0b

2π2

∫
|ϕ|4√g d4x

+
f0

2π2

∫
(g2

3 G i
µν G

µνi + g2
2 Fα

µν F
µνα +

5

3
g2

1 Bµν B
µν)
√
g d4x ,
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Parameters:

f0, f2, f4 free parameters, f0 = f (0) and, for k > 0,

fk =

∫ ∞
0

f (v)vk−1dv .

a, b, c, d, e functions of Yukawa parameters of νMSM

a = Tr(Y †νYν + Y †e Ye + 3(Y †uYu + Y †dYd))

b = Tr((Y †νYν)2 + (Y †e Ye)2 + 3(Y †uYu)2 + 3(Y †dYd)2)

c = Tr(MM†)

d = Tr((MM†)2)

e = Tr(MM†Y †νYν).
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Gilkey’s theorem using D2
A = ∇∗∇− E

Differential operator P = − (gµν I ∂µ∂ν + Aµ∂µ + B) with A, B
bundle endomorphisms, m = dimM

Tr e−tP ∼
∑
n≥0

t
n−m

2

∫
M

an(x ,P) dv(x)

P = ∇∗∇− E and E;µ
µ := ∇µ∇µE

∇µ = ∂µ + ω′µ, ω′µ =
1

2
gµν(Aν + Γν · id)

E = B − gµν(∂µ ω
′
ν + ω′µ ω

′
ν − Γρµν ω

′
ρ)

Ωµν = ∂µ ω
′
ν − ∂ν ω′µ + [ω′µ, ω

′
ν ]

Seeley-DeWitt coefficients

a0(x ,P) = (4π)−m/2Tr(id)

a2(x ,P) = (4π)−m/2Tr
(
−R

6 id + E
)

a4(x ,P) = (4π)−m/2 1
360Tr(−12R;µ

µ + 5R2 − 2Rµν R
µν

+ 2Rµνρσ R
µνρσ − 60R E + 180E 2 + 60E;µ

µ

+ 30 Ωµν Ωµν)
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Normalization and coefficients

Rescale Higgs field H =
√
a f0
π ϕ to normalize kinetic term∫

1
2 |DµH|

2√g d4x

Normalize Yang-Mills terms
1
4G

i
µνG

µνi
+ 1

4F
α
µνF

µνα
+ 1

4BµνB
µν

Normalized form:

S =
1

2κ2
0

∫
R
√
g d4x + γ0

∫ √
g d4x

+ α0

∫
Cµνρσ C

µνρσ√g d4x + τ0

∫
R∗R∗√g d4x

+
1

2

∫
|DH|2√g d4x − µ2

0

∫
|H|2√g d4x

− ξ0

∫
R |H|2√g d4x + λ0

∫
|H|4√g d4x

+
1

4

∫
(G i

µν G
µνi + Fα

µν F
µνα + Bµν B

µν)
√
g d4x

where R∗R∗ = 1
4ε

µνρσεαβγδR
αβ
µνR

γδ
ρσ integrates to the Euler

characteristic χ(M) and Cµνρσ Weyl curvature
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Coefficients

1
2κ2

0
=

96f2Λ2 − f0c

24π2
γ0 =

1

π2
(48f4Λ4 − f2Λ2c +

f0
4
d)

α0 = − 3f0
10π2

τ0 =
11f0
60π2

µ2
0 = 2

f2Λ2

f0
− e

a
ξ0 = 1

12

λ0 =
π2b

2f0a2

Energy scale: Unification (1015 – 1017 GeV)

g2f0
2π2

=
1

4

Preferred energy scale, unification of coupling constants
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1-loop RGE equations for νMSN

∂txi (t) = βxi (x(t))

variable t = log(Λ/MZ )
• Coupling constants:

β1 =
41

96π2
g3

1 , β2 = − 19

96π2
g3

2 , β3 = − 7

16π2
g3

3

at 1-loop decoupled from other equations (Notation: g̃2
1 = 5

3g
2
1 )

• Yukawa parameters:

16π2 βYu = Yu(
3

2
Y †uYu −

3

2
Y †dYd + a− 17

20
g̃2

1 −
9

4
g2

2 − 8g2
3 )

16π2 βYd
= Yd(

3

2
Y †dYd −

3

2
Y †uYu + a− 1

4
g̃2

1 −
9

4
g2

2 − 8g2
3 )

16π2 βYν = Yν(
3

2
Y †νYν −

3

2
Y †e Ye + a− 9

20
g̃2

1 −
9

4
g2

2 )

16π2 βYe = Ye(
3

2
Y †e Ye −

3

2
Y †νYν + a− 9

4
g̃2

1 −
9

4
g2

2 )
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• Majorana mass terms:

16π2 βM = YνY
†
νM + M(YνY

†
ν )T

• Higgs self coupling:

16π2 βλ = 6λ2 − 3λ(3g2
2 + g2

1 ) + 3g4
2 +

3

2
(g2

1 + g2
2 )2 + 4λa− 8b

• MSM approximation: top quark Yukawa parameter dominant
term: in λ running neglect all terms except coupling constants gi
and Yukawa parameter of top quark yt

βλ =
1

16π2

(
24λ2 + 12λy2 − 9λ(g2

2 +
1

3
g2

1 )− 6y4 +
9

8
g4

2 +
3

8
g4

1 +
3

4
g2

2 g
2
1

)
where Yukawa parameter for the top quark runs by

βy =
1

16π2

(
9

2
y3 − 8g2

3 y −
9

4
g2

2 y −
17

12
g2

1 y

)
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Renormalization group flow

The coefficients a, b, c, d, e (depend on Yukawa parameters)
run with the RGE flow

Initial conditions at unification energy: compatibility with
physics at low energies

RGE in the MSM case
Running of coupling constants at one loop: αi = g2

i /(4π)

βgi = (4π)−2 bi g
3
i , with bi = (

41

6
,−19

6
,−7),

α−1
1 (Λ) = α−1

1 (MZ )− 41

12π
log

Λ

MZ

α−1
2 (Λ) = α−1

2 (MZ ) +
19

12π
log

Λ

MZ

α−1
3 (Λ) = α−1

3 (MZ ) +
42

12π
log

Λ

MZ

MZ ∼ 91.188 GeV mass of Z 0 boson
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At one loop RGE for coupling constants decouples from Yukawa
parameters (not at 2 loops!)

2.5 5 7.5 10 12.5 15 17.5
log10!Μ"GeV#

0.02
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0.09

Α3

Α2

5"3 Α1
Couplings

Well known triangle problem: with known low energy values
constants don’t meet at unification g2

3 = g2
2 = 5g2

1 /3
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Geometry point of view

At one loop coupling constants decouple from Yukawa
parameters

Solving for coupling constants, RGE flow defines a vector field
on moduli space C3 × C1 of Dirac operators on the finite NC
space F

Subvarieties invariant under flow are relations between the SM
parameters that hold at all energies

At two loops or higher, RGE flow on a rank three vector
bundle (fiber = coupling constants) over the moduli space
C3 × C1

Geometric problem: studying the flow and the geometry of
invariant subvarieties on the moduli space
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Constraints at unification
The geometry of the model imposes conditions at unification
energy: specific to this NCG model

λ parameter constraint

λ(Λunif ) =
π2

2f0

b(Λunif )

a(Λunif )2

Higgs vacuum constraint
√
af0
π

=
2MW

g

See-saw mechanism and c constraint

2f2Λ2
unif

f0
≤ c(Λunif ) ≤

6f2Λ2
unif

f0

Mass relation at unification∑
generations

(m2
ν + m2

e + 3m2
u + 3m2

d)|Λ=Λunif
= 8M2

W |Λ=Λunif

Need to have compatibility with low energy behavior
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Mass relation at unification Y2(S) = 4g2

Y2 =
∑
σ

(yσν )2 + (yσe )2 + 3 (yσu )2 + 3 (yσd )2

(k(↑3))σκ = g
2M mσ

u δ
κ
σ

(k(↓3))σκ = g
2M mµ

d Cσµδ
ρ
µC
†
ρκ

(k(↑1))σκ = g
2M mσ

ν δ
κ
σ

(k(↓1))σκ = g
2M mµ

e U lep
σµδ

ρ
µU lep†

ρκ

δji = Kronecker delta, then constraint:

Tr(k∗(↑1)k(↑1) + k∗(↓1)k(↓1) + 3(k∗(↑3)k(↑3) + k∗(↓3)k(↓3))) = 2 g2

⇒ mass matrices satisfy∑
σ

(mσ
ν )2 + (mσ

e )2 + 3 (mσ
u )2 + 3 (mσ

d )2 = 8M2
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See-saw mechanism: D = D(Y ) Dirac
0 M∗ν M∗R 0
Mν 0 0 0
MR 0 0 M̄∗ν

0 0 M̄ν 0


on subspace (νR , νL, ν̄R , ν̄L): largest eigenvalue of MR ∼ Λ
unification scale. Take MR = x kR in flat space, Higgs vacuum v
small (w/resp to unif scale) ∂uTr(f (DA/Λ)) = 0 u = x2

x2 =
2 f2 Λ2 Tr(k∗RkR)

f0 Tr((k∗RkR)2)

Dirac mass Mν ∼ Fermi energy v

1

2
(±mR ±

√
m2

R + 4 v2)

two eigenvalues ∼ ±mR and two ∼ ± v2

mR

Compare with estimates

(mR)1 ≥ 107GeV , (mR)2 ≥ 1012GeV , (mR)3 ≥ 1016GeV
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Low energy limit: compatibilities and predictions
Running of top Yukawa coupling (dominant term):

v√
2

(yσ· ) = (mσ
· ),

dyt
dt

=
1

16π2

[
9

2
y3
t −

(
a g2

1 + b g2
2 + c g2

3

)
yt

]
,

(a, b, c) = (
17

12
,

9

4
, 8)

⇒ value of top quark mass agrees with known (1.04 times if
neglect other Yukawa couplings)
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Top quark running using mass relation at unification

0 2.5 5 7.5 10 12.5 15 17.5
log10!Μ"GeV#

0.5

0.6

0.7

0.8

0.9

1.1

yt"0.516

yt"0.596

correction to MSM flow by yσν for τ neutrino (allowed to be
comparably large by see-saw) lowers value
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Higgs mass prediction using RGE for MSM
Higgs scattering parameter:

f0
2π2

∫
b |ϕ|4√g d4x =

π2

2 f0

b

a2

∫
|H|4√g d4x

⇒ relation at unification (λ̃ is |H|4 coupling)

λ̃(Λ) = g2
3

b

a2

Running of Higgs scattering parameter:

dλ

dt
= λγ +

1

8π2
(12λ2 + B)

γ =
1

16π2
(12y2

t − 9g2
2 − 3g2

1 ) B =
3

16
(3g4

2 + 2g2
1 g

2
2 + g4

1 )− 3y4
t
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Higgs estimate (in MSM approximation for RGE flow)

m2
H = 8λ

M2

g2
, mH =

√
2λ

2M

g

0 2.5 5 7.5 10 12.5 15
x

0.2

0.22

0.24

0.26

0.28
Λ!log!Μ"MZ##

x#log10!Μ"GeV#

λ(MZ ) ∼ 0.241 and Higgs mass ∼ 170 GeV (w/correction from
see-saw ∼ 168 GeV) ... Problem: wrong Higgs mass! too heavy
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