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The spectral action functional

@ Ali Chamseddine, Alain Connes, The spectral action principle,
Comm. Math. Phys. 186 (1997), no. 3, 731-750.

A good action functional for noncommutative geometries

Tr(F(D/N))

D Dirac, A mass scale, f > 0 even smooth function (cutoff approx)
Simple dimension spectrum = expansion for A — oo

(/M) ~ X i ][ D%+ £(0)¢p(0) + o(1),

with f = [;° f(v) vK~! dv momenta of f
where DimSp(A, H, D) = poles of (, p(s) = Tr(b|D|~%)
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Asymptotic expansion of the spectral action

e tA) Z ag t (t—0)
and the ¢ function
¢p(s) = Tr(A™*/?)
@ Non-zero term a, with a < 0 = pole of {p at —2« with

2 a,
M(—a)

@ No logt terms = regularity at 0 for {p with {p(0) = ap

Ress— 24 (p(s) =
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@ Get first statement from

1 00
‘D‘—s _ A_S/2 _ / e—tA t5/2_1 dt
0

r(s)
with [i t9ts/2-1dt = (a +5/2)7 1.
@ Second statement from

as s—0

contrib to (p(0) from pole part at s = 0 of

/ Tr(e ™) t5/271 dt
0

given by ag fol t5/2- 1 gt = a0
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Spectral action with fermionic terms

S = Tx(f(Da/N) + 5 (JEDA), ey,
D4 = Dirac with unimodular inner fluctuations, J = real structure,
7—[2“, = classical spinors, Grassmann variables
Fermionic terms 1. )
5 (€. Dad)

antisymmetric bilinear form 24(¢) on

H ={¢eHal|r¢=¢}
= nonzero on Grassmann variables

Euclidean functional integral = Pfaffian
pr(x) = [ e #ODIg

avoids Fermion doubling problem of previous models based on
symmetric (£, Da&) for NC space with KO-dim=0
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Grassmann variables
Anticommuting variables with basic integration rule

/§d§:1

An antisymmetric bilinear form 20(&1, &2): if ordinary commuting
variables (£, &) = 0 but not on Grassmann variables

Example: 2-dim case (&', &) = a(&1&2 — &£5&1), if & and &
anticommute, with integration rule as above

/eém(&f)D[g] — /e35152d§1d§2 — 3
Pfaffian as functional integral: antisymmetric quadratic form
pr(x) = [ & #%¢9 pig

Method to treat Majorana fermions in the Euclidean setting

Matilde Marcolli The Spectral Action and the Standard Model



Fermionic part of SM Lagrangian
Explicit computation of

1 . .
5('/57 DA§>

gives part of SM Larangian with

e Lyr = coupling of Higgs to fermions

e Lgr = coupling of gauge bosons to fermions
e L = fermion terms
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Bosonic part of the spectral action

1
S = —2(48f4A47f2/\2c+—0)/fd4
965N —fyc 4

fo 11 * ¥ Ly po 4
+ W/(KRR73CNVPUC )\/ng

—2ah N + ef
v 2R LR [1op g

T2

fa
P LS /ID;API VEd'x

foa

- W/RM Ve d*x

fob 4 4
+ ﬁ/lwl Ve dix

f
4 70/(g32 GI G;,Ll/l+ Fa Fuua+

5 1%
5.7 =~ g B B") /g d*x,

3
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Parameters:

e fy, fr, fa free parameters, fy = f(0) and, for k > 0,

o0
fx = / f(v)vk—Ldv.
0
@ a,b,c,0,e functions of Yukawa parameters of vMSM

a= Tr(YJY, + YdYe +3(YiY, + YIVY))

(YIY0)? + (YEYe)? + 3(YEYa)? +3(Y] Ya)?)

—_ o~
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Gilkey's theorem using D3 = V*V — E
Differential operator P = — (g"1 0,0, + A*0,, + B) with A, B
bundle endomorphisms, m = dim M

e / an(x, P) dv(x)

n>0
P=V*V— Eand E /= V,V'E

1
V= 0u+wy, w,= QgW(AV + 7 -id)
E=B-g" (0w, —i—w;wl’, - I'Zl,w;,)

Q/u/ = au wllx — 0y w:l, + [w;u wlll]
Seeley-DeWitt coefficients
a(x,P) = (477)_'"/2Tr(id)

a(x,P) = (47)""2Tr (—&id + E)

aa(x.P) = (4m) ™2 T(— 12R, * + 5R? — 2R, R
+ 2Ryup0 RUP7 — 60 RE + 180 E2 + 60 E,
+ 309, Q)
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Normalization and coefficients
@ Rescale Higgs field H = @gp to normalize kinetic term
[LDH?? /g d*x
@ Normalize Yang-Mills terms

loi 7M1 1pa TV | 1 BRIV
26,6 +3FLF +4BuB

Normalized form:
S = ;%/Rﬁd4x+70/ﬁd4x
+ @ / Covpo CHP7 /g d*x + 19 / R*R*\/g d*x
5 [ 10HE VEd - i [ IHE VEd
— go/ R|H|2\/§d4x+>\o/|H|4\/§d4x
+ g [ (Gl 6 F Pk B, B) VE 'S

where R*R* = 2e"P7¢q5,5R% R}, integrates to the Euler

characteristic x(M) and C**P° Weyl curvature



Coefficients

96HLNA% — f; 1 fo
1 _27“ 70:72(4851/\4*IC2A2C+4 )

2k 2472
3f 111
aof—ﬁ TOZW
1y = % - 2 bo=15
B 72b
°7 2%

Energy scale: Unification (10%° — 1017 GeV)

gy 1

272 4

Preferred energy scale, unification of coupling constants
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1-loop RGE equations for yMSN
Oexi(t) = By (x(1))

variable t = log(A/My)
e Coupling constants:

41 19 7
p1= ngv B2 = 962 gz, B3 = 16772g33

at 1-loop decoupled from other equations (Notation: g2 = %gf)
e Yukawa parameters:

3 3

17
1672 By, = YU(EYJ Y, — —YTYd ta— -3

208

_ 9,2
4

3 3 1., 9
1672 By, = Yd(EYJ Y, — EYJ Y, +a— -8l — g% —8g?)

4 4

1672 ﬁyV:Y(?)YTY —§YTY +a—%"2 %gf)
3 3 9., 9

167 By, = Ye(EYeTYe - EYJY,, +a-— ng - Zgg)
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e Majorana mass terms:
1672 By = Y, Y M+ M(Y, YT

e Higgs self coupling:

3
+ (g7 +&5)° +4Xa—8b

1672 By = 62 — 3\(3g2 + g2) + 3g¢ ;

e MSM approximation: top quark Yukawa parameter dominant
term: in A running neglect all terms except coupling constants g;
and Yukawa parameter of top quark y;

1 9, 3, 3
B ggf) —6y" + o8+ gal + 4g22g12>

= o3 (24>\2 +120y% — 9N(gF +

where Yukawa parameter for the top quark runs by

1 /9, 9, 17
5}/ 16 2 ( 8g3.y_ 4g2.y 12g1.y>
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Renormalization group flow

@ The coefficients a, b, ¢,d, ¢ (depend on Yukawa parameters)
run with the RGE flow

@ Initial conditions at unification energy: compatibility with
physics at low energies

RGE in the MSM case
Running of coupling constants at one loop: «; = g?/(4)

41 19

By = (4m) 2 big?, with b= (€7 6 =),
41 A
—1 _ -1 _ -
Qy (/\) - Qy (MZ) 127 |Og MZ
19 A
-1 A = —1 M — |
Oé2 ( ) Oé2 ( Z)+ 127T og MZ
42 A
A = st (My) 4+ —Z log -
a3~ (A) o3 ( Z)+127T 8 Mz

Mz ~ 91.188 GeV mass of Z° boson



At one loop RGE for coupling constants decouples from Yukawa
parameters (not at 2 loops!)

Couplings

5/3 oy

\ az

1og,, (11/GeV)

Well known triangle problem: with known low energy values
constants don't meet at unification g% = gz = 5g2/3
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Geometry point of view

@ At one loop coupling constants decouple from Yukawa
parameters

@ Solving for coupling constants, RGE flow defines a vector field
on moduli space C3 x C; of Dirac operators on the finite NC
space F

@ Subvarieties invariant under flow are relations between the SM
parameters that hold at all energies

@ At two loops or higher, RGE flow on a rank three vector
bundle (fiber = coupling constants) over the moduli space
C3 X Cl

@ Geometric problem: studying the flow and the geometry of
invariant subvarieties on the moduli space
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Constraints at unification
The geometry of the model imposes conditions at unification
energy: specific to this NCG model

@ )\ parameter constraint
A Aunif) = ™ O0unir)
2fo a(Aunir)?
@ Higgs vacuum constraint

T g
@ See-saw mechanism and ¢ constraint
2f N2
fun/f < (Aunif) <
0
@ Mass relation at unification
Z (m? + m2 +3m>? + 3m3)|a=n

generations

le() N QMW

67(2/\unlf
fo

_ 2
unif 8I\”W’/\:/\unif

Need to have compatibility with low energy behavior
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Mass relation at unification Y2(S) = 4g?

Yo=Y () + (v +3(v0)* +3(¥5)?

(k(T3))an = 2Mm oy

(k(s))on = 21 Mg Con 0 G
(k))ow = mm dg

(k(il))mf — 2M me Ulep 5ﬂulepT

5{ = Kronecker delta, then constraint:

Tr(kiynkn + Kinkan + 3(Kiakas) + Kz kus)) = 267

=- mass matrices satisfy

S (M) + (m2)? +3(m])? +3(m3)2 = 8M?

[
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See-saw mechanism: D = D(Y') Dirac

0 M; Mg 0
M, 0 0 0
Mg 0 0 M
0 0 M, 0

on subspace (vg, vy, Ur,7L): largest eigenvalue of Mg ~ A

unification scale. Take Mg = x kg in flat space, Higgs vacuum v

small (w/resp to unif scale) 9, Tr(f(Da/N) =0 u= x>
22 f N2 Tr(k}kR)
fo Tr((kxkr)?)

Dirac mass M,, ~ Fermi energy v

1
E(imR +\/m% +4v2)

. 2
two eigenvalues ~ +=mg and two ~ j:r‘r’,—R
Compare with estimates

(mR)l > 107GeV, (mR)2 > 1012GeV, (mR)3 > 1016GeV



Low energy limit: compatibilities and predictions
Running of top Yukawa coupling (dominant term):

dy 1 9
(Ttt: o5 | ¥~ (agi +bgi +cgf) v .

17 9
b = (—. —
(a,b,c) = (3501

= value of top quark mass agrees with known (1.04 times if
neglect other Yukawa couplings)

8)

Matilde Marcolli The Spectral Action and the Standard Model



Top quark running using mass relation at unification

¥1-0.596
y1-0.516
1.1 \
log,, (1/GeV)
0 2 s 7.5 10 12.5 15 17.5
0.9
0.8
~_
~__
0.7 ~.
~
0.6 T
0.5

correction to MSM flow by y? for 7 neutrino (allowed to be
comparably large by see-saw) lowers value
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Higgs mass prediction using RGE for MSM
Higgs scattering parameter:

fo ‘g T b 4z gt
ooz [ blel vEdtx = T o [ M vEd's

= relation at unification (X is |H|* coupling)

. b
AN = &3

Running of Higgs scattering parameter:

d\
—Z = —12)\2 B

3
3gs + 2g1 gz +g7) =3y}

(12y7 — 9g7 —3gf) B= 16

BT
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Higgs estimate (in MSM approximation for RGE flow)

M?2 2M
g g
log,, (1/GeV)

,'/
A(log (u/Mg)) /

A(Mz) ~ 0.241 and Higgs mass ~ 170 GeV (w/correction from
see-saw ~ 168 GeV) ... Problem: wrong Higgs mass! too heavy
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