The Spectral Geometry of the Standard Model

Matilde Marcolli

Ma148b Spring 2016 Topics in Mathematical Physics

References

 A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the Standard Model with Neutrino Mixing, Adv. Theor. Math. Phys., Vol.11 (2007) 991–1090

Building a particle physics model

Minimal input ansatz:

left-right symmetric algebra

$$\mathcal{A}_{LR} = \mathbb{C} \oplus \mathbb{H}_L \oplus \mathbb{H}_R \oplus M_3(\mathbb{C})$$

- involution $(\lambda, q_L, q_R, m) \mapsto (\bar{\lambda}, \bar{q}_L, \bar{q}_R, m^*)$
- ullet subalgebra $\mathbb{C} \oplus M_3(\mathbb{C})$ integer spin \mathbb{C} -alg
- ullet subalgebra $\mathbb{H}_L \oplus \mathbb{H}_R$ half-integer spin \mathbb{R} -alg

More general choices of initial ansatz:

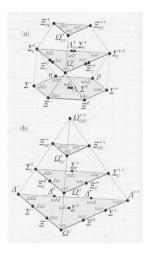
 A.Chamseddine, A.Connes, Why the Standard Model, J.Geom.Phys. 58 (2008) 38–47

Slogan: algebras better than Lie algebras, more constraints on reps

Comment: associative algebras versus Lie algebras

- In geometry of gauge theories: bundle over spacetime, connections and sections, automorphisms gauge group: Lie group
- Decomposing composite particles into elementary particles:
 Lie group representations (hadrons and quarks)
- If want only elementary particles: associative algebras have very few representations (very constrained choice)
- Get gauge groups later from inner automorphisms

Example Composite particles (baryons)



Classification in terms of elementary particles (quarks) using representations of Lie groups: SU(3)

Adjoint action: \mathcal{M} bimodule over \mathcal{A} , $u \in \mathcal{U}(\mathcal{A})$ unitary

$$\mathrm{Ad}(u)\xi = u\xi u^* \quad \forall \xi \in \mathcal{M}$$

Odd bimodule: \mathcal{M} bimodule for \mathcal{A}_{LR} odd iff s=(1,-1,-1,1) acts by Ad(s)=-1

$$\Leftrightarrow$$
 Rep of $\mathcal{B}=(\mathcal{A}_{LR}\otimes_{\mathbb{R}}\mathcal{A}_{LR}^{op})_p$ as \mathbb{C} -algebra $p=\frac{1}{2}(1-s\otimes s^0)$, with $\mathcal{A}^0=\mathcal{A}^{op}$

$$\mathcal{B} = \oplus^{4-times} M_2(\mathbb{C}) \oplus M_6(\mathbb{C})$$

Contragredient bimodule of \mathcal{M}

$$\mathcal{M}^0 = \{ \bar{\xi} \; ; \; \xi \in \mathcal{M} \} \, , \quad a \, \bar{\xi} \, b = \, \overline{b^* \xi \, a^*}$$

The bimodule \mathcal{M}_F

 $\mathcal{M}_F = \mathsf{sum} \; \mathsf{of} \; \mathsf{all} \; \mathsf{inequivalent} \; \mathsf{irreducible} \; \mathsf{odd} \; \mathcal{A}_{\mathit{LR}}\mathsf{-bimodules}$

- $\dim_{\mathbb{C}} \mathcal{M}_F = 32$
- $\mathcal{M}_F = \mathcal{E} \oplus \mathcal{E}^0$

$$\mathcal{E} = \mathbf{2}_L \otimes \mathbf{1}^0 \oplus \mathbf{2}_R \otimes \mathbf{1}^0 \oplus \mathbf{2}_L \otimes \mathbf{3}^0 \oplus \mathbf{2}_R \otimes \mathbf{3}^0$$

• $\mathcal{M}_F\cong\mathcal{M}_F^0$ by antilinear $J_F(\xi,\bar{\eta})=(\eta,\bar{\xi})$ for $\xi\,,\;\eta\in\mathcal{E}$

$$J_F^2 = 1$$
, $\xi b = J_F b^* J_F \xi$ $\xi \in \mathcal{M}_F$, $b \in \mathcal{A}_{LR}$

ullet Sum irreducible representations of ${\cal B}$

$$\mathbf{2}_L \otimes \mathbf{1}^0 \oplus \mathbf{2}_R \otimes \mathbf{1}^0 \oplus \mathbf{2}_L \otimes \mathbf{3}^0 \oplus \mathbf{2}_R \otimes \mathbf{3}^0$$

$$\oplus \mathbf{1} \otimes \mathbf{2}_{L}^{0} \oplus \mathbf{1} \otimes \mathbf{2}_{R}^{0} \oplus \mathbf{3} \otimes \mathbf{2}_{L}^{0} \oplus \mathbf{3} \otimes \mathbf{2}_{R}^{0}$$

ullet Grading: $\gamma_{\it F}=\,c\,-\,J_{\it F}\,c\,J_{\it F}$ with $c=(0,1,-1,0)\in{\cal A}_{\it LR}$

$$J_F^2 = 1$$
, $J_F \gamma_F = -\gamma_F J_F$

Grading and KO-dimension: commutations \Rightarrow KO-dim 6, mod 8

KO-dimension $n \in \mathbb{Z}/8\mathbb{Z}$

antilinear isometry $J:\mathcal{H} o \mathcal{H}$

$$J^2 = \varepsilon$$
, $JD = \varepsilon' DJ$, and $J\gamma = \varepsilon'' \gamma J$

n	0	1	2	3	4	5	6	7
ε	1	1	-1	-1	-1	-1	1	1
ε'	1	-1	1	1	1	-1	1	1
ε ε' ε''	1		-1		1		-1	

In particular, $J^2=1$ and $J\gamma=-\gamma\,J$ gives KO-dim = 6 So in this case *metric dimension* is zero but KO-dimension is 6

Interpretation as particles (Fermions)

$$q(\lambda) = \left(egin{array}{cc} \lambda & 0 \ 0 & ar{\lambda} \end{array}
ight) \qquad q(\lambda)|\uparrow
angle = \lambda|\uparrow
angle, \qquad q(\lambda)|\downarrow
angle = ar{\lambda}|\downarrow
angle$$

- $\mathbf{2}_L \otimes \mathbf{1}^0$: neutrinos $\nu_L \in |\uparrow\rangle_L \otimes \mathbf{1}^0$ and charged leptons $e_L \in |\downarrow\rangle_L \otimes \mathbf{1}^0$
- $\mathbf{2}_R \otimes \mathbf{1}^0$: right-handed neutrinos $\nu_R \in |\uparrow\rangle_R \otimes \mathbf{1}^0$ and charged leptons $e_R \in |\downarrow\rangle_R \otimes \mathbf{1}^0$
- $\mathbf{2}_L \otimes \mathbf{3}^0$ (color indices): $\mathbf{u}/\mathbf{c}/\mathbf{t}$ quarks $u_L \in |\uparrow\rangle_L \otimes \mathbf{3}^0$ and $\mathbf{d}/\mathbf{s}/\mathbf{b}$ quarks $d_L \in |\downarrow\rangle_L \otimes \mathbf{3}^0$
- $\mathbf{2}_R \otimes \mathbf{3}^0$ (color indices): $\mathbf{u}/\mathbf{c}/\mathbf{t}$ quarks $u_R \in |\uparrow\rangle_R \otimes \mathbf{3}^0$ and $\mathbf{d}/\mathbf{s}/\mathbf{b}$ quarks $d_R \in |\downarrow\rangle_R \otimes \mathbf{3}^0$
- $\mathbf{1} \otimes \mathbf{2}_{L,R}^0$: antineutrinos $\bar{\nu}_{L,R} \in \mathbf{1} \otimes \uparrow \rangle_{L,R}^0$, and charged antileptons $\bar{e}_{L,R} \in \mathbf{1} \otimes |\downarrow \rangle_{L,R}^0$
- $\mathbf{3} \otimes \mathbf{2}_{L,R}^0$ (color indices): antiquarks $\bar{u}_{L,R} \in \mathbf{3} \otimes |\uparrow\rangle_{L,R}^0$ and $\bar{d}_{L,R} \in \mathbf{3} \otimes |\downarrow\rangle_{L,R}^0$

Subalgebra and order one condition:

N=3 generations (input): $\mathcal{H}_F=\mathcal{M}_F\oplus\mathcal{M}_F\oplus\mathcal{M}_F$

Left action of \mathcal{A}_{LR} sum of representations $\pi|_{\mathcal{H}_f} \oplus \pi'|_{\mathcal{H}_{\bar{f}}}$ with $\mathcal{H}_f = \mathcal{E} \oplus \mathcal{E} \oplus \mathcal{E}$ and $\mathcal{H}_{\bar{f}} = \mathcal{E}^0 \oplus \mathcal{E}^0 \oplus \mathcal{E}^0$ and with no equivalent subrepresentations (disjoint)

If D mixes \mathcal{H}_f and $\mathcal{H}_{ar{f}} \Rightarrow$ no order one condition for \mathcal{A}_{LR}

Problem for coupled pair: $A \subset A_{LR}$ and D with off diagonal terms maximal A where order one condition holds

$$\mathcal{A}_F = \{(\lambda, q_L, \lambda, m) \mid \lambda \in \mathbb{C}, \ q_L \in \mathbb{H}, \ m \in M_3(\mathbb{C})\}$$
$$\sim \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}).$$

unique up to $Aut(A_{LR})$

⇒ spontaneous breaking of LR symmetry

Subalgebras with off diagonal Dirac and order one condition

Operator $T: \mathcal{H}_f o \mathcal{H}_{ar{f}}$

$$\mathcal{A}(T) = \{b \in \mathcal{A}_{LR} \mid \pi'(b)T = T\pi(b),$$

$$\pi'(b^*)T = T\pi(b^*)\}$$

involutive unital subalgebra of \mathcal{A}_{LR}

 $\mathcal{A} \subset \mathcal{A}_{LR}$ involutive unital subalgebra of \mathcal{A}_{LR}

- ullet restriction of π and π' to $\mathcal A$ disjoint \Rightarrow no off diag D for $\mathcal A$
- \exists off diag D for $A \Rightarrow$ pair e, e' min proj in commutants of $\pi(A_{LR})$ and $\pi'(A_{LR})$ and operator T

$$e'Te = T \neq 0$$
 and $A \subset A(T)$

• Then case by case analysis to identify max dimensional

Symmetries

Up to a finite abelian group

$$\mathrm{SU}(\mathcal{A}_F) \sim \mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$$

Adjoint action of U(1) (in powers of $\lambda \in U(1)$)

$$\uparrow \otimes \mathbf{1}^{0} \quad \downarrow \otimes \mathbf{1}^{0} \quad \uparrow \otimes \mathbf{3}^{0} \quad \downarrow \otimes \mathbf{3}^{0}$$

$$\mathbf{2}_{L} \quad -1 \quad -1 \quad \frac{1}{3} \quad \frac{1}{3}$$

$$\mathbf{2}_{R} \quad 0 \quad -2 \quad \frac{4}{3} \quad -\frac{2}{3}$$

 \Rightarrow correct hypercharges of fermions (confirms identification of \mathcal{H}_F basis with fermions)

Classifying Dirac operators for $(A_F, \mathcal{H}_F, \gamma_F, J_F)$ all possible D_F self adjoint on \mathcal{H}_F , commuting with J_F , anticommuting with γ_F and $[[D, a], b^0] = 0$, $\forall a, b \in \mathcal{A}_F$ Input conditions (massless photon): commuting with subalgebra

$$\mathbb{C}_F \subset \mathcal{A}_F \,, \quad \mathbb{C}_F = \{(\lambda, \lambda, 0) \,, \lambda \in \mathbb{C}\}$$
 then $D(Y) = \begin{pmatrix} S & T^* \\ T & \bar{S} \end{pmatrix}$ with $S = S_1 \oplus (S_3 \otimes 1_3)$
$$S_1 = \begin{pmatrix} 0 & 0 & Y^*_{(\uparrow 1)} & 0 \\ 0 & 0 & 0 & Y^*_{(\downarrow 1)} \\ Y_{(\uparrow 1)} & 0 & 0 & 0 \\ 0 & Y_{(\downarrow 1)} & 0 & 0 \end{pmatrix}$$

same for S_3 , with $Y_{(\downarrow 1)}$, $Y_{(\uparrow 1)}$, $Y_{(\downarrow 3)}$, $Y_{(\uparrow 3)} \in GL_3(\mathbb{C})$ and Y_R symmetric:

$$T: E_R = \uparrow_R \otimes \mathbf{1}^0 \to J_F E_R$$

Moduli space $C_3 \times C_1$ $C_3 = pairs (Y_{(\downarrow 3)}, Y_{(\uparrow 3)})$ modulo

$$Y'_{(\downarrow 3)} = W_1 Y_{(\downarrow 3)} W_3^*, \quad Y'_{(\uparrow 3)} = W_2 Y_{(\uparrow 3)} W_3^*$$

 W_j unitary matrices

$$\mathcal{C}_3 = (K \times K) \backslash (G \times G) / K$$

 $G = GL_3(\mathbb{C})$ and K = U(3) dim_{\mathbb{R}} $C_3 = 10 = 3 + 3 + 4$ (3 + 3 eigenvalues, 3 angles, 1 phase)

 $\mathcal{C}_1 = ext{triplets} \; (Y_{(\downarrow 1)}, Y_{(\uparrow 1)}, Y_R) \; ext{with} \; Y_R \; ext{symmetric modulo}$

$$Y'_{(\downarrow 1)} = V_1 Y_{(\downarrow 1)} V_3^*, \quad Y'_{(\uparrow 1)} = V_2 Y_{(\uparrow 1)} V_3^*, \quad Y'_R = V_2 Y_R \bar{V}_2^*$$

 $\pi: \mathcal{C}_1 \to \mathcal{C}_3$ surjection forgets Y_R fiber symmetric matrices mod $Y_R \mapsto \lambda^2 Y_R \quad \dim_{\mathbb{R}}(\mathcal{C}_3 \times \mathcal{C}_1) = 31$ (dim fiber 12-1=11)

Physical interpretation: Yukawa parameters and Majorana masses Representatives in $C_3 \times C_1$:

$$Y_{(\uparrow 3)} = \delta_{(\uparrow 3)}$$
 $Y_{(\downarrow 3)} = U_{CKM} \, \delta_{(\downarrow 3)} \, U_{CKM}^*$ $Y_{(\uparrow 1)} = U_{PMNS}^* \, \delta_{(\uparrow 1)} \, U_{PMNS}$ $Y_{(\downarrow 1)} = \delta_{(\downarrow 1)}$

 δ_{\uparrow} , δ_{\downarrow} diagonal: Dirac masses

$$U = \begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e_\delta & c_1c_2s_3 + s_2c_3e_\delta \\ s_1s_2 & c_1s_2c_3 + c_2s_3e_\delta & c_1s_2s_3 - c_2c_3e_\delta \end{pmatrix}$$

angles and phase $c_i = \cos \theta_i$, $s_i = \sin \theta_i$, $e_{\delta} = \exp(i\delta)$

 $U_{CKM} = Cabibbo-Kobayashi-Maskawa$

 $U_{PMNS} = Pontecorvo-Maki-Nakagawa-Sakata$

⇒ neutrino mixing

 Y_R = Majorana mass terms for right-handed neutrinos

Geometric point of view:

- CKM and PMNS matrices data: coordinates on moduli space of Dirac operators
- Experimental constraints define subvarieties in the moduli space
- Symmetric spaces $(K \times K) \setminus (G \times G)/K$ interesting geometry
- Get parameter relations from "interesting subvarieties"?

Summary: matter content of the NCG model

 ${
m {\it v}MSM}$: Minimal Standard Model with additional right handed neutrinos with Majorana mass terms

Free parameters in the model:

- 3 coupling constants
- 6 quark masses, 3 mixing angles, 1 complex phase
- 3 charged lepton masses, 3 lepton mixing angles, 1 complex phase
- 3 neutrino masses
- 11 Majorana mass matrix parameters
- 1 QCD vacuum angle

Moduli space of Dirac operators on the finite NC space F: all masses, mixing angles, phases, Majorana mass terms Other parameters:

- coupling constants: product geometry and action functional
- vacuum angle not there (but quantum corrections...?)

Symmetries and NCG

Symmetries of gravity coupled to matter:

$$G = U(1) \times SU(2) \times SU(3)$$

$$\mathcal{G} = \operatorname{Map}(M, G) \rtimes \operatorname{Diff}(M)$$

Is it $\mathcal{G} = \mathrm{Diff}(X)$? Not for a manifold, yes for an NC space

Example:
$$A = C^{\infty}(M, M_n(\mathbb{C}))$$
 $G = PSU(n)$

$$1 o \operatorname{Inn}(\mathcal{A}) o \operatorname{Aut}(\mathcal{A}) o \operatorname{Out}(\mathcal{A}) o 1$$

$$1 \to \operatorname{Map}(M, G) \to \mathcal{G} \to \operatorname{Diff}(M) \to 1.$$

- Symmetries viewpoint: can think of $X = M \times F$ noncommutative with $\mathcal{G} = \mathrm{Diff}(X)$ pure gravity symmetries for X combining gravity and gauge symmetries together (no a priori distinction between "base" and "fiber" directions)
- Want same with action functional for pure gravity on NC space $X = M \times F$ giving gravity coupled to matter on M

Product geometry $M \times F$

Two spectral triples $(A_i, \mathcal{H}_i, D_i, \gamma_i, J_i)$ of KO-dim 4 and 6:

$$\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_2 \quad \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$

$$D = D_1 \otimes 1 + \gamma_1 \otimes D_2$$

$$\gamma = \gamma_1 \otimes \gamma_2 \quad J = J_1 \otimes J_2$$

Case of 4-dimensional spin manifold M and finite NC geometry F:

$$\mathcal{A} = C^{\infty}(M) \otimes \mathcal{A}_F = C^{\infty}(M, \mathcal{A}_F)$$
 $\mathcal{H} = L^2(M, S) \otimes \mathcal{H}_F = L^2(M, S \otimes \mathcal{H}_F)$
 $D = \partial_M \otimes 1 + \gamma_5 \otimes D_F$

 D_F chosen in the moduli space described last time

Dimension of NC spaces: different notions of dimension for a spectral triple $(\mathcal{A}, \mathcal{H}, D)$

- Metric dimension: growth of eigenvalues of Dirac operator
- KO-dimension (mod 8): sign commutation relations of J, γ , D
- Dimension spectrum: poles of zeta functions $\zeta_{a,D}(s) = \text{Tr}(a|D|^{-s})$

For manifolds first two agree and third contains usual dim; for NC spaces not same: DimSp $\subset \mathbb{C}$ can have non-integer and non-real points, KO not always metric dim mod 8, see F case

 $X = M \times F$ metrically four dim 4 = 4 + 0; KO-dim is 10 = 4 + 6 (equal 2 mod 8); DimSp $k \in \mathbb{Z}_{\geq 0}$ with $k \leq 4$

Variant: almost commutative geometries

$$(C^{\infty}(M,\mathcal{E}),L^2(M,\mathcal{E}\otimes S),\mathcal{D}_{\mathcal{E}})$$

- M smooth manifold, $\mathcal E$ algebra bundle: fiber $\mathcal E_x$ finite dimensional algebra $\mathcal A_F$
- ullet $C^{\infty}(M,\mathcal{E})$ smooth sections of a algebra bundle \mathcal{E}
- Dirac operator $\mathcal{D}_{\mathcal{E}} = c \circ (\nabla^{\mathcal{E}} \otimes 1 + 1 \otimes \nabla^{\mathcal{S}})$ with spin connection $\nabla^{\mathcal{S}}$ and hermitian connection on bundle
- Compatible grading and real structure

An equivalent intrinsic (abstract) characterization in:

 Branimir Ćaćić, A reconstruction theorem for almost-commutative spectral triples, arXiv:1101.5908

Here we will assume for simplicity just a product $M \times F$

Inner fluctuations and gauge fields Setup:

ullet Right ${\mathcal A}$ -module structure on ${\mathcal H}$

$$\xi b = b^0 \xi, \quad \xi \in \mathcal{H}, \quad b \in \mathcal{A}$$

Unitary group, adjoint representation:

$$\xi \in \mathcal{H} \to \mathrm{Ad}(u)\,\xi = u\,\xi\,u^* \quad \xi \in \mathcal{H}$$

Inner fluctuations:

$$D \to D_A = D + A + \varepsilon' J A J^{-1}$$

with $A = A^*$ self-adjoint operator of the form

$$A = \sum a_j[D, b_j], \quad a_j, b_j \in A$$

Note: not an equivalence relation (finite geometry, can fluctuate D to zero) but like "self Morita equivalences"

Properties of inner fluctuations (A, \mathcal{H}, D, J)

- Gauge potential $A \in \Omega^1_D$, $A = A^*$
- Unitary $u \in \mathcal{A}$, then

$$\mathrm{Ad}(u)(D+A+\varepsilon'\,J\,A\,J^{-1})\mathrm{Ad}(u^*) =$$
$$D+\gamma_u(A)+\varepsilon'\,J\,\gamma_u(A)\,J^{-1}$$

where
$$\gamma_u(A) = u[D, u^*] + uAu^*$$

ullet D'=D+A (with $A\in\Omega^1_D$, $A=A^*$) then

$$D'+B=D+A', \quad A'=A+B\in\Omega^1_D$$

$$\forall B \in \Omega^1_{D'} \ B = B^*$$

• $D' = D + A + \varepsilon' J A J^{-1}$ then

$$D' + B + \varepsilon' J B J^{-1} = D + A' + \varepsilon' J A' J^{-1}$$
 $A' = A + B \in \Omega^1_D$

$$\forall B \in \Omega^1_{D'} \ B = B^*$$

Gauge bosons and Higgs boson

- Unitary $U(A) = \{u \in A \mid uu^* = u^*u = 1\}$
- Special unitary

$$SU(A_F) = \{u \in U(A_F) \mid det(u) = 1\}$$

det of action of u on \mathcal{H}_F

Up to a finite abelian group

$$SU(A_F) \sim U(1) \times SU(2) \times SU(3)$$

- Unimod subgr of $\mathcal{U}(\mathcal{A})$ adjoint rep $\mathrm{Ad}(u)$ on \mathcal{H} is gauge group of SM
- Unimodular inner fluctuations (in M directions) \Rightarrow gauge bosons of SM: U(1), SU(2) and SU(3) gauge bosons
- Inner fluctuations in F direction ⇒ Higgs field

More on Gauge bosons

Inner fluctuations $A^{(1,0)} = \sum_i a_i [\partial_M \otimes 1, a_i']$ with with $a_i = (\lambda_i, q_i, m_i), a_i' = (\lambda_i', q_i', m_i')$ in $A = C^{\infty}(M, A_F)$

- U(1) gauge field $\Lambda = \sum_i \lambda_i \, d\lambda_i' = \sum_i \lambda_i [\partial_M \otimes 1, \lambda_i']$
- SU(2) gauge field $Q = \sum_i q_i dq_i'$, with $q = f_0 + \sum_{\alpha} i f_{\alpha} \sigma^{\alpha}$ and $Q = \sum_{\alpha} f_{\alpha} [\partial_M \otimes 1, i f_{\alpha}' \sigma^{\alpha}]$
- U(3) gauge field $V' = \sum_i m_i \, dm'_i = \sum_i m_i [\partial_M \otimes 1, m'_i]$
- reduce the gauge field V' to SU(3) passing to unimodular subgroup $SU(A_F)$ and unimodular gauge potential Tr(A) = 0

$$V' = -V - \frac{1}{3} \begin{pmatrix} \Lambda & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & \Lambda \end{pmatrix} = -V - \frac{1}{3}\Lambda 1_3$$

Gauge bosons and hypercharges

The (1,0) part of $A+JAJ^{-1}$ acts on quarks and leptons by

$$\begin{pmatrix} \frac{4}{3}\Lambda + V & 0 & 0 & 0 \\ 0 & -\frac{2}{3}\Lambda + V & 0 & 0 \\ 0 & 0 & Q_{11} + \frac{1}{3}\Lambda + V & Q_{12} \\ 0 & 0 & Q_{21} & Q_{22} + \frac{1}{3}\Lambda + V \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -2\Lambda & 0 & 0 \\ 0 & 0 & Q_{11} - \Lambda & Q_{12} \\ 0 & 0 & Q_{21} & Q_{22} - \Lambda \end{pmatrix}$$

⇒ correct hypercharges!

More on Higgs boson

Inner fluctuations $A^{(0,1)}$ in the F-space direction

$$\sum_{i} a_{i} [\gamma_{5} \otimes D_{F}, a'_{i}](x)|_{\mathcal{H}_{f}} = \gamma_{5} \otimes (A_{q}^{(0,1)} + A_{\ell}^{(0,1)})$$

$$A_q^{(0,1)} = \left(egin{array}{cc} 0 & X \ X' & 0 \end{array}
ight) \otimes \mathbb{1}_3 \hspace{0.5cm} A_1^{(0,1)} = \left(egin{array}{cc} 0 & Y \ Y' & 0 \end{array}
ight)$$

$$X = \begin{pmatrix} \Upsilon_u^* \varphi_1 & \Upsilon_u^* \varphi_2 \\ -\Upsilon_d^* \bar{\varphi}_2 & \Upsilon_d^* \bar{\varphi}_1 \end{pmatrix} \quad \text{and} \quad X' = \begin{pmatrix} \Upsilon_u \varphi_1' & \Upsilon_d \varphi_2' \\ -\Upsilon_u \bar{\varphi}_2' & \Upsilon_d \bar{\varphi}_1' \end{pmatrix}$$

$$Y = \left(\begin{array}{cc} \Upsilon_{\nu}^{*}\varphi_{1} & \Upsilon_{\nu}^{*}\varphi_{2} \\ -\Upsilon_{e}^{*}\bar{\varphi}_{2} & \Upsilon_{e}^{*}\bar{\varphi}_{1} \end{array} \right) \quad \text{ and } \quad Y' = \left(\begin{array}{cc} \Upsilon_{\nu}\varphi_{1}' & \Upsilon_{e}\varphi_{2}' \\ -\Upsilon_{\nu}\bar{\varphi}_{2}' & \Upsilon_{e}\bar{\varphi}_{1}' \end{array} \right)$$

$$\varphi_{1} = \sum \lambda_{i}(\alpha'_{i} - \lambda'_{i}), \ \varphi_{2} = \sum \lambda_{i}\beta'_{i} \ \varphi'_{1} = \sum \alpha_{i}(\lambda'_{i} - \alpha'_{i}) + \beta_{i}\bar{\beta}'_{i} \text{ and }$$

$$\varphi'_{2} = \sum (-\alpha_{i}\beta'_{i} + \beta_{i}(\bar{\lambda}'_{i} - \bar{\alpha}'_{i})), \text{ for } a_{i}(x) = (\lambda_{i}, q_{i}, m_{i}) \text{ and }$$

$$a_i'(x) = (\lambda_i', q_i', m_i') \text{ and } q = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$$

More on Higgs boson

Discrete part of inner fluctuations: quaternion valued function $H=\varphi_1+\varphi_2 j$ or $\varphi=(\varphi_1,\varphi_2)$

$$\begin{split} &D_A^2 = (D^{1,0})^2 + 1_4 \otimes (D^{0,1})^2 - \gamma_5 \left[D^{1,0}, 1_4 \otimes D^{0,1} \right] \\ &[D^{1,0}, 1_4 \otimes D^{0,1}] = \sqrt{-1} \, \gamma^{\mu} \left[(\nabla_{\mu}^s + \mathbb{A}_{\mu}), 1_4 \otimes D^{0,1} \right] \end{split}$$

This gives $D_A^2 =
abla^*
abla - E$ where $abla^*
abla$ Laplacian of $abla =
abla^s + A$

$$-E = rac{1}{4} s \otimes \operatorname{id} + \sum_{\mu <
u} \gamma^{\mu} \gamma^{
u} \otimes \mathbb{F}_{\mu
u} - i \gamma_5 \gamma^{\mu} \otimes \mathbb{M}(D_{\mu}\varphi) + 1_4 \otimes (D^{0,1})^2$$

with s=-R scalar curvature and $\mathbb{F}_{\mu\nu}$ curvature of \mathbb{A}

$$D_{\mu}\varphi = \partial_{\mu}\varphi + \frac{i}{2}g_{2}W_{\mu}^{\alpha}\varphi\,\sigma^{\alpha} - \frac{i}{2}g_{1}B_{\mu}\,\varphi$$

SU(2) and U(1) gauge potentials

