

Introduction: What is Noncommutative Geometry?

Matilde Marcolli

Ma148b: Winter 2016

Noncommutative Geometry:

- *Geometry adapted to quantum world:* physical observables are operators in Hilbert space, these do not commute (e.g. canonical commutation relation of position and momentum: $[x, p] = i\hbar$)
- A method to describe “bad quotients” of equivalence relations as if they were nice spaces (cf. other such methods, e.g. stacks)
- Generally a method for extending smooth geometries to objects that are not smooth manifolds (fractals, quantum groups, bad quotients, deformations, ...)

Simplest example of a noncommutative geometry: matrices $M_2(\mathbb{C})$

- Product is not commutative $AB \neq BA$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u & v \\ x & y \end{pmatrix} = \begin{pmatrix} au + bx & av + by \\ cu + dx & cv + dy \end{pmatrix} \neq$$

$$\begin{pmatrix} au + cv & bu + dv \\ ax + cy & bx + dy \end{pmatrix} = \begin{pmatrix} u & v \\ x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- View product as a *convolution product*

$X = \{x_1, x_2\}$ space with two points

Equivalence relation $x_1 \sim x_2$ that identifies the two points: quotient (in classical sense) one point; graph of equivalence relation $R = \{(a, b) \in X \times X : a \sim b\} = X \times X$

$$(AB)_{ij} = \sum_k A_{ik} B_{kj}$$

$A_{ij} = f(x_i, x_j) : R \rightarrow \mathbb{C}$ functions on $X \times X$

$$(f_1 \star f_2)(x_i, x_j) = \sum_{x_i \sim x_k \sim x_j} f_1(x_i, x_k) f_2(x_k, x_j)$$

- The algebra $M_2(\mathbb{C})$ is the algebra of functions on $X \times X$ with convolution product
- Different description of the quotient X/\sim
- NCG space $M_2(\mathbb{C})$ is a point with internal degrees of freedom
- Intuition: useful to describe physical models with internal degrees of freedom

Morita equivalence (algebraic): rings R, S that have equivalent categories $R-Mod \simeq S-Mod$ of (left)-modules

R and $M_N(R)$ are Morita equivalent

The algebra $M_2(\mathbb{C})$ represents a two point space with an identification between points. Unlike the classical quotient with algebra \mathbb{C} , the non-commutative space $M_2(\mathbb{C})$ “remembers” how the quotient is obtained

Noncommutative Geometry of Quotients

Equivalence relation \mathcal{R} on X :
quotient $Y = X/\mathcal{R}$.

Even for very good $X \Rightarrow X/\mathcal{R}$ pathological!

Classical: functions on the quotient
 $\mathcal{A}(Y) := \{f \in \mathcal{A}(X) \mid f \text{ is } \mathcal{R}-\text{invariant}\}$

\Rightarrow often too few functions
 $\mathcal{A}(Y) = \mathbb{C}$ only constants

NCG: $\mathcal{A}(Y)$ noncommutative algebra

$$\mathcal{A}(Y) := \mathcal{A}(\Gamma_{\mathcal{R}})$$

functions on the graph $\Gamma_{\mathcal{R}} \subset X \times X$ of the equivalence relation
(compact support or rapid decay)

Convolution product

$$(f_1 * f_2)(x, y) = \sum_{x \sim u \sim y} f_1(x, u) f_2(u, y)$$

$$\text{involution } f^*(x, y) = \overline{f(y, x)}.$$

$\mathcal{A}(\Gamma_{\mathcal{R}})$ noncommutative algebra $\Rightarrow Y = X/\mathcal{R}$
noncommutative space

Recall: $C_0(X) \Leftrightarrow X$ Gelfand–Naimark equiv of categories
abelian C^* -algebras, loc comp Hausdorff spaces

Result of NCG:

$Y = X/\mathcal{R}$ *noncommutative space* with
NC algebra of functions $\mathcal{A}(Y) := \mathcal{A}(\Gamma_{\mathcal{R}})$ is

- as good as X to do geometry
(deRham forms, cohomology, vector bundles, connections, curvatures, integration, points and subvarieties)
- but with *new* phenomena
(time evolution, thermodynamics, quantum phenomena)

Tools needed for Physics Models

- Vector bundles and connections (gauge fields)
- Riemannian metrics (Euclidean gravity)
- Spinors (Fermions)
- Action Functional

General idea: reformulate usual geometry in algebraic terms (using the algebra of functions rather than the geometric space) and extend to case where algebra no longer commutative

Remark: Different forms of noncommutativity in physics

- Quantum mechanics: non-commuting operators
- Gauge theories: non-abelian gauge groups
- Gravity: hypothetical presence of noncommutativity in spacetime coordinates at high energy (some string compactifications with NC tori)

In the models we consider here the non-abelian nature of gauge groups is seen as an effect of an underlying non-commutativity of coordinates of “internal degrees of freedom” space (a kind of extra-dimensions model)

Vector bundles in the noncommutative world

- M compact smooth manifold, E vector bundle: space of smooth sections $\mathcal{C}^\infty(M, E)$ is a module over $\mathcal{C}^\infty(M)$
- The module $\mathcal{C}^\infty(M, E)$ over $\mathcal{C}^\infty(M)$ is finitely generated and projective (i.e. a vector bundle E is a direct summand of some trivial bundle)
- Example: $TS^2 \oplus NS^2$ tangent and normal bundle give a trivial rk 3 bundle
- *Serre–Swan theorem*: any finitely generated projective module over $\mathcal{C}^\infty(M)$ is $\mathcal{C}^\infty(M, E)$ for some vector bundle E over M

Tangent and normal bundle of S^2 add to trivial rank 3 bundle: more generally by Serre–Swan's theorem all vector bundles are summands of some trivial bundle

Conclusion: algebraic description of vector bundles as finite projective modules over the algebra of functions

See details (for smooth manifold case) in
Jet Nestruev, *Smooth manifolds and
observables*, GTM Springer, Vol.220, 2003

Vector bundles over a noncommutative space:

- Only have the algebra \mathcal{A} noncommutative, not the geometric space (usually not enough two-sided ideals to even have points of space in usual sense)
- Define vector bundles purely in terms of the algebra: \mathcal{E} = finitely generated projective (left)-module over \mathcal{A}

Connections on vector bundles

- \mathcal{E} finitely generated projective module over (noncommutative) algebra \mathcal{A}

- Suppose have differential graded algebra (Ω^\bullet, d) , $d^2 = 0$ and

$$d(\alpha_1 \alpha_2) = d(\alpha_1) \alpha_2 + (-1)^{\deg(\alpha_1)} \alpha_1 d(\alpha_2)$$

with homomorphism $\mathcal{A} \rightarrow \Omega^0$
(hence bimodule)

- connection $\nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \Omega^1$ Leibniz rule

$$\nabla(\eta a) = \nabla(\eta) a + \eta \otimes da$$

for $a \in \mathcal{A}$ and $\eta \in \mathcal{E}$

Spin Geometry

(approach to Riemannian geometry in NCG)

Spin manifold

- Smooth n -dim manifold M has tangent bundle TM
- Riemannian manifold (orientable): orthonormal frame bundle FM on each fiber E_x inner product space with oriented orthonormal basis
- FM is a principal $SO(n)$ -bundle
- Principal G -bundle: $\pi : P \rightarrow M$ with G -action $P \times G \rightarrow P$ preserving fibers $\pi^{-1}(x)$ on which free transitive (so each fiber $\pi^{-1}(x) \simeq G$ and base $M \simeq P/G$)

- Fundamental group $\pi_1(SO(n)) = \mathbb{Z}/2\mathbb{Z}$ so double cover universal cover:

$$Spin(n) \rightarrow SO(n)$$

- Manifold M is *spin* if orthonormal frame bundle FM lifts to a principal $Spin(n)$ -bundle PM
- *Warning:* not all compact Riemannian manifolds are spin: there are topological obstructions
- In dimension $n = 4$ not all spin, but all at least $spin^{\mathbb{C}}$
- $spin^{\mathbb{C}}$ weaker form than spin: lift exists after tensoring TM with a line bundle (or square root of a line bundle)

$$1 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow Spin^{\mathbb{C}}(n) \rightarrow SO(n) \times U(1) \rightarrow 1$$

Spinor bundle

- Spin group $Spin(n)$ and Clifford algebra: vector space V with quadratic form q

$$Cl(V, q) = T(V)/I(V, q)$$

tensor algebra mod ideal gen by $uv + vu = 2\langle u, v \rangle$ with $\langle u, v \rangle = (q(u+v) - q(u) - q(v))/2$

- Spin group is subgroup of group of units

$$Spin(V, q) \hookrightarrow \mathbf{GL}_1(Cl(V, q))$$

elements $v_1 \cdots v_{2k}$ prod of even number of $v_i \in V$ with $q(v_i) = 1$

- $Cl^{\mathbb{C}}(\mathbb{R}^n)$ complexification of Clifford alg of \mathbb{R}^n with standard inn prod: unique min dim representation $\dim \Delta_n = 2^{[n/2]} \Rightarrow$ rep of $Spin(n)$ on Δ_n not factor through $SO(n)$

- Associated vector bundle of a principal G -bundle: V linear representation $\rho : G \rightarrow GL(V)$ get vector bundle $E = P \times_G V$ (diagonal action of G)
- *Spinor bundle* $\mathbb{S} = P \times_\rho \Delta_n$ on spin manifold M
- *Spinors* sections $\psi \in \mathcal{C}^\infty(M, \mathbb{S})$
- Module over $\mathcal{C}^\infty(M)$ and also action by forms (Clifford multiplication) $c(\omega)$
- as vector space $Cl(V, q)$ same as $\Lambda^\bullet(V)$ not as algebra: under this vector space identification Clifford multiplication by a diff form

Dirac operator

- first order linear differential operator (elliptic on M compact): “square root of Laplacian”
- $\gamma_a = c(e_a)$ Clifford action o.n.basis of (V, q)

- even dimension $n = 2m$: $\gamma = (-i)^m \gamma_1 \cdots \gamma_n$ with $\gamma^* = \gamma$ and $\gamma^2 = 1$ sign

$$\frac{1 + \gamma}{2} \quad \text{and} \quad \frac{1 - \gamma}{2}$$

orthogonal projections: $\mathbb{S} = \mathbb{S}^+ \oplus \mathbb{S}^-$

- Spin connection $\nabla^S : \mathbb{S} \rightarrow \mathbb{S} \otimes \Omega^1(M)$

$$\nabla^S(c(\omega)\psi) = c(\nabla\omega)\psi + c(\omega)\nabla^S\psi$$

for $\omega \in \Omega^1(M)$ and $\psi \in \mathcal{C}^\infty(M, \mathbb{S})$ and
 $\nabla = \text{Levi-Civita connection}$

- Dirac operator $\not{D} = -ic \circ \nabla^S$

$$\not{D} : \mathbb{S} \xrightarrow{\nabla^S} \mathbb{S} \otimes_{\mathcal{C}^\infty(M)} \Omega^1(M) \xrightarrow{-ic} \mathbb{S}$$

- $\not{D}\psi = -ic(dx^\mu) \nabla^S_{\partial_\mu} \psi = -i\gamma^\mu \nabla^S_\mu \psi$

- Hilbert space $\mathcal{H} = L^2(M, \mathbb{S})$ square integrable spinors

$$\langle \psi, \xi \rangle = \int_M \langle \psi(x), \xi(x) \rangle_x \sqrt{g} d^n x$$

- $\mathcal{C}^\infty(M)$ acting as bounded operators on \mathcal{H}
(Note: M compact)
- Commutator: $[\not{D}, f]\psi = -ic(\nabla^S(f\psi)) + ifc(\nabla^S\psi)$
 $= -ic(\nabla^S(f\psi) - f\nabla^S\psi) = -ic(df \otimes \psi) = -ic(df)\psi$
 $[\not{D}, f] = -ic(df)$ bounded operator on \mathcal{H}
(M compact)

Analytic properties of Dirac on $\mathcal{H} = L^2(M, \mathbb{S})$ on a compact Riemannian M

- Unbounded operator
- Self adjoint: $\not{D}^* = \not{D}$ with dense domain
- Compact resolvent: $(1 + \not{D}^2)^{-1/2}$ is a compact operator (if no kernel \not{D}^{-1} compact)
- Lichnerowicz formula: $\not{D}^2 = \Delta^S + \frac{1}{4}R$ with R scalar curvature and Laplacian

$$\Delta^S = -g^{\mu\nu}(\nabla_\mu^S \nabla_\nu^S - \Gamma_{\mu\nu}^\lambda \nabla_\lambda^S)$$

Main Idea: abstract these properties into an algebraic definition of Dirac on NC spaces

How to get metric $g_{\mu\nu}$ from Dirac \not{D}

- Geodesic distance on M : length of curve $\ell(\gamma)$, piecewise smooth curves

$$d(x, y) = \inf_{\substack{\gamma: [0, 1] \rightarrow M \\ \gamma(0) = x, \gamma(1) = y}} \{\ell(\gamma)\}$$

- *Myers–Steenrod theorem*: metric $g_{\mu\nu}$ uniquely determined from geodesic distance
- Show that geodesic distance can be computed using Dirac operator and algebra of functions
- $f \in \mathcal{C}(M)$ have

$$\begin{aligned} |f(x) - f(y)| &\leq \int_0^1 |\nabla f(\gamma(t))| |\dot{\gamma}(t)| dt \\ &\leq \|\nabla f\|_\infty \int_0^1 |\dot{\gamma}(t)| dt = \|\nabla f\|_\infty \ell(\gamma) = \|[\not{D}, f]\| \ell(\gamma) \end{aligned}$$

- $|f(x) - f(y)| \leq \|[\mathcal{D}, f]\| \ell(\gamma)$ gives

$$\sup_{f: \|[\mathcal{D}, f]\| \leq 1} \{|f(x) - f(y)|\} \leq \inf_{\gamma} \ell(\gamma) = d(x, y)$$

- Note: sup over $f \in \mathcal{C}^\infty(M)$ or over $f \in Lip(M)$ Lipschitz functions

$$|f(x) - f(y)| \leq C d(x, y)$$

- Take $f_x(y) = d(x, y)$ Lipschitz with

$$|f_x(y) - f_x(z)| \leq d(y, z)$$

(triangle inequality)

- $[\mathcal{D}, f_x] = -ic(df_x)$ and $|\nabla f_x| = 1$, then $|f_x(y) - f_x(x)| = f_x(y) = d(x, y)$ realizes sup
- *Conclusion:* distance from Dirac

$$d(x, y) = \sup_{f: \|[\mathcal{D}, f]\| \leq 1} \{|f(x) - f(y)|\}$$

Some references for Spin Geometry:

- H. Blaine Lawson, Marie-Louise Michelsohn, *Spin Geometry*, Princeton 1989
- John Roe, *Elliptic Operators, Topology, and Asymptotic Methods*, CRC Press, 1999

Spin Geometry and NCG, Dirac and distance:

- Alain Connes, *Noncommutative Geometry*, Academic Press, 1995
- José M. Gracia-Bondia, Joseph C. Varilly, Hector Figueroa, *Elements of Noncommutative Geometry*, Birkhäuser, 2013

Spectral triples: abstracting Spin Geometry

- involutive algebra \mathcal{A} with representation $\pi : \mathcal{A} \rightarrow \mathcal{L}(\mathcal{H})$
- self adjoint operator D on \mathcal{H} , dense domain
- compact resolvent $(1 + D^2)^{-1/2} \in \mathcal{K}$
- $[a, D]$ bounded $\forall a \in \mathcal{A}$
- even if $\mathbb{Z}/2$ - grading γ on \mathcal{H}
$$[\gamma, a] = 0, \quad \forall a \in \mathcal{A}, \quad D\gamma = -\gamma D$$

Main example: $(\mathcal{C}^\infty(M), L^2(M, \mathbb{S}), D)$ with chirality $\gamma = (-i)^m \gamma_1 \cdots \gamma_n$ in even-dim $n = 2m$

Alain Connes, *Geometry from the spectral point of view*, Lett. Math. Phys. 34 (1995), no. 3, 203–238.

Real Structures in Spin Geometry

- Clifford algebra $Cl(V, q)$ non-degenerate quadratic form of signature (p, q) , $p + q = n$
- $Cl_n^+ = Cl(\mathbb{R}^n, g_{n,0})$ and $Cl_n^- = Cl(\mathbb{R}^n, g_{0,n})$
- Periodicity: $Cl_{n+8}^\pm = Cl_n^\pm \otimes M_{16}(\mathbb{R})$
- Complexification: $Cl_n^\pm \subset \mathbb{C}l_n = Cl_n^\pm \otimes_{\mathbb{R}} \mathbb{C}$

n	Cl_n^+	Cl_n^-	$\mathbb{C}l_n$	Δ_n
1	$\mathbb{R} \oplus \mathbb{R}$	\mathbb{C}	$\mathbb{C} \oplus \mathbb{C}$	\mathbb{C}
2	$M_2(\mathbb{R})$	\mathbb{H}	$M_2(\mathbb{C})$	\mathbb{C}^2
3	$M_2(\mathbb{C})$	$\mathbb{H} \oplus \mathbb{H}$	$M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$	\mathbb{C}^2
4	$M_2(\mathbb{H})$	$M_2(\mathbb{H})$	$M_4(\mathbb{C})$	\mathbb{C}^4
5	$M_2(\mathbb{H}) \oplus M_2(\mathbb{H})$	$M_4(\mathbb{C})$	$M_4(\mathbb{C}) \oplus M_4(\mathbb{C})$	\mathbb{C}^4
6	$M_4(\mathbb{H})$	$M_8(\mathbb{R})$	$M_8(\mathbb{C})$	\mathbb{C}^8
7	$M_8(\mathbb{C})$	$M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$	$M_8(\mathbb{C}) \oplus M_8(\mathbb{C})$	\mathbb{C}^8
8	$M_{16}(\mathbb{R})$	$M_{16}(\mathbb{R})$	$M_{16}(\mathbb{C})$	\mathbb{C}^{16}

- Both real Clifford algebra and complexification act on spinor representation Δ_n .
- \exists antilinear $J : \Delta_n \rightarrow \Delta_n$ with $J^2 = 1$ and $[J, a] = 0$ for all a in real algebra \Rightarrow real subbundle $Jv = v$
- antilinear J with $J^2 = -1$ and $[J, a] = 0$
 \Rightarrow quaternion structure
- real algebra: elements a of complex algebra with $[J, a] = 0$, $JaJ^* = a$.

Real Structures on Spectral Triples

KO -dimension $n \in \mathbb{Z}/8\mathbb{Z}$

antilinear isometry $J : \mathcal{H} \rightarrow \mathcal{H}$

$$J^2 = \varepsilon, \quad JD = \varepsilon' DJ, \quad \text{and} \quad J\gamma = \varepsilon'' \gamma J$$

n	0	1	2	3	4	5	6	7
ε	1	1	-1	-1	-1	-1	1	1
ε'	1	-1	1	1	1	-1	1	1
ε''	1		-1		1		-1	

Commutation: $[a, b^0] = 0 \quad \forall a, b \in \mathcal{A}$

where $b^0 = Jb^*J^{-1} \quad \forall b \in \mathcal{A}$

Order one condition:

$$[[D, a], b^0] = 0 \quad \forall a, b \in \mathcal{A}$$

Finite Spectral Triples $F = (\mathcal{A}_F, \mathcal{H}_F, D_F)$

- \mathcal{A} finite dimensional (real) C^* -algebra

$$\mathcal{A} = \bigoplus_{i=1}^N M_{n_i}(\mathbb{K}_i)$$

$\mathbb{K}_i = \mathbb{R}$ or \mathbb{C} or \mathbb{H} quaternions (Wedderburn)

- Representation on finite dimensional Hilbert space \mathcal{H} , with bimodule structure given by J (condition $[a, b^0] = 0$)
- $D_F^* = D_F$ with order one condition

$$[[D_F, a], b^0] = 0$$

- No analytic conditions: D_F just a matrix

\Rightarrow *Moduli spaces* (under unitary equivalence)

Branimir Ćaćić, *Moduli spaces of Dirac operators for finite spectral triples*, arXiv:0902.2068