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Noncommutative Geometry:

e Geometry adapted to quantum world:
physical observables are operators in Hilbert
space, these do not commute
(e.g. canonical commutation relation of
position and momentum: [z, p] = ih)

e A method to describe “bad quotients” of
equivalence relations as if they were nice
spaces (cf. other such methods, e.g. stacks)

e Generally a method for extending smooth
geometries to objects that are not smooth
manifolds (fractals, quantum groups, bad
quotients, deformations, ...)



Simplest example of a honcommutative
geometry:. matrices M»>(C)

e Product is not commutative AB #= BA
a b U v . au + bxr av 4 by
c d x y ) \ cu+tdr cv+dy 7~

au + cv bu + dv [ u v a b
ar+cy br+dy /] \ x y c d
e View product as a convolution product

X = {x1,z2} space with two points

Equivalence relation 1 ~ x5 that identi-
fies the two points: quotient (in classical
sense) one point; graph of equivalence re-
lation R = {(a,b) e X xX 1 a~b}=XxX

(AB);j = >  A;;By;
k
Aij = f(z;,z;) - R— C functions on X x X
(fixfo)(xiz) = > filwi, zp) f2(ag, z5)

T;VT



e The algebra M>(C) is the algebra of func-
tions on X x X with convolution product

e Different description of the quotient X/ ~

e NCG space M»>(C) is a point with internal
degrees of freedom

e Intuition: useful to describe physical mod-
els with internal degrees of freedom

Morita equivalence (algebraic): rings R, S that
have equivalent categories R — Mod ~ S — Mod
of (left)-modules

R and Mpy(R) are Morita equivalent



The algebra M>(C) represents a two point space
with an identification between points. Unlike
the classical quotient with algebra C, the non-
commutative space M>(C) “remembers”’ how
the quotient is obtained



Noncommutative Geometry of Quotients

Equivalence relation R on X:
quotient Y = X/R.

Even for very good X = X /R pathologicall!

Classical: functions on the quotient
AY) :={f € A(X)|f is R —invariant}

= often too few functions
A(Y) = C only constants

NCG: A(Y) noncommutative algebra

AY) = A(TR)

functions on the graph I'p C X x X of the
equivalence relation
(compact support or rapid decay)

Convolution product

(frxfo)(z,y) = > fi(z,u)fo(u,y)

T~UNY

involution f*(z,y) = f(y,x).



A(Fz) noncommutative algebra = Y = X/R
noncommutative space

Recall: Co(X) < X Gelfand—Naimark equiv of categories
abelian C*-algebras, loc comp Hausdorff spaces

Result of NCG:

Y = X/R noncommutative space with
NC algebra of functions A(Y) := A(l'r) is

e as good as X to do geometry
(deRham forms, cohomology, vector bundles, con-

nections, curvatures, integration, points and subva-
rieties)

e but with new phenomena

(time evolution, thermodynamics, quantum phe-
nomena)



Tools needed for Physics Models

e Vector bundles and connections (gauge fields)

e Riemannian metrics (Euclidean gravity)

e Spinors (Fermions)

e Action Functional

General idea. reformulate usual geometry in
algebraic terms (using the algebra of functions
rather than the geometric space) and extend
to case where algebra no longer commutative



Remark: Different forms of noncommutativity
in physics

e Quantum mechanics: non-commuting
operators

e Gauge theories: non-abelian gauge groups

e Gravity: hypothetical presence of honcom-
mutativity in spacetime coordinates at high
energy (some string compactifications with
NC tori)

In the models we consider here the non-abelian
nature of gauge groups is seen as an effect
of an underlying non-commutativity of coordi-
nates of “internal degrees of freedom' space
(a kind of extra-dimensions model)



Vector bundles in the nhoncommutative world

e M compact smooth manifold, E vector bun-
dle: space of smooth sections C*°(M, F) is
a module over C*°(M)

e The module C®°(M, E) over C>°(M) is finitely
generated and projective (i.e. a vector bun-
dle E is a direct summand of some trivial

bundle)

e Example: T'S? @ NS?2 tangent and normal
bundle give a trivial rk 3 bundle

e Serre—Swan theorem: any finitely gener-
ated projective module over C°(M) is C*°(M, F)
for some vector bundle E over M



Tangent and normal bundle of S2 add to trivial
rank 3 bundle: more generally by Serre—=Swan’s
theorem all vector bundles are summands of
some trivial bundle
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Conclusion: algebraic description of vector bun-
dles as finite projective modules over the alge-
bra of functions

See details (for smooth manifold case) in
Jet Nestruev, Smooth manifolds and
observables, GTM Springer, Vol.220, 2003

Vector bundles over a noncommutative space:

e Only have the algebra A noncommutative,
not the geometric space (usually not enough
two-sided ideals to even have points of space
in usual sense)

e Define vector bundles purely in terms of the
algebra: £ = finitely generated projective
(left)-module over A
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Connections on vector bundles

e £ finitely generated projective module over
(noncommutative) algebra A

e Suppose have differential graded algebra
(Q°,d), d? =0 and

d(aran) = d(ay)as + (—1)99()q d(ay)

with homomorphism A — QO
(hence bimodule)

e connection V: £ = £® 4 Q! Leibniz rule

V(na) =V(n)a+n®da
forae Aand neé&
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Spin Geometry
(approach to Riemannian geometry in NCQG)

Spin manifold

e Smooth n-dim manifold M has tangent
bundle T'M

e Riemannian manifold (orientable): orthonor-
mal frame bundle FM on each fiber E; in-
ner product space with oriented orthonor-
mal basis

e 'M is a principal SO(n)-bundle

e Principal G-bundle: « : P — M with G-
action P x G — P preserving fibers 7~ 1(z)
on which free transitive (so each fiber
7~ 1(z) ~ G and base M ~ P/QG)
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Fundamental group 71 (SO(n)) = Z/27Z so
double cover universal cover:

Spin(n) — SO(n)

Manifold M is spin if orthonormal frame
bundle F'M lifts to a principal Spin(n)-bundle
PM

Warning:. not all compact Riemannian man-
ifolds are spin: there are topological ob-
struction

In dimension n = 4 not all spin, but all at
least spz'n<C

spin® weaker form than spin: lift exists af-
ter tensoring T'M with a line bundle (or
square root of a line bundle)

1 — Z/27 — Spin®(n) — SO(n) x U(1) — 1
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Spinor bundle

e Spin group Spin(n) and Clifford algebra:
vector space V with quadratic form gq

Cl(V,q) =T(V)/I(V,q)

tensor algebra mod ideal gen by uv + vu =
2(u,v) with (u,v) = (¢(u+v)—q(u)—q(v))/2

e Spin group is subgroup of group of units

Spin(V,q) — GL1(Cl(V,q))

elements vy - - vy prod of even number of
v; € V with ¢q(v;) =1

e CIC(R™) complexification of Clifford alg of
R™ with standard inn prod: unique min dim
representation dim A, = 2["/2] = rep of
Spin(n) on A, not factor through SO(n)
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Associated vector bundle of a principal
G-bundle: V linear representation
p:G— GL(V) get vector bundle

E = P xo V (diagonal action of G)

Spinor bundle S = P X, Ap,
on spin manifold M

Spinors sections 1 € C°(M,S)

Module over C*®°(M) and also action by
forms (Clifford multiplication) c(w)

as vector space CI(V,q) same as A*(V) not
as algebra: under this vector space identifi-
cation Clifford multiplication by a diff form
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Dirac operator

e first order linear differential operator
(elliptic on M compact): ‘“square root of
LLaplacian”

e 74 = c(eq) Clifford action o.n.basis of (V,q)

e even dimension n =2m: v = (—1)"y1 - -Vn
with v* =~ and 42 = 1 sign

14+~ 1—x

and ——
2

orthogonal projections: S = Staos™

e Spin connection V7 : S —» S® Q1(M)

VO (e(w)y) = e(Vw)ih + c(w) V7

for w e QI(M) and ¢ € C®(M,S) and
V = Levi-Civita connection
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e Dirac operator [ = —ico V¥

psYis Qcooar) (M) 5 S
o D) = —ic(dw“)vguw = —iyHV5y

e Hilbert space H = L?(M,S) square
integrable spinors

.8 = [ @)@ vgd"s

e C°(M) acting as bounded operators on H
(Note: M compact)

e Commutator: [, flY = —ic(VE(fv))+ife(V)

= —ic(V(f)—FV Y) = —ic(df@v) = —ic(df )

[0, f] = —ic(df) bounded operator on H
(M compact)
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Analytic properties of Dirac on H = L?(M,S)
on a compact Riemannian M

e Unbounded operator
e Self adjoint: I* = ) with dense domain

e Compact resolvent: (14 2)~1/2 s a com-
pact operator (if no kernel LD‘l compact)

o Lichnerowicz formula: P? = A%+ 2R with
R scalar curvature and Laplacian

AS = — gl (VEVS — T3, V3)

Main Idea: abstract these properties into an
algebraic definition of Dirac on NC spaces
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How to get metric g, from Dirac I

e (Geodesic distance on M: length of curve
¢(~), piecewise smooth curves

dwy) = inf ()

v(0)=z,v(1)=y

e Myers—Steenrod theorem: metric g, uniquely
determined from geodesic distance

e Show that geodesic distance can be com-
puted using Dirac operator and algebra of

functions

e feC(M) have

£@) ~ FWI < [ IV RO d

<Vl [ Bl dt = 19 lct) = 11D, A1)
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o [f(x) = fI <D, fllIlEC~) gives

sup  {[f(x)—f(W|} <infl(y) =d(z,y)
FP, <1 K

e Note: sup over f € C°°(M) or over f €

Lip(M) Lipschitz functions
|f(z) — f(y)| < Cd(z,y)

e Take fy(y) = d(x,y) Lipschitz with

| fz(y) — fz(2)| < d(y, 2)
(triangle inequality)

L d [zpafaﬁ] — _Zc(dfaj) and |quj| — 1, then |fx(y)—
fo(x)| = fo(y) = d(z,y) realizes sup

e Conclusion: distance from Dirac

d(z,y) = sup {|f(z) — f(yI|}
£, L1
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Some references for Spin Geometry:

e H. Blaine Lawson, Marie-Louise Michelsohn,
Spin Geometry, Princeton 1989

e John Roe, Elliptic Operators, Topology,
and Asymptotic Methods, CRC Press, 1999

Spin Geometry and NCG, Dirac and distance:

e Alain Connes, Noncommutative Geometry,
Academic Press, 1995

e José M. Gracia-Bondia, Joseph C. Varilly,
Hector Figueroa, Elements of Noncommu-
tative Geometry, Birkhauser, 2013
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Spectral triples: abstracting Spin Geometry

e involutive algebra A with representation
7. A— L(H)

e Self adjoint operator D on ‘H, dense domain
e compact resolvent (1 + D2)~1/2 ¢
e [a,D] bounded Va € A

e even if Z/2- grading v on H
[’Y,CL]:O, \V/CLEA, D’y:—’}/D

Main example: (C°(M),L?(M,S), Ip) with chi-
rality v = (—%)™~y1---vn in even-dim n = 2m

Alain Connes, Geometry from the spectral point
of view, Lett. Math. Phys. 34 (1995), no. 3,

203—238.
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Real Structures in Spin Geometry

e Clifford algebra C1(V, q) non-degenerate quadratic
form of signature (p,q), p+qg=n

o Clif = Cl(R™, gn0) and Cl; = CI(R™, go.)

o Periodicity: Cl, ¢ = Clf ® M16(R)

e Complexification: Citf c Cl, = Clt ®g C

n ClF ok cl, A,
1 R&R C CepC C

> Mo (R) H Mo(C) C2
3 M>(C) HOH M>(C) ® M>(C) | C?
4 M (1) Mo (1H) M4 (C) c*
5 | Mp(H) & Ma(H) M4(C) M4(C) @ Ma(C) | C*
6 My () Ms(R) Ms(C) C®
7 Ms(C) Mg(R) & Mg(R) | Mg(C) & Mg(C) | C°
8 Mie(R) Mie(R) Mi6(C) C®
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Both real Clifford algebra and complexifi-
cation act on spinor representation A,,.

3 antilinear J : A, — A, with J2 = 1 and
[J,a] = O for all a in real algebra = real
subbundle Jv =wv

antilinear J with J2 = —1 and [J,a] =0
= quaternion structure

real algebra: elements a of complex algebra
with [J,a] = 0, JaJ* = a.
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Real Structures on Spectral Triples
KO-dimension n € Z/87Z

antilinear isometry J : H — H

J2=€, JD =¢'DJ, and Jy=¢"yJ

n 0 1 2 3 4 5 6 7
/1 1 -1 -1 -1 -1 1 1
g1 -1 1 1 1 -1 11
e’ 1 -1 1 -1

Commutation: [a,b9] =0 Va,be A
where 0 = Jjp*Jj—1 Vb e A

Order one condition:

[[D,a],°] =0 Va,be A
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Finite Spectral Triples F = (Ap, Hp,Dp)

e A finite dimensional (real) C*-algebra
K; = R or C or H quaternions (Wedderburn)

e Representation on finite dimensional Hilbert
space H, with bimodule structure given by
J (condition [a,b°] = 0)

e D7 = Dp with order one condition

[[DF7a']7bO] =0
e NO analytic conditions: Dpg just a matrix

= Moduli spaces (under unitary equivalence)

Branimir Cacéi¢, Moduli spaces of Dirac opera-
tors for finite spectral triples, arXiv:0902.2068
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