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Focus of the class:

• Geometrization of physics: general relativ-
ity, gauge theories, extra dimensions . . .

• Focus on: Standard Model of elementary
particle physics, and its extensions (right
handed neutrinos, supersymmetry,
Pati-Salaam, . . .)

• Also focus on Matter coupled to gravity:
curved backgrounds

• Gravity and cosmology: modified gravity
models, cosmic topology, multifractal struc-
tures in cosmology, gravitational instantons

• Mathematical perspective: spectral and non-
commutative geometry
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What is a good geometric model of physics?

• Simplicity: difficult computations follow

from simple principles

• Predictive power: recovers known physi-

cal properties and provides new insight on

physics, from which new testable calcula-

tions

• Elegance: “entia non sunt multiplicanda

praeter necessitatem” (Ockham’s razor)
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Two Standard Models:

• Standard Model of Elementary Particles

• Standard Cosmological Model

For both theories looking for possible exten-

sions: for particles right-handed-neutrino sec-

tor, supersymmetry, dark matter, . . .; for cos-

mology modified gravity, brane-cosmology, other

dark matter and dark energy models, inflation

scenarios, . . .

Both theories depend on parameters that are

not fixed by the theory

Particle physics and cosmology interact (early

universe models)

What input from geometry on these models?
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Basic Mathematical Toolkit

Smooth Manifolds: M (with ∂M = ∅)
locally like Rn: smooth atlas

M = ∪iUi, φi : Ui
'→ Rn

homeomorphisms, local coordinates xi = (xµi ),

on Ui∩Uj change of coordinates φij = φj ◦φ−1
i

C∞-diffeomorphisms
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Vector Bundles: E →M vector bundle rank N

over manifold of dim n

• projection π : E →M

• M = ∪iUi with φi : Ui × RN '→ π−1(Ui)
homeomorphisms with π ◦ φi(x, v) = x

• transition functions: φ−1
j ◦ φi : (Ui ∩ Uj) ×

RN → (Ui ∩ Uj)× RN with

φ−1
j ◦ φi(x, v) = (x, φij(x)v)

φij : Ui ∩ Uj → GLN(C)

satisfy cocyle property: φii(x) = id and
φij(x)φjk(x)φki(x) = id

• Sections: s ∈ Γ(U,E) open U ⊆ M maps
s : U → E with π ◦ s(x) = x

s(x) = φi(x, si(x)) and si(x) = φij(x)sj(x)
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Tensors and differential forms as sections of

vector bundles

• Tangent bundle TM (tangent vectors),

cotangent bundle T ∗M (1-forms)

• Vector field: section V = (vµ) ∈ Γ(M,TM)

• metric tensor gµν symmetric tensor section

of T ∗M ⊗ T ∗M

• (p, q)-tensors: T = (T
i1...ip
j1...jq

) section in

Γ(M,TM⊗p ⊗ T ∗M⊗q)

• 1-form: section α = (αµ) ∈ Γ(M,T ∗M)

• k-form ω ∈ Γ(M,
∧k(T ∗M))
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Connections

• Linear map ∇ : Γ(M,E) → Γ(M,E ⊗ T ∗M)
with Leibniz rule:

∇(fs) = f ∇(s) + s⊗ df
for f ∈ C∞(M) and s ∈ Γ(M,E)

• local form: on Ui × RN section si(x) =
sα(x)eα(x) with eα(x) local frame

∇si = (dsαi + ωαβs
β
i )eα

with ωαβeα = ∇eα

• ω = (ωαβ) is an N × N-matrix of 1-forms:
1-form with values in End(E)

• in local coordinates xµ on Ui: ω
α
β = ωαβµdx

µ

• ∇V s contraction of ∇s with vector field V
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• Curvature of a connection ∇

F∇ ∈ Γ(M,End(E)⊗ Λ2(T ∗M))

F∇(V,W )(s) = ∇V∇W s−∇W∇V s−∇[V,W ]s

• Fαβµν curvature 2-form: Ω = dω + ω ∧ ω

Fαβ = dωαβ + ωαγ ∧ ωγβ
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Action Functionals

Classical mechanics: equations of motion de-

scribe a path that is minimizing (or at least

stationary) for the action functional... varia-

tional principle

S(q(t)) =
∫ t1
t0
L(q(t), q̇(t), t) dt

Lagrangian L(q(t), q̇(t), t)

δS =
∫ t1
t0
ε
∂L

∂q
+ ε̇

∂L

∂q̇
=
∫ t1
t0
ε(
∂L

∂q
−
d

dt

∂L

∂q̇
)

after integration by parts + boundary condi-

tions ε(t0) = ε(t1) = 0

Euler–Lagrange equations: δS = 0

∂L

∂q
−
d

dt

∂L

∂q̇
= 0

equations of motion
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Symmetries and conservation laws:

Noether’s theorem

Example: Lagrangian invariant under transla-

tional symmetries in one direction qk

∂L

∂qk
= 0 ⇒

d

dt

∂L

∂q̇k
= 0

pk = ∂L
∂q̇k

momentum conservation

Important conceptual step in the “geometriza-

tion of physics” program: physical conserved

quantity have geometric meaning (symmetries)
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Action Functionals

General Relativity: Einstein field equations are

variational equation δS = 0 for Einstein–Hilbert

action

S(gµν) =
∫
M

1

2κ
R
√
−g d4x

M = 4-dimensional Lorentzian manifold gµν =

metric tensor signature (−,+,+,+)

g = det(gµν)

κ = 8πGc−4

G = gravitational constant, c = speed of light

in vacuum

R = Ricci scalar

13



Ricci scalar R:

• Riemannian curvature Rρσµν

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

• Levi-Civita connection (Christoffel symbols)

Γρνσ =
1

2
gρµ(∂σgµν + ∂νgµσ − ∂µgνσ)

convention of summation over repeated in-

dices for tensor calculus

• Ricci curvature tensor: contraction of Rie-

mannian curvature

Rµν = Rρµρν

• Ricci scalar: further contraction (trace)

R = gµνRµν = Rµµ
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Variation

• Variation of Riemannian curvature

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ

+ δΓρµλΓλνσ + ΓρµλδΓ
λ
νσ

− δΓρνλΓλµσ − ΓρνλδΓ
λ
µσ

δΓρµλ is a tensor (difference of connections)

• Rewrite variation δRρσµν as

δRρσµν = ∇µ(δΓρνσ)−∇ν(δΓρµσ)

with covariant derivative

∇λ(δΓρνµ) = ∂λ(δΓρνµ) + ΓρσλδΓ
σ
νµ − ΓσνλδΓ

ρ
σµ

• after contracting indices: Ricci tensor

δRµν = ∇ρ(δΓρνµ)−∇ν(δΓρρµ)

• Ricci scalar variation δR = Rµνδgµν+gµνδRµν

δR = Rµνδg
µν +∇σ(gµνδΓσνµ − gµσδΓρρµ)
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• so get variation

δR

δgµν
= Rµν

• also have total derivative:
√
−g∇µAµ = ∂µ(

√
−gAµ)

so
∫
M ∇σ(gµνδΓσνµ − gµσδΓ

ρ
ρµ)
√
−g = 0

• Variation of determinant g = det(gµν): Ja-
cobi formula

d

dt
log detA(t) = Tr(A−1(t)

d

dt
A(t))

for invertible matrix A, so get

δg = δ det(gµν) = g gµν δgµν

δ
√
−g =

−1

2
√
−g

δg =
1

2

√
−ggµν δgµν

δgµν = −gµσ(δgσλ)gλν for inverse matrix

δ
√
−g

δgµν
=
−1

2
gµν
√
−g
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Variation equation for Einstein–Hilbert action

δS =
∫
M

(Rµν −
1

2
gµνR) δgµν

√
−g d4x

stationary equation δS = 0

Rµν −
1

2
gµνR = 0

Einstein equation in vacuum

Other variants:

• Gravity coupled to matter LM = matter
Lagrangian

S =
∫
M

(
1

2κ
R+ LM)

√
−g d4x

energy–momentum tensor

Tµν = −
2κ
√
−g

δ(
√
−gLM)

δgµν

gives variational equations δS = 0:

Rµν −
1

2
gµνR =

8πG

c4
Tµν
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• Action with cosmological constant:

S =
∫
M

(
1

2κ
(R− 2Λ) + LM)

√
−g d4x

gives variational equation δS = 0:

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν

For more details see:

Sean Carroll, Spacetime and Geometry,

Addison Wesley, 2004

Note: Euclidean gravity when gµν Riemannian:

signature (+,+,+,+) used in quantum gravity

and quantum cosmology

Not all geometries admit Wick rotations be-

tween Riemannian and Loretzian signature (there

are, for example, topological obstructions)
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Action Functionals

Yang–Mills: gauge theories SU(N)

• Hermitian vector bundle E

• Lie algebra su(N) generators T a = (T a αβ)

Tr(T aT b) =
1

2
δab, [T a, T b] = ifabcT c

structure constants fabc

• Connections: ωαβµ = Aaµ T
a α

β
gauge potentials Aaµ

• Curvature:

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµ ∧Acν

covariant derivative ∇µ = ∂µ − igT aAaµ
[∇µ,∇ν] = −igT aF aµν
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• Yang–Mills Lagrangian:

L(A) = −
1

2
Tr(F2) = −

1

4
Fa

µνF aµν

• Yang–Mills action:

S(A) =
∫
M
L(A)

√
−g d4x

• Equations of motion:

∂µF aµν + gfabcAb µF cµν = 0

or equivalently (∇µFµν)a = 0 where
Fµν = T aF aµν

• case with N = 1: electromagnetism U(1)
equations give Maxwell’s equations
in vacuum

• unlike Maxwell in general Yang-Mills equa-
tions are non-linear
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Lagrangian formalism in perturbative QFT

For simplicity consider example of scalar field
theory in dim D

L(φ) =
1

2
(∂φ)2 −

m2

2
φ2 − Lint(φ)

Lorentzian signature with (∂φ)2 = gµν∂µφ∂νφ;
interaction part Lint(φ) polynomial; action:

S(φ) =
∫
M
L(φ)

√
−gdDx

Classical solutions: stationary points of ac-
tion; quantum case: sum over all confiura-
tions weights by the action: oscillatory integral
around classical

Z =
∫
ei
S(φ)
~ D[φ]

Observables: O(φ) function of the classical
field; expectation value:

〈O〉 = Z−1
∫
O(φ)ei

S(φ)
~ D[φ]

This ∞-dim integral not well defined: replace
by a formal series expansion (perturbative QFT)
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Euclidean QFT: metric gµν Riemannian

L(φ) =
1

2
(∂φ)2 +

m2

2
φ2 + Lint(φ)

action S(φ) =
∫
M L(φ)

√
gdDx

Z =
∫
e−

S(φ)
~ D[φ]

〈O〉 = Z−1
∫
O(φ)e−

S(φ)
~ D[φ]

free-field part and interaction part

S(φ) = S0(φ) + Sint(φ)

interaction part as perturbation: free-field as

Gaussian integral (quadratic form) ⇒ integra-

tion of polynomials under Gaussians (repeated

integration by parts): bookkeeping of terms,

labelled by graphs (Feynman graphs)
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Perturbative expansion:

• Feynman rules and Feynman diagrams

Seff(φ) = S0(φ)+
∑
Γ

Γ(φ)

#Aut(Γ)
(1PI graphs)

Γ(φ) =
1

N !

∫∑
i
pi=0

φ̂(p1) · · · φ̂(pN)U(Γ(p1, . . . , pN))dp1 · · · dpN

U(Γ(p1, . . . , pN)) =

∫
IΓ(k1, . . . , k`, p1, . . . , pN)dDk1 · · · dDk`

` = b1(Γ) loops

• Renormalization Problem:
Integrals U(Γ(p1, . . . , pN)) often divergent:

• Renormalizable theory: finitely many coun-
terterms (expressed also as perturbative se-
ries) can be added to the Lagrangian to si-
multaneously remove all divergences from
all Feynman integrals in the expansion

23



The problem with gravity:

• Gravity is not a renormalizable theory!

• Effective field theory, up to some energy

scale below Planck scale (beyond, expect

a different theory, like string theory)

• Observation: some forms of “modified grav-

ity” (higher derivatives) are renormalizable

(but unitarity can fail...)

• The model we will consider has some higher

derivative terms in the gravity sector
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Standard Model of Elementary Particles

• Forces: electromagnetic, weak, strong (gauge
bosons: photon, W±, Z, gluon)

• Fermions 3 generations: leptons (e,µ,τ and
neutrinos) and quarks (up/down, charm/strange,
top/bottom)

• Higgs boson
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Parameters of the Standard Model

Minimal Standard Model: 19

• 3 coupling constants

• 6 quark masses, 3 mixing angles, 1 complex phase

• 3 charged lepton masses

• 1 QCD vacuum angle

• 1 Higgs vacuum expectation value; 1 Higgs mass

Extensions for neutrino mixing: 37

• 3 neutrino masses

• 3 lepton mixing angles, 1 complex phase

• 11 Majorana mass matrix parameters

Constraints and relations? Values and
constraints from experiments: but a priori
theoretical reasons? Geometric space...

Note: parameters run with energy scale (renor-
malization group flow) so relations at certain
scales versus relations at all scales
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Experimental values of masses
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Constraints on mixing angles (CKM matrix)
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Standard Model Langrangian
LSM = −1

2
∂νgaµ∂νg

a
µ − gsfabc∂µgaνgbµgcν − 1

4
g2
s f

abcfadegbµg
c
νg
d
µg

e
ν −

∂νW
+
µ ∂νW

−
µ −M2W+

µ W
−
µ − 1

2
∂νZ0

µ∂νZ
0
µ − 1

2c2
w
M2Z0

µZ
0
µ − 1

2
∂µAν∂µAν −

igcw(∂νZ0
µ(W+

µ W
−
ν −W

+
ν W

−
µ )− Z0

ν (W+
µ ∂νW

−
µ −W−

µ ∂νW
+
µ ) +

Z0
µ(W+

ν ∂νW
−
µ −W−

ν ∂νW
+
µ ))− igsw(∂νAµ(W+

µ W
−
ν −W

+
ν W

−
µ )−

Aν(W
+
µ ∂νW

−
µ −W−

µ ∂νW
+
µ ) +Aµ(W+

ν ∂νW
−
µ −W−

ν ∂νW
+
µ ))−

1
2
g2W+

µ W
−
µ W

+
ν W

−
ν + 1

2
g2W+

µ W
−
ν W

+
µ W

−
ν + g2c2

w(Z0
µW

+
µ Z

0
νW

−
ν −

Z0
µZ

0
µW

+
ν W

−
ν ) + g2s2

w(AµW
+
µ AνW

−
ν −AµAµW

+
ν W

−
ν ) +

g2swcw(AµZ0
ν (W+

µ W
−
ν −W

+
ν W

−
µ )− 2AµZ0

µW
+
ν W

−
ν )− 1

2
∂µH∂µH −

2M2αhH
2 − ∂µφ+∂µφ− − 1

2
∂µφ0∂µφ0 −

βh
(

2M2

g2 + 2M
g
H + 1

2
(H2 + φ0φ0 + 2φ+φ−)

)
+ 2M4

g2 αh −
gαhM

(
H3 +Hφ0φ0 + 2Hφ+φ−

)
−

1
8
g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2

)
−

gMW+
µ W

−
µ H − 1

2
gM
c2
w
Z0
µZ

0
µH −

1
2
ig
(
W+
µ (φ0∂µφ− − φ−∂µφ0)−W−

µ (φ0∂µφ+ − φ+∂µφ0)
)

+
1
2
g
(
W+
µ (H∂µφ− − φ−∂µH) +W−

µ (H∂µφ+ − φ+∂µH)
)

+
1
2
g 1
cw

(Z0
µ(H∂µφ0 − φ0∂µH) +M ( 1

cw
Z0
µ∂µφ

0 +W+
µ ∂µφ

− +W−
µ ∂µφ

+)−

ig
s2
w

cw
MZ0

µ(W+
µ φ
− −W−

µ φ
+) + igswMAµ(W+

µ φ
− −W−

µ φ
+)−

ig
1−2c2

w

2cw
Z0
µ(φ+∂µφ− − φ−∂µφ+) + igswAµ(φ+∂µφ− − φ−∂µφ+)−

1
4
g2W+

µ W
−
µ

(
H2 + (φ0)2 + 2φ+φ−

)
−

1
8
g2 1

c2
w
Z0
µZ

0
µ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−
)
− 1

2
g2 s

2
w

cw
Z0
µφ

0(W+
µ φ
− +

W−
µ φ

+)− 1
2
ig2 s

2
w

cw
Z0
µH(W+

µ φ
− −W−

µ φ
+) + 1

2
g2swAµφ0(W+

µ φ
− +

W−
µ φ

+) + 1
2
ig2swAµH(W+

µ φ
− −W−

µ φ
+)− g2 sw

cw
(2c2

w − 1)Z0
µAµφ

+φ− −
g2s2

wAµAµφ
+φ− + 1

2
igs λaij(q̄

σ
i γ

µqσj )gaµ − ēλ(γ∂ +mλ
e)eλ − ν̄λ(γ∂ +

mλ
ν)νλ − ūλj (γ∂ +mλ

u)uλj − d̄λj (γ∂ +mλ
d)dλj +

igswAµ
(
−(ēλγµeλ) + 2

3
(ūλj γ

µuλj )− 1
3
(d̄λj γ

µdλj )
)

+ ig
4cw
Z0
µ{(ν̄λγµ(1 +
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γ5)νλ)+(ēλγµ(4s2
w−1−γ5)eλ)+(d̄λj γ

µ(4
3
s2
w−1−γ5)dλj )+(ūλj γ

µ(1−8
3
s2
w+

γ5)uλj )}+ ig

2
√

2
W+
µ

(
(ν̄λγµ(1 + γ5)U lep

λκe
κ) + (ūλj γ

µ(1 + γ5)Cλκdκj )
)

+
ig

2
√

2
W−
µ

(
(ēκU lep†

κλγ
µ(1 + γ5)νλ) + (d̄κjC

†
κλγ

µ(1 + γ5)uλj )
)

+
ig

2M
√

2
φ+
(
−mκ

e(ν̄λU lep
λκ(1− γ5)eκ) +mλ

ν(ν̄λU lep
λκ(1 + γ5)eκ

)
+

ig

2M
√

2
φ−
(
mλ
e(ēλU lep†

λκ(1 + γ5)νκ)−mκ
ν(ēλU lep†

λκ(1− γ5)νκ
)
−

g
2
mλ
ν

M
H(ν̄λνλ)− g

2
mλ
e

M
H(ēλeλ) + ig

2
mλ
ν

M
φ0(ν̄λγ5νλ)− ig

2
mλ
e

M
φ0(ēλγ5eλ)−

1
4
ν̄λM

R
λκ (1− γ5)ν̂κ − 1

4
ν̄λM

R
λκ (1− γ5)ν̂κ +

ig

2M
√

2
φ+
(
−mκ

d(ūλjCλκ(1− γ5)dκj ) +mλ
u(ūλjCλκ(1 + γ5)dκj

)
+

ig

2M
√

2
φ−
(
mλ
d(d̄λjC

†
λκ(1 + γ5)uκj )−mκ

u(d̄λjC
†
λκ(1− γ5)uκj

)
−

g
2
mλ
u

M
H(ūλju

λ
j )− g

2

mλ
d

M
H(d̄λj d

λ
j ) + ig

2
mλ
u

M
φ0(ūλj γ

5uλj )− ig
2

mλ
d

M
φ0(d̄λj γ

5dλj ) +

Ḡa∂2Ga + gsfabc∂µḠaGbgcµ + X̄+(∂2 −M2)X+ + X̄−(∂2 −
M2)X−+X̄0(∂2 − M2

c2
w

)X0 + Ȳ ∂2Y + igcwW
+
µ (∂µX̄0X− −

∂µX̄+X0)+igswW
+
µ (∂µȲ X− − ∂µX̄+Y ) + igcwW−

µ (∂µX̄−X0 −
∂µX̄0X+)+igswW−

µ (∂µX̄−Y − ∂µȲ X+) + igcwZ0
µ(∂µX̄+X+ −

∂µX̄−X−)+igswAµ(∂µX̄+X+ −
∂µX̄−X−)−1

2
gM
(
X̄+X+H + X̄−X−H + 1

c2
w
X̄0X0H

)
+

1−2c2
w

2cw
igM

(
X̄+X0φ+ − X̄−X0φ−

)
+

1
2cw
igM

(
X̄0X−φ+ − X̄0X+φ−

)
+igMsw

(
X̄0X−φ+ − X̄0X+φ−

)
+

1
2
igM

(
X̄+X+φ0 − X̄−X−φ0

)
.



Fundamental ideas of NCG models

• Derive the full Lagrangian from a simple

geometric input by calculation

• Machine that inputs a (simple) geometry

and produces a uniquely associated Lagrangian

• Very constrained: only certain theories can

be obtained (only certain extensions of the

minimal standard model)

• Simple action functional (spectral action)

that reduces to SM + gravity in asymptotic

expansion in energy scale

• Effective field theory: preferred energy scale

(at unification energy)
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The role of gravity:

• What if other forces were just gravity but

seen from the perspective of a different

geometry?

• This idea occurs in physics in different forms:

holography AdS/CFT has field theory on

boundary equivalent to gravity on bulk

• in NCG models action functional for gravity

(spectral action) on an “almost-commutative

geometry” gives gravity + SM on space-

time manifold

... What is Noncommutative Geometry?
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