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Focus of the class:

e Geometrization of physics: general relativ-
ity, gauge theories, extra dimensions ...

e Focus on: Standard Model of elementary
particle physics, and its extensions (right
handed neutrinos, supersymmetry,
Pati-Salaam, ...)

e Also focus on Matter coupled to gravity:
curved backgrounds

e Gravity and cosmology: modified gravity
models, cosmic topology, multifractal struc-
tures in cosmology, gravitational instantons

e Mathematical perspective: spectral and non-
commutative geometry



What is a good geometric model of physics?

o Simplicity: difficult computations follow
from simple principles

e Predictive power: recovers known physi-
cal properties and provides new insight on
physics, from which new testable calcula-

tions

e Elegance: ‘'"entia non sunt multiplicanda
praeter necessitatem’” (Ockham’s razor)



Two Standard Models:

e Standard Model of Elementary Particles

e Standard Cosmological Model

For both theories looking for possible exten-
sions: for particles right-handed-neutrino sec-
tor, supersymmetry, dark matter, ...; for cos-
mology modified gravity, brane-cosmology, other
dark matter and dark energy models, inflation
scenarios, ...

Both theories depend on parameters that are
not fixed by the theory

Particle physics and cosmology interact (early
universe models)

What input from geometry on these models?
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Basic Mathematical Toolkit

Smooth Manifolds: M (with OM = 0)
locally like R™: smooth atlas

M =uU,U;, ¢;:U; 5 R”

homeomorphisms, local coordinates z; = (z%'),
on U;NU; change of coordinates ¢;; = ¢;0¢;
Ce°-diffeomorphisms
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Vector Bundles: E — M vector bundle rank N
over manifold of dim n

e projection m: FE — M

o M = U,U; with ¢; : U; X RN S 7T_1(UZ')
homeomorphisms with 7o ¢;(x,v) = x

e transition functions: qu_l o ¢; : (U;NU;) X
RN — (U; nU;) x RN with
7" 0 ¢ix,v) = (z, ¢i(z)v)
sz'j U; N Uj — GL(C)

satisfy cocyle property: ¢;;(z) = id and
¢ij () Pk (x) P (z) = id

e Sections: s € I'(U,E) open U C M maps
s:U— E with mos(x) ==«

s(x) = ¢i(z,s;(x)) and s;(z) = ¢;;(x)s;(x)
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A vector bundle E
is a union of
vector spaces,
one over each point
in the base space

A section in I'(E)

assigns a vector
above each point
in the base space

Base space M

cylinder kGRS band



Tensors and differential forms as sections of
vector bundles

e Tangent bundle T'M (tangent vectors),
cotangent bundle T*M (1-forms)

e Vector field: section V = (vH) e (M, TM)

e metric tensor g, symmetric tensor section
of T"M @ T*M

e (p,qg)-tensors: T = (leljg) section in
(M, TM®P @ T x M®9)

e 1-form: section a = (ay) € T(M,T*M)

o k-form w € (M, \F(T*M))



TxM

Tangent bundle on a 2-sphere



Connections

e Linear map V:I'(M,E) T (M,EQT*M)
with Leibniz rule:

V(fs) =fV(s)+s@df
for fe C®(M) and s ' (M, E)

e local form: on U; x RN section s;(z) =
sY(x)eq(x) with eq(x) local frame

Vs; = (ds5* + wo‘ﬁs?)ea

with wo‘ﬁea = Vequ

e w = (w%) is an N x N-matrix of 1-forms:
1-form with values in End(FE)

e inlocal coordinates zt on U;: w%g = wo‘ﬁudac“

e Vy/s contraction of Vs with vector field V
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e Curvature of a connection V

Fg € M(M,End(E) @ A°(T*M))

Fv(V, W) (8) — VVVWS — VWst — V[V,W]S

° FO‘BW curvature 2-form: Q2 =dw + w A w

FC“B = dwo‘ﬁ + w% A cﬂ@

) o hori B
vertical direction arizontal directions

\ 1 bundle

geometric phase

| -
\ - bundle projection
. P LT e p—— 3

- : :|
' base space
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Action Functionals

Classical mechanics: equations of motion de-
scribe a path that is minimizing (or at least
stationary) for the action functional... varia-
tional principle

SCa) = [ Lla(t), q(0), ) dt

to
Lagrangian L(q(t), cj(t) t)
t 8L t1 OL dOL
05 = [ "€ e A G
q to Oq dtOq
after integration by parts + boundary condi-
tions e(tg) = e(t1) =0

Euler—Lagrange equations: S =0
OL dOoL
dq dtdq
equations of motion
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Symmetries and conservation laws:
Noether's theorem

Example: Lagrangian invariant under transla-
tional symmetries in one direction ¢*

oL . N d OL .
ogk dtogk
P = g—ﬁ momentum conservation

Important conceptual step in the “geometriza-
tion of physics” program: physical conserved
quantity have geometric meaning (symmetries)
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Action Functionals

General Relativity: Einstein field equations are
variational equation S = O for Einstein—Hilbert
action

1

M = 4-dimensional Lorentzian manifold g, =
metric tensor signature (—, 4+, 4+, +)

g = det(guv)

k= 81Gc 2

(G = gravitational constant, ¢ = speed of light
in vacuum

R = Ricci scalar
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Ricci scalar R:

e Riemannian curvature Rfs;u

A A
Rpa,uu — aurﬁg - al/rﬁg + I_Z)\rz/a - rﬁ)\r,ug

e Levi-Civita connection (Christoffel symbols)

1
rﬁa — Egpu((?Ug,LW + al/g,ua — 8,u91/0)

convention of summation over repeated in-
dices for tensor calculus

e Ricci curvature tensor: contraction of Rie-
mannian curvature

— PP
Ry = R ypv

e Ricci scalar: further contraction (trace)
R = g" Ry, = R",
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Variation

e Variation of Riemannian curvature

SRPopy = 0udlM e — Lol
+ O T + T30,
— 0T AT he = ToA0T o
5I‘Z)\ is a tensor (difference of connections)

e Rewrite variation dRFPsu as

with covariant derivative

VA@ry,) = 051y, + rg/\(srgu — 7508,

e after contracting indices: Ricci tensor

e Ricciscalar variation 0R = R, 09" +g" o R
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e SO get variation

oR
5g/W_ e

e also have total derivative:

SO [y Vo(gh”éry, — ghosrhu)/—g =0

e Variation of determinant g = det(g,v): Ja-
cobi formula

d 1 d
—logdet A(t) = Tr(A t)—A((t
~rlogdet A(t) = Tr(A~1(1) A1)
for invertible matrix A, so get
59 = 5det(gw/) —_ gg"w 5glul/
—1
2v/—g

Sgh’ = —gHo(5g,,)g* for inverse matrix

5v/—g =

1
og = 5\/—99”” Jemy

dghv 2

O/ — —1
J — —~ uv v —4g
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Variation equation for Einstein—Hilbert action

1
0S8 = /M(Rw/ — EgMVR) Sg /—gd*x

stationary equation S =0

1
RMV — EglUJyR = O

Einstein equation in vacuum

Other variants:
e Gravity coupled to matter £,; = matter
Lagrangian

_ 1 — 4
S—/M(QKR—I—LM)\/—gd .

energy—momentum tensor

2/4; (5(\/—g£M)
T,UJ/ —_ —
vV—g9  ogt¥
gives variational equations 65 = O:
1 8rG

Ryy — EQIJJVR — T4 Ty
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e Action with cosmological constant:

— 1 4
S = /M<27,<R —2A) + L) V=g d*x

gives variational equation 0S = O:

1 8nG
Ryy — Eglﬂ/R T Aguy = T4 Ty

For more details see:
Sean Carroll, Spacetime and Geometry,
Addison Wesley, 2004

Note: Euclidean gravity when g,,, Riemannian:
signature (+,+,+,+) used in quantum gravity
and quantum cosmology

Not all geometries admit Wick rotations be-
tween Riemannian and Loretzian signature (there

are, for example, topological obstructions)
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Action Functionals

Yang—Miills: gauge theories SU(N)
e Hermitian vector bundle E

e Lie algebra su(N) generators T% = (T%%3)
1
Tr<TCLTb) — 55&[)’ [Ta, Tb] — ’ifabcTc
structure constants fabe

e Connections: w%g = A} T%g
: K K
gauge potentials Ag

e Curvature:
F, = 9,A% — 9,A% + gf ™" AD N AS
covariant derivative V,, = 9y — igT"Aj,

[V,Un V] = —z’gTaFﬁ,/
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Yang—Mills Lagrangian:

1 1
L(A) = —ETr(Fz) — —ZFQWF;;V

Yang—Mills action:

S(A) = /ML(A) J=gd*z

Equations of motion:
OMFf, + gf " APHE, = 0

or equivalently (VH#F,,)* = 0 where
F'u,]/ — TaFﬁV

case with N = 1: electromagnetism U(1)
equations give Maxwell's equations
in vacuum

unlike Maxwell in general Yang-Mills equa-
tions are non-linear
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Lagrangian formalism in perturbative QFT

For simplicity consider example of scalar field
theory in dim D

m2
£9) = (06)> ~ "2 47 — Lins(8)

Lorentzian signature with (9¢)? = ¢g"¥9,,¢0,¢;
interaction part L;,;(¢) polynomial; action:

S(¢) = /Mcww——gd%

Classical solutions: stationary points of ac-
tion; quantum case: sum over all confiura-
tions weights by the action: oscillatory integral
around classical

z= [ D)

Observables: O(¢) function of the classical
field; expectation value:
S(¢)

(0) =271 [ O(®)e 1 Dle]

This co-dim integral not well defined: replace
by a formal series expansion (perturbative QFT)
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Euclidean QFT: metric g, Riemannian

m2
£(6) = 2(00)° + 267 + Lint(8)
action S(¢) = [1; L(¢)\/gd Pz
z= [ WD)

©) =271 [0@)e 1 Dl

free-field part and interaction part

S(¢) = So(9) + Sint()

interaction part as perturbation: free-field as
Gaussian integral (quadratic form) = integra-
tion of polynomials under Gaussians (repeated
integration by parts): bookkeeping of terms,
labelled by graphs (Feynman graphs)
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Perturbative expansion:

e Feynman rules and Feynman diagrams

(o)
#Aut(lrN)

Sef(®) = So(#)+) (1PI graphs)

r

O =7 fi., B0 EeU TG p

U (pi,...,pN)) :/Ir(kly---,ke,ply---,pN)del"'dee
¢ =b1(I") loops

e Renormalization Problem:
Integrals U(I(p1,...,pN)) Often divergent:

e Renormalizable theory: finitely many coun-
terterms (expressed also as perturbative se-
ries) can be added to the Lagrangian to si-
multaneously remove all divergences from
all Feynman integrals in the expansion
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The problem with gravity:

e Gravity is not a renormalizable theory!

e Effective field theory, up to some energy
scale below Planck scale (beyond, expect
a different theory, like string theory)

e Observation: some forms of “modified grav-
ity (higher derivatives) are renormalizable
(but unitarity can fail...)

e [ he model we will consider has some higher
derivative terms in the gravity sector
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Standard Model of Elementary Particles

e Forces: electromagnetic, weak, strong (gauge
bosons: photon, W%, Z, gluon)

e Fermions 3 generations: leptons (e,u,7 and
neutrinos) and quarks (up/down, charm/strange,
top/bottom)

e Higgs boson
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Parameters of the Standard Model

Minimal Standard Model: 19
e 3 coupling constants
e 6 quark masses, 3 mixing angles, 1 complex phase
e 3 charged lepton masses
e 1 QCD vacuum angle

e 1 Higgs vacuum expectation value; 1 Higgs mass

Extensions for neutrino mixing. 37
e 3 neutrino masses
e 3 lepton mixing angles, 1 complex phase

e 11 Majorana mass matrix parameters

Constraints and relations? Values and
constraints from experiments: but a priori
theoretical reasons? Geometric space...

Note: parameters run with energy scale (renor-
malization group flow) so relations at certain
scales versus relations at all scales
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Experimental values of masses

FERMIONS
‘ First Second Third
10* Generation Generation Generation
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Constraints on mixing angles (CKM matrix)

1 5 T T T T I T T T T [ T ¥ |.. -.I j
'\\ excluded area has CL>0.95 N\
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Standard Model Langrangian
Lsy = —30,9%0,9% — g5 f**ug0gbgs — 3921 f*% gl 95995 —

W Fo,W, — M2W+W; ~ 300200,2) — 5 MPZ0Z0 — 30, A0, Ay —
igew(OyZS(WiEW, —WIW,) — Z9(W,Fo, W, — W 8,W,h) +
ZOUW,F0,W,; — Wy 0, W) — igsw (0, Au(WE Wy — WIW,) —

AW oW — W oW + A.(WFo,w, — W, 0,W,h)) —
LPWiEw; W+W + LPWirw,wikw, + g2c2 (Z0W,F 20w —
Z0ZOW, W) +g2s§U(A W+A W, —ALA W+Wy ) +
9P swew (A ZO(WFW, — W,j'W/;) — 2AMZ/9W,,‘"W;) —Lo,Ho0,H —
2M?apH? — 0,0, — 20,¢°0,¢° —
B (25 + 2LH + L(H? 4 ¢%¢° + 2¢7¢7)) 4+ Zay, —
ganM (H® + Hg%¢° + 2Het¢) —
1% (H* 4+ (02)* + 4(6167)2 + 4(¢°)2¢F ¢~ + 4H2pt ¢~ + 2(¢°)2H?) -
gMW, W, H — 595 Z0Z0H —~
2ig (Wi (¢°0,0™ — ¢70,0%) — W, (¢°0,¢F — ¢70,4%)) +
%g (WJ(Hauﬁb_ — ¢ 0,H) + WM_(H@@+ — ¢+8MH)) +
59 (Z2(H8,¢° — p°0,H) + M (£2020,4° + WiF 9.6~ + W, 9u6™) —
i MZO(WF ¢~ — Wy o) + igsu MAWF 6= — Wy gt) —
192520 Z0(¢F 0™ — ¢~ 8ud™) + igswAu(dTOud™ — ¢ 8udT) —
LPWiEw, (H? + (6°)2 + 207 ¢) —

59°E 207 (H2 + (92 +2(25% — 1)267¢7) — 39222060 (Wi~ +
W o) — Lig? 2 ZOH(WiF ¢~ — W o) + Lg2su Aug® (Wi o~ +

W, ¢+) + 3ig swA H(W+¢— W, ¢+> 23;(2% —~1)ZQAupTé —

252 A Audt o + 5igs X (@0 v“q")gﬂ er(vd + m)et — M0 +
my)v — ?(73 + my)u} — d}(v0 +my)d} +
igswApu (— (@) 4+ 2(@yrud) — Ly d))) + 722 (1 +
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VO (@ (43 —1-7°)e) (D (555 —1-7°)d) + (@ (1-5si+
VIuN} A+ SEWEE (M (L 4 42)UPser) 4 (@ (1 +4°)Condf)) +
;&WM ((e“Ulepr(l + 42 + (&ECH A (1 + %)) +
bt (—mE (AU (1 = 19)e") + mP Uy (1 +7%)e") +
2M\f¢ ( é\(é)\UlepT (1 _|_ ,.YS)VK;) _ n(éx\UlepT (1 _ 5)VI€) _
QWH(V’\VA) . H(E/\e/\) _|_ igmy ¢0(VA ) — zgm ¢0(€/\ ) —
a2} Mﬁ (1 —vs)ix — 200 ME (1 — 75)%
QMfw (— S Cx (1 = 72)d5) 4+ m (@) Cre(1 +4°)d5) +
siisd (m (JACi (14 7®)uf) =m0}, (1= +®)uf) —
oy (@u}) — H (drd}) + igmy g ¢ (udy°u)) — ¥ my 10%(y°dY) +
GogP e + gs fabca G“Gb g5 + X+(82 — M2)X+ + X- (32
M?)X~+X0%(82 — L) XO + Y92Y + ige, W, (9, X°X~ —
Xt X +igsu W (0,Y X~ — 0,XTY) + igeu W, (8, X~ X° —
OuXOXT)+igs, W, (0, XY — 0, Y XT) +ige, Z2 (9, X TXT —
Oy X~ X )+igsyA, (0, XTXT —
0, X~ X7)—3gM (X*X+H+ X~X"H+ 3 X°X°H) +
L 2%igM (R+X0%T - X-X%) +
seigh (XX ¢+ — XOX+¢~)+igMs, (XOX~¢T — XOx+¢) +
Jigh (Xt X+¢0 — X~ X—¢°) .




Fundamental ideas of NCG models

e Derive the full Lagrangian from a simple
geometric input by calculation

e Machine that inputs a (simple) geometry
and produces a uniqguely associated Lagrangian

e Very constrained: only certain theories can
be obtained (only certain extensions of the
minimal standard model)

e Simple action functional (spectral action)
that reduces to SM + gravity in asymptotic
expansion in energy scale

e Effective field theory: preferred energy scale
(at unification energy)
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The role of gravity:

e \What if other forces were just gravity but
seen from the perspective of a different
geometry?

e [ hisidea occurs in physics in different forms:
holography AdS/CFT has field theory on
boundary equivalent to gravity on bulk

e in NCG models action functional for gravity
(spectral action) on an “almost-commutative
geometry” gives gravity + SM on space-
time manifold

. What is Noncommutative Geometry?
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