Noncommutative Geometry, Quantum Fields, and Motives: a bird eye view

Matilde Marcolli

Lecture 1: Tuesday September 30, 2008

General information about the class:

The material covered in this class is mostly based on (the first chapter of)

• Alain Connes and Matilde Marcolli, *Noncommutative Geometry, Quantum Fields, and Motives*, Colloquium Publications, Vol.55, American Mathematical Society, 2008.

Other reading material will be distributed in class and listed on the course webpage, along with notes of the lectures.

Course webpage:

http://www.its.caltech.edu/ matilde/course2008.html

Other information:

Office hours: by appointment

Research Seminar: Meets weekly (time to be assigned)

Perturbative renormalization in Quantum Field Theory

Action
$$S(A) = \int \mathcal{L}(A) \, d^D x$$
,
Lagrangian $\mathcal{L}(A) = \frac{1}{2} (\partial A)^2 - \frac{m^2}{2} A^2 - \mathcal{L}_{int}(A)$
 $\langle \mathcal{O} \rangle = \mathcal{N} \int \mathcal{O}(A) \, e^{i \frac{S(A)}{\hbar}} [dA]$
 $S_{eff}(A) = S_0(A) + \sum_{\Gamma \in 1PI} \frac{\Gamma(A)}{\sigma(\Gamma)}$

$$\Gamma(A) = \frac{1}{N!} \int_{\sum p_j = 0} \widehat{A}(p_1) ... \widehat{A}(p_N) U(\Gamma(p_1, ..., p_N)) dp_1 ... dp_N$$

Regularization and Renormalization

$$\int \frac{1}{k^2 + m^2} \frac{1}{((p+k)^2 + m^2)} d^D k$$

 ϕ^3 -theory D=4 divergent

Dimensional Regularization:

$$\int e^{-\lambda q^2} d^D q = \pi^{D/2} \lambda^{-D/2}$$

Hopf algebras and quantum field theory (Connes–Kreimer theory)

BPHZ renormalization:

$$\overline{R}(\Gamma) = U(\Gamma) + \sum_{\gamma \subset \Gamma} C(\gamma) U(\Gamma/\gamma)$$

$$C(\Gamma) = -T(\overline{R}(\Gamma)) = -T\left(U(\Gamma) + \sum_{\gamma \subset \Gamma} C(\gamma)U(\Gamma/\gamma)\right)$$

$$R(\Gamma) = \overline{R}(\Gamma) + C(\Gamma) = U(\Gamma) + C(\Gamma) + \sum_{\gamma \subset \Gamma} C(\gamma)U(\Gamma/\gamma)$$

Hopf algebra of Feynman graphs:

$$\Delta(\Gamma) = \sum_{\gamma \subset \Gamma} \gamma \otimes \Gamma / \gamma$$

$$\Delta \left(-\bigcirc -\right) = -\bigcirc -\otimes 1 + 1\otimes -\bigcirc -$$

$$\begin{cases} \Delta (-\bigcirc -) = -\bigcirc - \otimes 1 + 1 \otimes -\bigcirc - + \\ 2 -\bigcirc - \otimes -\bigcirc - \end{cases}$$

The BPHZ renormalization and Birkhoff factorization of loops (Connes-Kreimer)

$$\gamma(z) = \gamma_{-}(z)^{-1} \gamma_{+}(z),$$

 $\Delta=$ small disk, $\Delta^*=\Delta\smallsetminus\{0\},\ z\in\Delta^*$ Dimensional regularization $z\in\mathbb{C}^*$

$$\gamma(z) \Leftrightarrow U(\Gamma), \quad \gamma_{-}(z) \Leftrightarrow C(\Gamma), \quad \gamma_{+}(z) \Leftrightarrow R(\Gamma)$$

Summary of the Connes-Kreimer theory

- \mathcal{H} dual to affine group scheme G (diffeographisms)
- $G(\mathbb{C})$ pro-unipotent Lie group \Rightarrow

$$\gamma(z) = \gamma_{-}(z)^{-1} \gamma_{+}(z)$$

Birkhoff factorization of loops exists

- Recursive formula for Birkhoff = BPHZ
- loop = $\phi \in \text{Hom}(\mathcal{H}, \mathbb{C}(\{z\}))$ (germs of meromorphic functions)
- Feynman integral $U(\Gamma) = \phi(\Gamma)$ counterterms $C(\Gamma) = \phi_{-}(\Gamma)$ renormalized value $R(\Gamma) = \phi_{+}(\Gamma)|_{z=0}$

Introducing motives

ullet pure motives: cutting out pieces of algebraic varietes $h^i(X)$

$$\operatorname{Hom}((X,p,m),(Y,q,n)) = q\operatorname{Corr}_{/\sim}^{m-n}(X,Y)\,p$$

$$p^2 = p,\; q^2 = q,\; \mathbb{Q}(m) = \text{Tate motives}$$

$$\omega: \mathcal{M}_{\mathbb{K}} \to \operatorname{Vect}_{\mathbb{Q}} \quad X \mapsto H_B(X,\mathbb{Q})$$

Motivic Galois groups: (Tate $G = \mathbb{G}_m$)

- A much more complicated story for mixed motives
- \bullet Periods: $\int_X \omega$ Feynman integrals $\stackrel{??}{\leadsto}$ Multiple zeta values

Main question:

• Why periods of motives occur in quantum field theory?

A main open problem:

• Are these periods coming from QFT always periods of *mixed Tate motives*? Very special motives, but very general varieties X_{Γ}

Two approaches:

ullet Bottom-up approach: for each graph Γ show that the part of the cohomology

$$H^{n-1}(\mathbb{P}^{n-1} \setminus X_{\Gamma}, \Sigma_n \setminus (\Sigma_n \cap X_{\Gamma}))$$

involved in the Feynman integral computation is a realization of a mixed Tate motive.

• Top-down approach: show that there is an equivalence of categories between a category of mixed Tate motives and one that encodes the Feynman diagrams computations.

Bottom-up: Feynman motives and their periods (Bloch-Esnault-Kreimer)

Feynman trick:

$$\frac{1}{ab} = \int_0^1 \frac{dt}{(ta + (1-t)b)^2}$$

More generally: integral on a simplex

Feynman rules for graph $\Gamma \Rightarrow$

$$\int_{\Sigma} \frac{dv}{\Psi_{\Gamma}^2}$$

 $\Psi_{\Gamma} = graph polynomial$

Graph hypersurface:

$$X_{\Gamma} = \{ t \in \mathbb{P}^N : \Psi_{\Gamma}(t) = 0 \}$$

Cohomology of $\mathbb{P}^N \smallsetminus X_{\Gamma}$

A simple example: Banana graphs (Aluffi-M.)

Class in the Grothendieck group

$$[X_{\Gamma_n}] = \frac{\mathbb{L}^n - 1}{\mathbb{L} - 1} - \frac{(\mathbb{L} - 1)^n - (-1)^n}{\mathbb{L}} - n (\mathbb{L} - 1)^{n-2}$$

where $\mathbb{L} = [\mathbb{A}^1] \in K_0(\mathcal{V})$ Lefschetz motive

$$\int_{\sigma_n} rac{(t_1\cdots t_n)^{(rac{D}{2}-1)(n-1)-1}\,\omega_n}{\Psi_{\Gamma}(t)^{(rac{D}{2}-1)n}}$$

$$\Psi_{\Gamma}(t) = t_1 \cdots t_n \left(\frac{1}{t_1} + \cdots + \frac{1}{t_n}\right)$$

More information on X_{Γ} from other invariants e.g. Characteristic classes of singular varieties More complicated examples: wheels with n-spokes (Bloch-Esnault-Kreimer)

• General result: Classes $[X_{\Gamma}]$ generate $K_0(\mathcal{V})$ Grothendieck ring of varieties (Belkale-Brosnan)

Observations on the bottom-up method

- $\mathbb{P}^{n-1} \setminus X_{\Gamma}$ can be very complicated motivically (by Belkale-Brosnan)
- but since $\Psi_{\Gamma}(t) = \det M_{\Gamma}(t)$

$$\mathbb{P}^{n-1} \setminus X_{\mathsf{\Gamma}} \hookrightarrow \mathbb{P}^{\ell^2 - 1} \setminus \mathcal{D}_{\ell}$$

 $\mathcal{D}_{\ell} = \text{determinant variety (w/ conditions on } \Gamma)$

- ullet The motive of $\mathbb{P}^{\ell^2-1} \smallsetminus \mathcal{D}_\ell$ is mixed Tate
- \bullet Feynman integral as period computation. Divergent case: Igusa local L-functions (Belkale-Brosnan)
- \bullet Main difficulty: explicit control of $\widehat{\Sigma}\cap \mathcal{D}_{\ell}$ to show

$$H^*(\mathbb{P}^{\ell^2-1} \setminus \mathcal{D}_\ell, \widehat{\Sigma} \setminus (\widehat{\Sigma} \cap \mathcal{D}_\ell))$$

mixed Tate (Aluffi-M. work in progress)

Top-down: Counterterms and beta function (Connes-M.)

Generator of renormalization group

$$\beta = \frac{d}{dt} F_t |_{t=0}$$

Counterterms reconstructed from the beta function ('t Hooft–Gross relations):

$$\gamma_{-}(z) = \mathsf{T}e^{-\frac{1}{z}\int_{0}^{\infty}\theta_{-t}(\beta)\,dt}$$

Time ordered exponential

$$extstyle extstyle ag{1} = 1 + \sum_1^\infty \int_{a \leq s_1 \leq \cdots \leq s_n \leq b} lpha(s_1) \cdots lpha(s_n) \prod ds_j$$

Renormalization and iterated integrals

Data of renormalization ⇒ loops with

$$\gamma_{\mu}(z) = \mathsf{T} e^{-\frac{1}{z} \int_{\infty}^{-z \log \mu} \theta_{-t}(\beta) dt} \theta_{z \log \mu}(\gamma_{\text{reg}}(z))$$

$$\gamma_{\mu^+}(z) = \mathsf{T} e^{-\frac{1}{z} \int_0^{-z \log \mu} \theta_{-t}(\beta) dt} \theta_{z \log \mu}(\gamma_{\text{reg}}(z))$$

$$\gamma_{-}(z) = \mathsf{T}e^{-\frac{1}{z}\int_{0}^{\infty}\theta_{-t}(\beta)\,dt}$$

Time ordered exponential $\mathrm{T}e^{\int_a^b \alpha(t)\,dt}=g(b)$ solution of diff equation

$$dg(t) = g(t)\alpha(t)dt$$
 with $g(a) = 1$

Divergences of QFT ⇒ Differential systems

Differential Galois theory

Hilbert 21st problem: Reconstruct differential equations from monodromy representation

⇒ Riemann–Hilbert correspondence: Classify differential systems with singularities by representations

Differential Galois group

Flat equisingular connections

Principal $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ -bundle $\mathbb{G}_m \to B \xrightarrow{\pi} \Delta$

Restrictions to different sections same type of singularity

Equisingular vector bundles $\Leftrightarrow Rep_{\mathbb{U}^*}$

\mathbb{U}^* and the renormalization group

Free graded Lie algebra $\mathcal{L}_{\bullet} = \mathcal{F}(1,2,3,\cdots)_{\bullet}$ generators e_{-n} deg n>0

Hopf algebra $\mathcal{H}_u = \mathcal{U}(\mathcal{L}_{\bullet})^{\vee}$ dual to \mathcal{U}

$$\mathcal{U}^* = \mathcal{U} \rtimes \mathbb{G}_m$$

In a given physical theory: generator $e_{-n} \mapsto \beta_n$

$$\beta = \sum_{n} \beta_n$$

n-loop component of the beta function

$$e = \sum_{n} e_{-n} \mapsto \beta$$

renormalization group as subgroup of \mathbb{U}^*

Main results on the top-down approach (Connes-M.)

- Counterterms as iterated integrals ('t Hooft-Gross relations)
- Solutions of irregular singular differential equations (flat equisingular connections)
- ullet Flat equisingular vector bundles form a neutral Tannakian category ${\mathcal E}$
- Free graded Lie algebra $\mathcal{L} = \mathcal{F}(e_{-n}; n \in \mathbb{N})$

$$\mathcal{E} \simeq Rep_{\mathbb{U}^*}, \quad \mathbb{U}^* = \mathbb{U} \rtimes \mathbb{G}_m$$

 $\mathbb{U} = \operatorname{Hom}(\mathcal{H}_{\mathbb{U}}, -)$, with $\mathcal{H}_{\mathbb{U}} = U(\mathcal{L})^{\vee}$

Motivic Galois group (Deligne–Goncharov)

$$\mathbb{U}^* \simeq \mathsf{Gal}(\mathcal{M}_S)$$

 \mathcal{M}_S mixed Tate motives on $S = \operatorname{Spec}(\mathbb{Z}[i][1/2])$

Renormalization and motives: summary

- Periods of mixed Tate motives from Feynman integrals (Broadhurst-Kreimer)
- Graph hypersurfaces can be arbitrary motives (Belkale–Brosnan)
- Motives from Feynman integrals (Bloch–Esnault–Kreimer)
- Mixed Tate motives with

$$G = \mathbb{U}^* = \mathbb{U} \rtimes \mathbb{G}_m$$

(Deligne-Goncharov)

II. Part of the course: Noncommutative spaces

Equivalence relation \mathcal{R} on X:

quotient $Y = X/\mathcal{R}$

Even for "good" X usually "bad" Y

Classical: functions on the quotient

$$\mathcal{A}(Y) := \{ f \in \mathcal{A}(X) \mid f \text{ is } \mathcal{R} - \text{invariant} \}$$

⇒ often too few functions

 $\mathcal{A}(Y) = \mathbb{C}$ only constants

NCG: A(Y) noncommutative algebra

$$\mathcal{A}(Y) := \mathcal{A}(\Gamma_{\mathcal{R}})$$

functions on the graph $\Gamma_{\mathcal{R}} \subset X \times X$ of the equivalence relation

Convolution product

$$(f_1 * f_2)(x, y) = \sum_{x \sim u \sim y} f_1(x, u) f_2(u, y)$$

involution $f^*(x,y) = \overline{f(y,x)}$.

Spectral triples

Riemannian geometry: \boldsymbol{X} with metric tensor \boldsymbol{g}

$$(C^{\infty}(X), L^2(X, S), \mathbb{D})$$

Dirac operator and spinors

Noncommutative Riemannian geometries

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$

NC algebra ${\mathcal A}$ acting on a Hilbert space ${\mathcal H}$

Unbounded operator \mathcal{D} with $\mathcal{D}^* = \mathcal{D}$

$$[\mathcal{D}, a]$$
 bounded $\forall a \in \mathcal{A}_{\infty} \subset \mathcal{A}$

Examples of noncommutative spaces

Noncommutative tori: S^1/\mathbb{Z} irrational rotation

Elliptic curves $E_q=\mathbb{C}^*/q^{\mathbb{Z}}$ with |q|<1

Degeneration for $q \to e^{2\pi i \theta} \in S^1$ and $\theta \in \mathbb{R} \smallsetminus \mathbb{Q}$

The spectral action

Action functional for spectral triples $(A, \mathcal{H}, \mathcal{D})$

$$\operatorname{Tr}\left(f(\mathcal{D}/\Lambda)\right)$$

 Λ mass scale, f > 0 even function

Asymptotic expansion

$$\operatorname{Tr}\left(f(D/\Lambda)\right) \sim \sum_k f_k \Lambda^k \int |D|^{-k} + f(0) \zeta_D(0) + o(1)$$
 with $f_k = \int_0^\infty f(v) \, v^{k-1} \, dv$

Contributions from $k \in \mathsf{Dimension}$ Spectrum

The Standard Model of elementary particle physics

Three Generations of Matter

- ullet coupling with gravity $S_{EH}+S_{SM}$
- neutrino mixing

The problem: Standard Model Lagrangian

$$\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{ade} g_{\mu}^{b} g_{\nu}^{c} g_{\eta}^{d} g_{\nu}^{c} - \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2c_{\nu}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - igcw(\partial_{\nu} Z_{\mu}^{0}(W_{\nu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})) - igs_{w}(\partial_{\nu} A_{\mu}(W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})) - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu} \partial_{\nu} \partial_{\mu} \partial_{\nu} \partial$$

$$\begin{split} \gamma^{5})\nu^{\lambda}) + &(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1 - \gamma^{5})d_{j}^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} + \gamma^{5})u_{j}^{\lambda})\} + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right) + \\ &\frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})u_{j}^{\lambda})\right) + \\ &\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1 - \gamma^{5})e^{\kappa}) + m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1 + \gamma^{5})e^{\kappa}\right) + \\ &\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1 + \gamma^{5})\nu^{\kappa}) - m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1 - \gamma^{5})\nu^{\kappa}\right) - \\ &\frac{g}{2}\frac{m_{h}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) - \frac{g}{2}\frac{m_{h}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{h}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{h}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \\ &\frac{1}{4}\bar{\nu}_{\lambda}M_{h\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\frac{\bar{\nu}}\bar{\nu}_{\lambda}M_{h\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} + \\ &\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1 - \gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1 + \gamma^{5})d_{j}^{\kappa}) + \\ &\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1 - \gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1 + \gamma^{5})u_{j}^{\kappa}) - \\ &\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{u}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{d}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \\ &\bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} + \bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \\ &\bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{-}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + \\ &igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-} - \partial_{\mu}\bar{X}^{-}X^{-}) + \\ &\frac{1}{2}gM\left(\bar{X}^{+}X^{+} + \bar{X}^{-}X^{-} + \bar{X}^{0}\nabla^{-}\right) + \frac{1}{2}igM\left(\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}\right) + \\ &igMs_{w}\left(\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}\right) + \frac{1}{2}igM\left(\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}\right$$

NCG models of particle physics

Minimal mathematical input \Rightarrow SM Lagrangian derived by calculation

Classification of finite geometries

- Product of spacetime by "finite NC space"
- Real structure on a spectral triple
- Finite space: metric dimension zero but "homological" dimension six
- ◆ All possible Dirac operators on the finite space ⇒ physical properties (color unbroken, values of hypercharges, etc)

The Yukawa parameters of the Standard Model

- Cabibbo–Kobayashi–Maskawa matrix (quark masses, mixing angles, phase)
- Pontecorvo—Maki—Nagakawa—Sakata matrix (lepton masses, including neutrinos, mixing angles and phase)
- Majorana mass terms for neutrinos

Moduli space of Dirac operators:

$$\mathcal{C}_1 \times \mathcal{C}_3$$

lepton and quark sectors

$$\mathcal{C}_3 = (K \times K) \setminus (G \times G) / K$$

$$G = \operatorname{GL}_3(\mathbb{C}) \text{ and } K = U(3)$$

 $\pi:\mathcal{C}_1\to\mathcal{C}_3$ surjection fiber symm matrices mod $M_R\mapsto \lambda^2 M_R$; dim $_{\mathbb{R}}(\mathcal{C}_3\times\mathcal{C}_1)=31$

Bosonic and fermionic parts of the action

Bosonic part from asymptotic formula for the spectral action:

- Cosmological terms
- Riemann curvature terms
- Higgs minimal coupling and quartic potential
- Higgs mass terms
- Yang-Mills terms for gauge bosons

Fermionic part: from real structure, Pfaffian (Grassman fields)

- Fermion-Higgs coupling
- Gauge-fermion coupling
- Fermion doubling
- see-saw mechanism for neutrino masses

Physical predictions

• As in grand-unified theories:

$$\frac{g_3^2 f_0}{2\pi^2} = \frac{1}{4}, \qquad g_3^2 = g_2^2 = \frac{5}{3}g_1^2$$

• Mass relation at unification

$$\sum_{\sigma} (m_{\nu}^{\sigma})^2 + (m_e^{\sigma})^2 + 3(m_u^{\sigma})^2 + 3(m_d^{\sigma})^2 = 8M^2$$

$$M = W - mass$$

- ullet From mass relation and RGE \Rightarrow top quark mass estimate
- Higgs mass (168 GeV)

Dimensional regularization as a noncommutative geometry

$$\int e^{-\lambda q^2} d^D q = \pi^{D/2} \lambda^{-D/2}$$

NCG space X_z of Dimension Spectrum $z \in \mathbb{C}$

Dimensional Regularization: cup product of spectral triples

$$X \cup X_z$$

 $X = (\mathcal{A}, \mathcal{H}, \mathcal{D})$ space time and finite space

⇒ Anomalies computations