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General information about the class:

The material covered in this class is mostly
based on (the first chapter of)

e Alain Connes and Matilde Marcolli, Noncom-
mutative Geometry, Quantum Fields, and Mo-
tives, Colloquium Publications, Vol.55, Amer-
ican Mathematical Society, 2008.

Other reading material will be distributed in
class and listed on the course webpage, along
with notes of the lectures.

Course webpage:

http://www.its.caltech.edu/ matilde/course2008.html
Other information:

Office hours: by appointment

Research Seminar: Meets weekly
(time to be assigned)



Perturbative renormalization in Quantum
Field Theory
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Hopf algebras and quantum field theory
(Connes—Kreimer theory)

BPHZ renormalization:
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The BPHZ renormalization and Birkhoff
factorization of loops (Connes—Kreimer)
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Dimensional regularization z € C*
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Summary of the Connes—Kreimer theory

e H dual to affine group scheme G
(diffeographisms)

e G(C) pro-unipotent Lie group =
v(2) = v-(2) "ty (2)
Birkhoff factorization of loops exists

e Recursive formula for Birkhoff = BPHZ

e loop = ¢ € Hom(H,C({z}))
(germs of meromorphic functions)

e Feynman integral U(IN) = ¢(IN)
counterterms C(IN) = ¢_(IN)
renormalized value R(I") = ¢4 (I")|.=0



Introducing motives

e pure motives: cutting out pieces of algebraic
varietes ht(X)

Hom((X,p,m), (Y, q,n)) = qCorr/ (X, Y)p

P2 = D, q2 = q, Q(m) — Tate motives

wiMK%VGCtQ X — Hp(X,Q)
Motivic Galois groups: (Tate G = Gy,)

e A much more complicated story for mixed
motives

e Periods: [yw
Feynman integrals ,?\3 Multiple zeta values



Main question:

e \Why periods of motives occur in quantum
field theory?

A main open problem:

e Are these periods coming from QF T always
periods of mixed Tate motives?
Very special motives, but very general varieties Xr

Two approaches:

e Bottom-up approach: for each graph ' show
that the part of the cohomology

Hn_l(IP)n_l N X Zp N (ZnN X))

involved in the Feynman integral computation
IS @ realization of a mixed Tate motive.

e [op-down approach: show that there is an
equivalence of categories between a category
of mixed Tate motives and one that encodes
the Feynman diagrams computations.



Bottom-up: Feynman motives and their
periods (Bloch-Esnault-Kreimer)

Feynman trick:

1 _/1 dt
ab  Jo (ta+ (1 —¢)b)2
More generally: integral on a simplex

Feynman rules for graph I =

dv
W2
> WE
W = graph polynomial
Graph hypersurface:

Xr={teP" : wr(t) =0}

Cohomology of PV . X



A simple example: Banana graphs (Aluffi-M.)

Class in the Grothendieck group
L"—1 (L-1)"—(=-1)"
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More information on X from other invariants
e.g. Characteristic classes of singular varieties
More complicated examples: wheels with n-spokes
(Bloch—Esnault—Kreimer)

e General result: Classes [X] generate Kg(V)
Grothendieck ring of varieties (Belkale-Brosnan)
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Observations on the bottom-up method

e P»~1 \ X can be very complicated
motivically (by Belkale-Brosnan)
e but since W-(t) = det M(¢t)

Pn_l \Xr —> P€2_1 \DE

Dy = determinant variety (w/ conditions on M)
e The motive of P©“~1 \ D, is mixed Tate

e Feynman integral as period computation. Di-
vergent case: Igusa local L-functions (Belkale—
Brosnan)

e Main difficulty: explicit control of >~ N D, to
show

2 ~ ~
H*PC 1 D)= (=nDy))

mixed Tate (Aluffi-M. work in progress)
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Top-down: Counterterms and beta func-
tion (Connes-M.)

Generator of renormalization group

d

e A
6] pn tlt=0

Counterterms reconstructed from the beta func-
tion ('t Hooft—Gross relations):

1
fy_(z) = Te =z fC()>O 0_¢(B) dt
Time ordered exponential

Tefab adt — 4 + / a(s1) - alsy) | | ds;
z1: a<s;<+<s,<b H !
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Renormalization and iterated integrals

Data of renormalization = |loops with

L [~zlogu g, (8) dt 0

Yu(2z) = Te = Joo zlog u(Weg (2))

1 fO—Z|Og/JJ e—t(ﬁ) dte

v +(2) =Te = zlog u(reg(2))

v—(z) = Te_% Jo° 0-+(B) dt

Time ordered exponential Tej; a(t) dt

diff equation
dg(t) = g(t)a(t)dt with g(a) =1

= g(b) solution of

Divergences of QF T = Differential systems
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Differential Galois theory

Hilbert 21st problem: Reconstruct differential
equations from monodromy representation

= Riemann—Hilbert correspondence: Classify
differential systems with singularities by repre-

sentations

Differential Galois group
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Flat equisingular connections

Principal G,,(C) = C*bundle G,, - B > A

Restrictions to different sections same type of
singularity

Equisingular vector bundles < Repyx
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U* and the renormalization group

Free graded Lie algebra Le = F(1,2,3,---)e
generators e_,, deg n >0

Hopf algebra Hy = U(Le)Y dual to U

Z/{*:Z/{NGm

In a given physical theory: generator e_, +— Gn

B = Zﬁn
n
n-loop component of the beta function
e = Z e_p— B
n

renormalization group as subgroup of U*
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Main results on the top-down approach
(Connes—M.)

e Counterterms as iterated integrals

('t Hooft—Gross relations)

e Solutions of irregular singular differential equa-
tions (flat equisingular connections)

e Flat equisingular vector bundles

form a neutral Tannakian category &

e Free graded Lie algebra £L = F(e_p,;n € N)

£ ~ Repys, U*=1UxGpn

U = Hom(HU, —), with H[U = U(,C)v
e Motivic Galois group (Deligne—Goncharov)

U* ~ Gal(Myg)

M mixed Tate motives on S = Spec(Z[i][1/2])
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Renormalization and motives: summary

e Periods of mixed Tate motives from Feyn-
man integrals (Broadhurst—Kreimer)

e Graph hypersurfaces can be arbitrary motives
(Belkale—Brosnan)

e Motives from Feynman integrals
(Bloch—Esnault—Kreimer)

e Mixed Tate motives with
G — U* — U X Gm

(Deligne—Goncharov)
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II.Part of the course: Noncommutative spaces

Equivalence relation R on X:
quotient Y = X/R
Even for ‘“‘good” X usually “bad” Y

Classical: functions on the quotient
AY) ={fe€ AX)|f is R —invariant}
= often too few functions

A(Y) = C only constants

NCG: A(Y) noncommutative algebra

AY) = A(TR)
functions on the graph I'p C X x X of the
equivalence relation

Convolution product

(fl * fQ)(xay) — Z fl(xau)fQ(ua y)

T~U~Y

involution f*(z,y) = f(y,x).
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Spectral triples

Riemannian geometry: X with metric tensor g

(C®(X),L%(X,S), D)

Dirac operator and spinors

Noncommutative Riemannian geometries

(A, H,D)
NC algebra A acting on a Hilbert space H

Unbounded operator D with D* =D

[D,a] bounded Vae€ Ao C A
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Examples of honcommutative spaces

Noncommutative tori: S1/Z irrational rotation

Elliptic curves E; = C*/q¢% with |q| < 1
Degeneration for ¢ — 2™ ¢ S1 and f e R Q
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The spectral action

Action functional for spectral triples (A, H, D)
Tr(f(D/N))

A mass scale, f > 0 even function

Asymptotic expansion

Tr (f(D/A) ~ 3 £ A £ 1D+ £(0) ¢p(0)+o(1)
k

with fr, = [5° f(v) vF=1 du

Contributions from k£ € Dimension Spectrum
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The Standard Model of elementary particle

physics
I]l
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Three Generations of Matter

e coupling with gravity Sgg + Sgs

e Neutrino mixing
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The problem' Standard Model Lagrangian
Lsy = —30,980,9% — gs f**uglgbgs — 392 f*%ghg95gg5 —

W Fo,W, — M2W+W,; ~ 300200, 2) — 5 MPZ0Z0 — 38, A0, Ay —
igew(OvZS(WiEW, —WIW,) — Z9(W,Fo, W, — W 0,W,h) +
ZOWF oW, — W, 0,WiH)) —igsw (8, Au(WEW, — WiHw,) —

A (WiFa,W, = Wra,Wih) + A (WiFa,w,r — Wra,w,h)) -
LPW W WIW, 4+ LW W, Wik wi + g2 (20w, 20w, —
ZOZOW W, ) + g2s2 (A W,F AW, — A A WIW) +
92swew (A Zd(WIW, — W)W, ) — 24,20W,fw;) — 10,H0,H —
2M?apH? — 0, 0,0~ — 20,¢°0,¢° —

B (25 + 2LH + L(H? 4 ¢%¢° 4+ 2¢7¢7)) + 2 ay, —
ganM (H® + He%¢® +2H¢t¢™) —

Lg%an (H* + (¢°)* + 4(61¢7)2 + 4(¢°)20T ¢~ + 4H2pT ¢~ + 2(¢°)2H?) -
gMW W, H -1 MZOZOH —
2ig (W (¢°0,0™ — ¢70,0°) — Wu (60,8t — ¢T0,8%)) +
%9 (WJ(Hau¢_ — ¢ 0. H) + WM_(Hau¢+ - ¢+8MH)) +
39 (Z0(H8,¢° — p°0,H) + M (£220,4° + WiF 9.6~ + W 9u6™) —
ig2MZO(W,F o~ — Wy ¢T) +igsu MAWF 6= — Wy o) —
192520 20(¢F 0™ — ™ 0ud™) + igswAu(dT Oud™ — ¢ 8upT) —

LPWiEw, (H? + (%)% + 207 ¢) —
3975202 (H2 + (692 +2(23 — 1)+ ¢7) — 3922 206°(W,F o™ +
Wi ¢t) = Sig? R Z0H (Wi ¢~ — Wi ¢t) + 59250 Aud®(WiF ™ +

W, ¢+) + Lig swA H(W,F¢~ — W, ¢+) g?2(2c2 — 1) Z0 A9 ¢~ —

252 AuAudT 6™ + 5igs X(TTV19D) gf — @ (70 + md)er — DA (D +
mp)v* — w3 (y0 + my)uy — d} (v0 + my)d; +
igswAu (—(@"e)) + 3(@yu)) — $(Dy"d)) + 72 Z2H{ (1 +
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PN+ (@ (45— 1-9")eN) H(d" (555 -1 -7 d) + (T (1-3s5+
VUt + Wi (L 42U er) + (@) (1 +75>0Mdﬂ>)
;}W ((éﬂUl@pW(l +9) + (FCHA (A +%)u))) +
2M\/_¢+ ( mE(AU'P (1 —~°)e™) + mp(PrUP (1 + 7°)e” )
2M\/_¢ ( é\(é)\UlepT (1 +~5)v") — m(éAUlepT (1— 5),/5) _
I (TMA) — 4T H (M) + LI g0 (M 5t) — M0 (FA5e) —
lD}\ AH(1_75)V/€_Z M(l—%)vm
QMI¢+ ( ml3 (T Cre(1 — %) d5) + mA (@) Con (1 4+ 4°)ds) +
¢ (m (o?c; (14 7)) — mi(BC], (1 —~5)uf) —
iy (@}u}) — H (d3d}) + igmy g ¢ (uyou) — % dcbo(c?fdk) +
GaaQGa + g, fabca GaGbgﬁ —|—X+(32 _ MQ)X—I— —I—X (82 MQ)X +
X092 - M2YXO 4 V02Y + ige, Wi (8,X°X~ — 9, XFX0) +
igSwWJ(aﬂ%X_ — QW XTY) +ige, W, (0,XX° — 9, XX +) +
igstM_(('?M)_(_Y —-0,YXT)+ igchg(('?M)—("'X"' -9, X X))+
igswA (0, XTXT -9, X" X7) —
29M (Xt X+tH+ X-X"H + %)_{OXOH) +
L2%igM (X+X0¢T — XX ) + s-igh (XX ¢+ — XOXt¢) +
igM s, (XOX~¢+ — XOX+¢~) + Ligh (X+X+¢° — X-X¢°) .




NCG models of particle physics

Minimal mathematical input = SM Lagrangian
derived by calculation

Classification of finite geometries
e Product of spacetime by ‘finite NC space”
e Real structure on a spectral triple

e Finite space: metric dimension zero but “ho-
mological’ dimension SiX

e All possible Dirac operators on the finite
space = physical properties (color unbroken,
values of hypercharges, etc)
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The Yukawa parameters of the Standard
Model

e Cabibbo—Kobayashi—Maskawa matrix (quark
masses, mixing angles, phase)

e Pontecorvo—Maki—Nagakawa—Sakata matrix
(lepton masses, including neutrinos, mixing an-
gles and phase)

e Majorana mass terms for neutrinos

Moduli space of Dirac operators:
C1 x C3
lepton and quark sectors
C3= (K x K)\(GxG)/K
G = GL3(C) and K =U(3)

m . C1 — C3 surjection fiber symm matrices
mod Mp — A2Mp; dimp(C3 x C1) = 31

25



Bosonic and fermionic parts of the action

Bosonic part from asymptotic formula for the
spectral action:

e Cosmological terms

e Riemann curvature terms

e Higgs minimal coupling and quartic potential
e Higgs mass terms

e Yang—Mills terms for gauge bosons

Fermionic part: from real structure, Pfaffian
(Grassman fields)

e Fermion-Higgs coupling
e Gauge-fermion coupling
e Fermion doubling

® See-saw mechanism for neutrino masses
26



Physical predictions

e AsS in grand-unified theories:

g5fo _ 1 92292:§92
272 4 3T 92739

e Mass relation at unification
S-(m)? + (mZ)? + 3 (m§)? + 3 (mJ)* = 8 M?
o

M =W — mass

e From mass relation and RGE = top quark
Mmass estimate

e Higgs mass (168 GeV)
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Dimensional regularization as a noncom-
mutative geometry

/e—AQQ dPq = xP/2 \=D/2

NCG space X, of Dimension Spectrum z € C

Dimensional Regularization: cup product of
spectral triples

X UX,
X = (A, H,D) space time and finite space

= Anomalies computations
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