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DENSITY THEOREMS FOR SAMPLING AND INTERPOLATION

IN THE BARGMANN-FOCK SPACE

KRISTIAN SEIP

Abstract. We give a complete description of sampling and interpolation in

the Bargmann-Fock space, based on a density concept of Beurling. Roughly

speaking, a discrete set is a set of sampling if and only if its density in every

part of the plane is strictly larger than that of the von Neumann lattice, and

similarly, a discrete set is a set of interpolation if and only if its density in every

part of the plane is strictly smaller than that of the von Neumann lattice.

1. Introduction and results

The work presented in this announcement is based on Beurling's lectures on

balayage of Fourier-Stieltjes transforms and interpolation for an interval on R

[3]. We observe that Beurling's problems concerning functions of exponential

type have natural counterparts for functions of order two, finite type and find

that, indeed, so have his main results. The most interesting part, however, is

that Beurling's ideas are applicable also in the Hubert space setting, yielding
a complete description of sampling and interpolation in the Bargmann-Fock

space. The simplicity of these results is quite remarkable when compared to

the situation in the Paley-Wiener space (the corresponding Hubert space of

functions of exponential type) and to the extensive literature on nonharmonic

Fourier series and, in particular, Riesz bases of complex exponentials [20].

This research is motivated by a recent development in signal analysis and ap-

plied mathematics, which was initiated by Daubechies, Grossmann, and Meyer

[5, 4, 6]. Their work inspired us to search for a general characterization of

the information needed to represent signals, as functions in the Bargmann-Fock

space. Our results can be seen as sharp statements about the Nyquist density

and its meaning in this context.

In order to describe more precisely the problems to be considered, a few

definitions are needed.   For a > 0, let dpa(z) = (a/n)e~a^ dxdy,   z =

x + iy, and define the Bargmann-Fock space Fa  to be the collection of entire

functions f(z) for which

II/Ü2 = H/IL 2 = / \ñz)\2dpa(z) < OO.
Jc
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F2 is a Hubert space with reproducing kernel K(z, Q = e     ; i.e., for every
2

f e F   we have
J Ot

f(z) = (/, K(z, •)) = JfiOWTÔ dna(Q.

The normalized reproducing kernels, k¡,(z) = K(Ç, Q~X/2K(Ç,, z), can be view-

ed as the natural (well-localized) building blocks of Fa . They correspond, via

the Bargmann transform, to the canonical coherent states of quantum mechanics

and to Gabor wavelets in signal analysis. This relation is the reason for the

importance of the Bargmann-Fock space; see [8] for general information and

[5] for more background on the problems treated here.

We say that a discrete set T of complex numbers is a set of sampling for Fa

if there exist positive numbers A and B such that

(1) A\\f\\22<^2e-alzl2\f(z)\2 <B\\ff2
zer

1 1
for all / € Fa . If to every / -sequence {a } of complex numbers there exists

an / e F2 such that e~alz^1 l2f(zj) = aj for all ; , then Y = {z.} is said to be

a set of interpolation for Fa . A set of sampling corresponds, in the terminology

of [7], to a frame of coherent states. A set of both sampling and interpolation

(which does not exist) would correspond to a Riesz basis of coherent states.

With a view to applications in physics and signal analysis, Daubechies and

Grossmann posed the problem of finding the lattices zmn = ma + inb, m, n e

Z, that are sets of sampling [5]. They proved that a lattice could be a set of

sampling only if ab < n/a and conjectured this condition also to be sufficient.

For ab = n/(aN), N an integer > 2, they found (1) to hold by providing

explicit expressions for the optimal constants A, B. Daubechies was later able

to show that a lattice is a set of sampling whenever N~l < 0.996 [4].

We prove that the density criterion of the Daubechies-Grossmann conjec-

ture applies not only to lattices, but to arbitrary discrete sets. We should add

here that the conjecture was proved independently by Lyubarskii [12] and by

Wallstén and the author [19].

For the description to be given of sets of sampling and interpolation, we need

Beurling's density concept as generalized by Landau [11]. We consider then uni-

formly discrete sets, i.e., discrete sets V = {z,.} for which q = inf;=t. \z¡ - zA

> 0. We fix a compact set / of measure 1 in the complex plane, whose bound-

ary has measure 0. Let n~(r) and n+(r) denote, respectively, the smallest and

largest number of points from T to be found in a translate of rl. We define

the lower and upper uniform densities of T to be

£>"(r)=liminf^-P   and   D+ (T) = lim sup ̂ -^ ,
^°°      r r-»oo      r

respectively. It was proved by Landau that these limits are independent of /.
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Our main theorems are the following (the sufficiency part of the theorems

were obtained in collaboration with Wallstén [19].

Theorem 1.1. A discrete set T is a set of sampling for Fa if and only if it can

be expressed as a finite union of uniformly discrete sets and contains a uniformly

discrete subset F1 for which D'ÇT1) > a/n.

Theorem 1.2. A discrete set T is a set of interpolation for Fa if and only if it is

uniformly discrete and D+(T) < a/n .

Remark 1. Decomposition and interpolation theorems for general discrete

sets were obtained in [10], however, without any indication of a critical density.

The results in [10] appear as part of a certain trend in harmonic analysis, and

the analogy to the theory of nonharmonic Fourier series does not seem to have
been realized.

Remark 2. The lattice with a — b — y/n/a is called the von Neumann lattice,

since von Neumann claimed (without proof) that it is a set of uniqueness [13];

many proofs have later been given [2, 14, 1, 19]. See [9] for an attempted repair

of the "defect" of the von Neumann lattice that it is neither a set of sampling

nor one of interpolation.

We consider also the analogues in our setting of the problems treated in [3].

We introduce then the Banach space F™ , consisting of those entire functions

f(z) for which

ll/lloc = ll/ILoc = SUP^a|Z|2/2|/(Z)l<00-
z

r is said to be a set of sampling for FQ°° if there exists a positive number K
such that

WfW^KK suPé>-a|z|2/2|/(z)l
zeT

for all / € F™ . If to every bounded sequence {a.} of complex numbers there

exists an / € F™ such that e~a¡z'1 /2f(zj) = a} for all ;', we say that T = {Zj}

is a set of interpolation for F^° . We have then the following counterparts of

Beurling's two density theorems in [3] (we are using the term sampling instead

of balayage as in [3], which seems natural since we no longer have the relation
to Fourier-Stieltjes transforms).

Theorem 1.3. A discrete set T is a set of sampling for F™ if and only if it

contains a uniformly discrete subset T1 for which Z)~(r/) > a/n.

Theorem 1.4. A discrete set F is a set of interpolation for FQ°° if and only if it

is uniformly discrete and D+(T) < a/n.

Let us remark, as Beurling did, that the problems and some of the results

extend to several variables. We would also like to mention the following in-

teresting question: What are the corresponding density theorems for weighted

Bergman spaces? See [16, 18] for a treatment of this problem.
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2. The necessity parts of the theorems—indication of proof

In this section we make a few remarks to indicate how to prove the necessity

parts of the theorems. Details are given in [17]. When unspecified, p is taken

to be either 2 or oo .

We remark first that the translations

(Tj)(z) = e^-a^,2f(z-a)

act isometrically in Fp . This translation invariance implies immediately that

r + z is a set of sampling (interpolation) if and only if T is a set of sampling
(interpolation) and it permits us to translate our analysis around an arbitrary

point z to 0.
Another important feature of Fp is the following compactness property: If

{fn} is a sequence in the ball

{f^K- \\f\\P<R}>

then there is a subsequence {fn } converging pointwise and uniformly on com-

pact sets to some function in the ball. This is immediate from the definition of

Fp and a normal family argument.

Following Beurling, for a closed set T, we let W(Y) denote the collection of

weak limits of translates T + z [3, p. 344]. The compactness property and the

translation invariance of Fp make W(Y) a crucial tool in our analysis. Indeed,

it turns out that all of Beurling's arguments concerning W(Y) can be carried

over to our situation.
Most of the work needed to prove the necessity parts of Theorems 1.3 and

1.4 consists in transferring Beurling's arguments. In addition to the ingredients

mentioned above, a simple substitute for Bernstein's theorem is used. Moreover,

adapting an idea of Landau [11], we make use, at a certain stage in the proof of

Theorem 1.3, of the nice properties of the normalized monomials (normalized

in F2), see [8, p. 39; 15].
2

For the L   problem, the basic auxiliary result is the following lemma.

Lemma 2.1. There is no discrete subset of C that is both a set of sampling and

a set of interpolation for Fa .

This lemma has the following consequences.

Lemma 2.2. If Y is a set of sampling for Fa , then so is Y\ {£} for any Ç e Y.

Lemma 2.3. If Y is a set of interpolation for F , then so is Y U {Q for any

The main difficulty in proving the necessity part of Theorem 1.1 consists in

showing that D~(Y) > a/n if Y is uniformly discrete and a set of sampling.

This problem can now be dealt with in the following way. Consider such a Y.

It is easy to show that W(Y) consists only of sets of sampling. By Lemma 2.2

we have that every set of sampling for F2 is a set of uniqueness for F™ . For

suppose ro is a set of sampling for F2 and that g e F™ vanishes on ro.
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Then the function

f(z) = g(z)/(z-zx)(z-z2),

z,, z2 6 T0, belongs to F2 and vanishes on ro \ {z1, z2} . This contradicts

Lemma 2.2.
Thus every set in W(Y) is a set of uniqueness for F ^° . It can be proved

that r is a set of sampling for Fa°° if and only if every T0 e W(Y) is a set

of uniqueness for Fa°° (see Theorem 3 in [3, p. 345]). Hence by Theorem 1.3,

D~(Y)>a/n.
As to the necessity part of Theorem 1.2, we remark that Lemma 2.3 enables

us to carry over Beurling's technique used for the corresponding L°° problem;

here a slight modification of the key notion ' p(z ; T)' is needed, see [3, p. 352].

3. The sufficiency parts of the theorems—indication of proof

Details can be found in [19].

Let A = {Xmn} denote a square lattice; that is, Xmn = y/n/a (m + in) for

all integers m, n and some positive number a. a/n will be referred to as the

density of A. We observe that the Weierstrass a -function, a(z), associated to

A plays a role in the Bargmann-Fock space analogous to that of the sine in the

Paley-Wiener space. This permits us to use techniques similar to some of those
employed for functions of exponential type.

We introduce the analogues of a(z) for uniformly discrete sets that are close

to a square lattice in the following sense. Y = {zmn} is uniformly close to A if

there exists a positive number Q such that \zmn - Xmn\ < Q for all m and n .

To r, uniformly close to a square lattice, we associate a function g(z) de-

fined by

(2) g{z) = (z-zjTl'il_^\exp(^+l^\

where z00 is the point of Y closest to 0. Using the quasi-periodicity of the

cr-function, we obtain the following estimates on the growth of g.

Lemma 3.1. Let Y be uniformly close to the square lattice A of density a/n.

Then there exist constants C,, C2 and c, depending only on Q and q, such

that for every z we have

\e-alz]2/2g(z)\  > Cie-c|z|log|z|dist(z,r),

\e-alzl2,2g(z)\  <  C2ec|z|log|z|,

and for every zmn eY we have

\e-alz"-l2,2g'(znin)\  >  C1î"c|z"J1oê|z'"J.

By this lemma and the calculus of residues, we obtain the following Lagrange-

type interpolation formula.

Lemma 3.2. Let Y = {zmn} be uniformly close to the square lattice of density

ß/n, and let g be the function associated to Y by (2). If a < ß we have for
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mn

each f € F™

^—' s (z     )   z — 7.
m,n ° v   mil'

with uniform convergence on compact sets.

The difficulty in proving the sufficiency part of Theorem 1.1 consists in ver-

ifying the left inequality in (1). We assume then, without loss of generality,

that T is uniformly discrete and uniformly close to the square lattice of den-

sity ß/n, where D~(Y) = ß/n ; see [3, p. 356] for an argument justifying this

claim. We write

/   \f(z)\2dpa(z) = Y<l  \WXuf){z)\2 dva{z)
JC klJR

where R = {z = x + iy :   \x\ < \y/\/a,  \y\ < \y/Tfa} . In order to estimate
the summands on the right, we use Lemma 3.2 to write

v(y)(^„+^/)   ¿uz)
Vxtlnw-L,    / (z   +K)   z

m,n     SX¡,,\   mn   '     kV kl

where gk is the function associated to Y + Xkl by (2). Lemma 3.1 is used

to estimate this expression, and after some computation we obtain the desired

estimate.

The sufficiency part of Theorem 1.3 can be proved in the same way, or more

easily, by Beurling's method [3, p. 346].
In order to prove the sufficiency parts of Theorems 1.2 and 1.4, we note first

that we may assume that Y is uniformly close to a square lattice of density

ß/n, where D+(Y) = ß/n [3, p. 356]. The interpolation problem is then
solved explicitly by the following formula,

f(Z) = E amne
a-zm„z-a\zmS-%-z     (Z       Zflmn i   mn ' mn

(Z-Zmn)

Lemma 3.1 is used to verify this assertion.
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