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1. Introduction

This paper is part of a program aimed at a better understanding of how the recently

defined Seiberg–Witten–Floer homology for any closed 3-manifold Y with a Spinc

structure s [8, 15, 21, 23, 40] behaves under surgery. The non-equivariant Seiberg–

Witten–Floer homology is constructed from the chain complex generated by the

irreducible critical points of the perturbed Chern–Simons–Dirac functional on the

space of L2
1-configurations modulo the action of L2

2-gauge transformations. The dif-

ferential is defined by counting the gradient flow lines connecting the critical points

of relative index one. These critical points are the equivalence classes of solutions to

the Seiberg–Witten equations on (Y, s) modulo gauge transformations. The gradient

flowlines are the equivalence classes of solutions to the Seiberg–Witten equations

on Y ×R with the pull-back Spinc structure, modulo gauge transformations. For a

general introduction to Seiberg–Witten Floer theory see [23].

Throughout the paper we are considering an oriented, closed homology 3-sphere

Y and a knotK smoothly embedded in Y . We consider two other manifolds obtained

by Dehn surgery on K: a homology 3-sphere Y1, obtained by +1-surgery on K,

and a 3-manifold Y0 which has the homology of S1 × S2, obtained by 0-surgery

on K. Our main goal is to establish the existence of an exact triangle relating

the Seiberg–Witten–Floer homology groups of these manifolds. A similar setup for

instanton homology in Donaldson theory was considered in [3], where Floer’s ideas

on the corresponding construction of the exact triangle for instanton homology are

presented.

Because of various technical difficulties intrinsic in this program, we need to sub-

divide the problem into several steps. In this first paper we deal with the “geometric

triangle”, namely we introduce a suitable “surgery perturbation” µ for the Seiberg–

Witten equations on Y that simulates the effect of surgery. We use the notation

MY,µ for the moduli space of gauge classes of solutions of the perturbed Seiberg–

Witten equations on Y , MY1 and MY0(s) for the moduli spaces of the perturbed

Seiberg–Witten monopoles on Y1 and (Y0, s), where s is a Spinc structure on Y0.

Our main result in this paper is to prove the following decomposition theorem

for MY,µ.

Theorem 1.1. With a careful choice of perturbations and metrics on Y, Y1 and Y0,

we have the following relation between the critical sets of the Chern–Simons–Dirac

functional on the manifolds Y, Y1 and Y0:

MY,µ
∼= MY1 ∪

⋃

sk

MY0(sk) , (1.1)

where sk runs over the Spinc-structures on Y0.
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In Sec. 2, we will briefly review the perturbation theory we use to define our

moduli spaces. In this paper, we only introduce perturbations sufficient to achieve

transversality of moduli spaces of critical points. Eventually, when dealing with

the full Seiberg–Witten–Floer homology, we shall need a more sophisticated class

of perturbations that achieve transversality simultaneously for moduli spaces of

critical points and of flow lines. These will be non-local perturbations of the Chern–

Simons–Dirac functional, somewhat similar to those proposed in [15]. We shall deal

with this more refined perturbation theory elsewhere.

In Sec. 3, we will study the Seiberg–Witten monopoles on the knot complement

V = Y −K, equipped with a cylindrical end metric modelled on T 2× [0,∞). Fix an

isomorphism between the determinant bundle of the Spinc structure and the trivial

bundle over T 2 × [0,∞). We use the notation χ(T 2, V ) for the moduli space of

flat connections on T 2 modulo the subgroup of gauge transformations on T 2 which

can be extended to V . Notice that χ(T 2, V ) is a Z-covering of the moduli space of

flat connections on T 2 modulo the gauge group Map(T 2, U(1)), which we denote

by χ(T 2). In χ(T 2), there is a unique point Θ such that the Dirac operator on T 2

coupled with Θ has non-trivial kernel. The main result in section 2 is the following

structure theorem for the monopole moduli space MV .

Theorem 1.2. For generic metrics and perturbations, the moduli space of Seiberg–

Witten monopoles on V, denoted by MV , consists of the union of a circle of re-

ducibles χ(V ) = Mred
V and an irreducible piece M∗

V which is a smooth oriented

1-dimensional manifold, compact except for finitely many ends limiting to χ(V ).

Moreover, there is a continuous boundary value map ∂∞ = ∂V∞,

(1.2)

defined by taking the asymptotic limit of the Seiberg–Witten monopoles on V over

the end. Under ∂∞, χ(V ) is mapped to a circle in χ(T 2, V ), and the compactification

M̄∗
V of M∗

V is mapped to a collection of compact immersed curves in χ(T 2, V ) whose

boundary points consist of a finite set of points in π−1(Θ)∪ ∂∞(χ(V )). For generic

perturbations the interior of the curve ∂∞(M∗
V ) is transverse to any given finite set

of curves in χ(T 2, V ).

For simplicity of notation, in the following we shall not distinguish between

χ(V ) and its embedded image ∂∞(χ(V )) ⊂ χ(T 2, V ).

In Sec. 4, we will establish a gluing theorem for the moduli spaces of criti-

cal points of the Chern–Simons–Dirac functional when cutting and gluing the 3-

manifold along a torus. In our case, these are the moduli spaces of monopoles on a

closed manifold which is either Y , Y1, or Y0. Let ν(K) be a tubular neighbourhood

of K in a closed manifold Z, so Z = V ∪ ν(K). We may cut Z along T 2 and glue in
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a long cylinder [−r, r] × T 2, resulting in a new manifold denoted by Z(r). Use the

notation χ(T 2, Z) for the character variety (or moduli space) of flat connections on

a trivial line bundle over T 2, modulo the gauge transformations on T 2 which can

be extended to Z. We denote by χ(ν(K), Z) the moduli space of flat connections

on ν(K) modulo the gauge transformations on ν(K) which can be extended to Z.

There is a natural map χ(ν(K), Z) → χ(T 2, Z). We denote by M∗
V,Z the moduli

space of the Seiberg–Witten monopoles on V modulo the gauge transformations on

V which can be extended to Z. We have a refinement of the boundary value map

of (1.2):

∂Z∞ : M∗
V,Z −→ χ(T 2, Z) . (1.3)

Then we have the following gluing theorem.

Theorem 1.3. For a sufficiently large r, under suitable perturbations and choice

of metrics, there exist the following diffeomorphisms given by the gluing maps on

the fiber products

#Y : M∗
V,Y ×χ(T 2,Y ) χ(ν(K), Y ) −→ M∗

Y (r) ,

#Y1 : M∗
V,Y1

×χ(T 2,Y1) χ(ν(K), Y1) −→ M∗
Y1(r)

,

#Y0 : M∗
V,Y0

×χ(T 2,Y0) χ̃(ν(K), Y0) −→
⋃

s

M∗
Y0(r)

(s) .

Here, M∗
Y (r), M∗

Y1(r)
and M∗

Y0(r)
are the moduli spaces of irreducible monopoles

on Y (r), Y1(r) and Y0(r) respectively, and s runs over all the possible Spinc struc-

tures on Y0. χ̃(ν(K), Y0) is the Z-covering space of χ(ν(K), Y0) with maps to

χ(T 2, Y0) given by the action of even gauge transformations on T 2 representing

H1(T 2,Z)/Im(H1(ν(K),Z)). The fiber product is taken with respect to the refined

boundary value maps (1.3) from M∗
V,Y ,M

∗
V,Y1

and M∗
V,Y0

to χ(T 2, Y ), χ(T 2, Y1) and

χ(T 2, Y0) respectively.

The proof of Theorem 1.3 is based on balancing the slow decay of certain eigen-

functions of the linearization at the approximate solutions, against the exponential

decay of the finite energy solutions on V with non-degenerate asymptotic value,

thus obtaining an unobstructed gluing.

Using the gluing Theorem 1.3, together with the construction of the perturbation

µ that “simulates the effect of surgery”, we will be able to derive a corresponding

deformation of the moduli spaces, and the expected relation between the generators

of the Floer groups as in Theorem 1.1.

In the last section, we apply the result of Capell–Lee–Miller on the decompo-

sition of spectral flow [5, Theorem C] to study the relative gradings of monopoles

under the identification of Theorem 1.1. We show that the identification of Theo-

rem 1.1 is compatible with the relative gradings on the Seiberg–Witten–Floer chain

complexes (cf. Propositions 6.2 and 6.4).
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2. Seiberg Witten Equations on 3-manifold

The 3-dimensional Seiberg–Witten monopoles on a compact manifold have been ex-

tensively studied in [7, 9, 14, 16, 17, 23, 24, 27]. In this section we will briefly recall

some of the main features of 3-dimensional monopoles. A 3-dimensional monopole,

as noted first in [16], can be viewed as a critical point of the Chern–Simon–Dirac

functional on an infinite dimensional space (the orbit space of Spinc connections

and sections of the spinor bundle under the action of the gauge group). We recall

the basic setting of 3-dimensional Seiberg–Witten theory, then we will end this sec-

tion with the observation that, under a generic perturbation with compact support

in a fixed open set, the critical points are all non-degenerate.

Let (Y, g) be a closed, oriented Riemannian 3-manifold. A Spinc structure s on

(Y, g) is a pair (W,ρ) consisting of a rank 2 Hermitian bundleW together with a Clif-

ford multiplication ρ : T ∗Y → End (W ). If {e1, e2, e3} is an oriented orthonormal

frame for TY , we choose the Clifford multiplication such that ρ(e1)ρ(e2)ρ(e3) = 1.

Notice that both choices ρ(e1)ρ(e2)ρ(e3) = ±1 are adopted in the literature. Our

convention agrees with [29], while the opposite one is used in [15]. These choices

correspond to orientation conventions (cf. [2]): the corresponding Dirac operators

differ by a sign and so do their eta invariants.

With the Levi–Civita connection on the frame bundle of Y , a U(1)-connection

A on the determinant bundle det(W ) determines a Spinc connection ∇A on W such

that ρ is parallel. Applying Clifford multiplication, we can define a Dirac operator,

denoted by 6∂A. Then the Seiberg–Witten equations are the equations for a pair

(A,ψ) consisting of a U(1)-connection on det(W ) and a section ψ of W (ψ is called

a spinor):
{

∗FA = σ(ψ, ψ) + µ

6∂A(ψ) = 0 .
(2.1)

Here µ is a co-closed imaginary-valued 1-form on Y , and σ(·, ·) is a symmetric

R-bilinear form W ⊗W → T ∗Y ⊗ iR given by

σ(ψ, ψ) = −ρ−1((ψ ⊗ ψ∗)0) = −ρ−1

(

ψ ⊗ ψ∗ − |ψ|2
2

Id

)

=
i

2
Im 〈ρ(ei)ψ, ψ〉ei

Note that this R-bilinear form σ(·, ·) satisfies the following properties [8]:

(1) Under Clifford multiplication, we have σ(ψ, ψ) ·ψ = − 1
2 |ψ|2ψ, and 〈α ·ψ, ψ〉 =

2〈α, σ(ψ, ψ)〉T∗Y , for α ∈ Ω1(Y, iR).

(2) σ(ψ, φ) = 0 if and only if on Y − ψ−1(0) φ = irψ for a real-valued function r

on Y − ψ−1(0).

(3) For any imaginary valued 1-form α, σ(α · ψ, φ) + σ(ψ, α · φ) = −(Re 〈ψ, φ〉)α.

(4) If ψ is a nowhere vanishing section of W , then W ∼= Cψ ⊕ ψ⊥, and σ(ψ, ·)
defines a bundle isomorphism between Rψ ⊕ ψ⊥ and T ∗Y ⊗ iR.

Denote by AY the configuration space of (Y, s) consisting of pairs (A,ψ) with the

completion under L2
1-norm. The gauge group of automorphisms of the Spinc-bundle
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W is GY = Map (Y, U(1)) with L2
2-completion. GY acts on AY by

u(A,ψ) = (A− 2u−1du, uψ) ,

and the Seiberg–Witten equations are invariant under this action. Denote by BY

the quotient space of AY by the gauge group action. BY is an infinite dimensional

Hilbert manifold except at points where the spinor part is zero, which are called

reducible points. Otherwise, points (A,ψ) with ψ 6= 0 are called irreducible. As

noted in [16], the Seiberg–Witten equations on (Y, s, g) are the equations for the

critical points of the following Chern–Simons–Dirac functional on AY :

Cµ(A,ψ) = −1

2

∫

Y

(A−A0) ∧ (FA + FA0 − 2 ∗ µ) +

∫

Y

〈ψ, 6∂Aψ〉dvolY , (2.2)

where A0 is a fixed connection on det(W ). Note that Cµ descends to a circle-valued

function on BY . The set of critical points of Cµ on BY is denoted by MY,µ(s), its

irreducible critical point set is denoted by MY,µ(s)∗.

For any critical point (A,ψ) on AY , the infinitesimal action of GY and the

derivative of grad(Cµ) at (A,ψ) define a complex

Ω0
L2

2
(Y, iR)

G(A,ψ)→ Ω1
L2

1
(Y, iR) ⊕ L2

1(W )
H(A,ψ)→ Ω1

L2(Y, iR) ⊕ L2(W ) , (2.3)

where the maps G(A,ψ) and H(A,ψ) are given by

G(A,ψ)(f) = (−2df, fψ),

H(A,ψ)(α, φ) =

(

∗dα− 2σ(ψ, φ), 6∂Aφ+
1

2
α · ψ

)

.

We say that [A,ψ] is a non-degenerate critical point of Cµ on BY if the middle

cohomology of (2.3) is zero:

KerH(A,ψ)/ImG(A,ψ) = 0 .

At the smooth points of BY , this definition is the same as saying that the derivative

of grad(Cµ) at a critical point is non-degenerate. The gradient of Cµ can be viewed

as an L2-tangent vector field on BY , a section of the L2-tangent bundle over BY ,

while the tangent space of BY at [A,ψ] is the L2
1-completion of

KerG∗
(A,ψ) = {(α, φ)|d∗α+ i Im 〈ψ, φ〉 = 0.}

The covariant derivative of grad(Cµ), denoted by H[A,ψ], defines a operator on

KerG∗
(A,ψ), sending (α, φ) ∈ KerG∗

(A,ψ) to

(

∗dα− 2σ(ψ, φ) − 2df, 6∂Aφ+
1

2
α · ψ + fψ

)

,

where f is the unique solution to the equation
(

d∗d+
1

2
|ψ|2

)

f = i Im 〈6∂Aψ, φ〉 .
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Note that H[A,ψ] is a closed, unbounded, essentially self-adjoint, Fredholm operator

on the L2-completion of KerG∗
(A,ψ), its eigenvectors form an L2-complete orthonor-

mal basis, its L2-spectrum forms a discrete subset of the real line with no accumu-

lation points. Hence, as in [23], the spectral flow of H[A,ψ], along a path connecting

two critical points defines a relative index on M∗
Y,µ(s)×M∗

Y,µ(s). This relative index

depends only on the homotopy class of the connecting path for non-torsion Spinc

structure (cf. [23, Remark 4.5] and [8, Definition 3.6]).

The following properties about the critical points of Cµ are now standard (see

[23, 9, 14, 17, 19]).

Proposition 2.1. There exists a Baire set of co-closed 1-form µ ∈ Ω1
L2

2
(Y, iR) such

that all the critical points in MY,µ(s) are non-degenerate. Moreover, if b1(Y ) > 0,

MY,µ(s) consists of only finitely many irreducible points in BY ; if Y is a rational

homology 3-sphere, assume that a generic µ satisfies Ker 6∂θ = 0 (where θ is the

unique reducible point in MY,µ(s), that is, ∗Fθ = µ), then MY,µ(s)∗ = MY,µ(s)−{θ}
consists of only finitely many irreducible points.

In this paper and sequel work, it is convenient to use a perturbation with support

contained in a fixed open set, so that Proposition 2.1 still holds for perturbations

with compact support contained in a fixed open set. The first such statement was

made in [35, Proposition 7.1] by Taubes, who kindly communicated the proof to

us.

Proposition 2.2. Fix a non-empty open set U in Y and a Spinc structure s on

Y . If b1(Y ) > 0 and c1(det (s)) = 0, we require that U is chosen so that the

map H2(Y,R) → H2(U,R) is non-zero. Then there exists a Baire set of co-closed

imaginary valued 1-forms µ with compact support in U such that all the critical

points of Cµ on BY are non-degenerate.

Proof. We first study the family version of the critical points of Cµ on B∗
Y , where µ

is from a set of imaginary valued co-closed 1-forms on Y with compact support in U .

Denote this set of perturbations as Z(U, iR). Let [µ,A, ψ] be a critical point of Cµ.

We need to show that the derivative of the gradient of {Cµ}µ∈Z(U,iR) is surjective.

Namely, consider

KerG∗
[A,ψ] × Z(U, iR) → KerG∗

[A,ψ] ,

which sends (α, φ, µ1) to

(

∗dα− 2σ(ψ, φ) + µ1, 6∂Aφ+
1

2
α · ψ

)

.
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Suppose that (α, φ) is orthogonal to the image of the above map, then (α, φ)

satisfies the following equations:

(1) d∗α+ i Im 〈ψ, φ〉 = 0,

(2) ∗dα− 2σ(ψ, φ) = 0 ,

(3) 6∂Aφ+
1

2
α · ψ = 0 ,

(4) α is exact when restricted to U .

(2.4)

The elliptic regularity implies that (α, φ) is smooth. From (4) and (2) of equa-

tions (2.4), we know that σ(ψ, φ) = 0 on U . The following lemma due to Taubes [36]

will ensure that σ(ψ, φ) = 0 on Y . Hence, there is a real-valued smooth function f

on Y , such that φ = ifψ. Using (3) of (2.4), we obtain

6∂A(if ψ) +
1

2
α · ψ = 0

on Y , which leads to α = −2idf on Y . By the equation (1) in (2.4), we get

2d∗df + f |ψ|2 = 0

on Y . Note that ψ−1(0) does not disconnect any domain in Y (the unique contin-

uation principle for Dirac operator (see [13, pp. 57–58])). Therefore, f = 0 which

implies that (α, φ) = 0.

From the Sard–Smale theorem, there is a Baire set of µ ∈ Z(U, iR) such that

all critical points of Cµ in B∗
Y are non-degenerate for a generic µ.

Now we need to prove that the reducible critical point of Cµ is also non-

degenerate. By the assumption, Cµ admits reducible critical point if and only if Y

is a rational homology 3-sphere. From the analysis in [23], we know that, in order

to achieve the non-degenerate condition at reducible critical point, µ is required to

be away from the codimension one subset Z(U, iR) where the corresponding Dirac

operator has non-trivial kernel. This completes the proof of the Proposition. Now

we give the proof of Taubes’ lemma.

Lemma 2.1 (Taubes). Let (A,ψ) and (α, φ) as above, where (A,ψ) is a solution

to the Seiberg–Witten equation (2.1) and (α, φ) satisfies (1)–(3) of (2.4). Then q =

σ(ψ, φ) obeys an equation of the form

∆q = H · q +K · ∇q
at all points where ψ 6= 0. Here ∆ is the Laplacian on differential 1-forms and H

and K are linear maps that depend implicitly on ψ. The set of points where ψ 6= 0

is a path connected open dense set in Y . The unique continuation principle applies

to q so that q cannot vanish on U without vanishing everywhere on Y .

Proof. Apply the Laplacian to q = σ(ψ, φ). We have the following expression of

∆q:

∆q = σ(∆ψ, φ) + σ(ψ,∆φ) + 2σ({∇Aψ,∇Aφ}T∗Y ) , (2.5)
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here ∆ acting on spinors is ∇∗
A∇A, and {∇Aψ,∇Aφ}T∗Y is the pairing using the

metric on T ∗Y . Now invoke the Weitzenböck formula for the Dirac operator,

6∂∗A 6∂A = −∆ +
κ

4
− 1

2
ρ(∗FA) ,

where κ is the scalar curvature on Y . Thus, from the Dirac equations for ψ and φ,

we obtain

∆ψ =
κ

4
ψ − 1

2
(∗FA) · ψ ,

∆φ =
κ

4
φ− 1

2
(∗FA) · φ+

1

2
(d∗α)ψ − 1

2
(∗dα) · ψ −∇α

Aψ ,

here ∇α
Aψ = {α,∇Aψ}T∗Y . Plug these two equations into (2.5), and note that

σ(ψ, 1
2 (d∗α)ψ) = 0 and σ(ψ,− 1

2 (∗dα) · ψ) = |ψ|2q. We get

∆q =
(κ

2
+ |ψ|2

)

q + σ

(

−1

2
(∗FA) · ψ, φ

)

+ σ

(

ψ,−1

2
(∗FA) · φ

)

+ 2σ({∇Aψ,∇Aφ}T∗Y ) + σ(ψ,−∇α
Aψ)

=
(κ

2
+ |ψ|2

)

q + ∗FA(Re 〈ψ, φ〉) + 2σ({∇Aψ,∇Aφ}T∗Y ) + σ(ψ,−∇α
Aψ) .

(2.6)

Write φ = irψ + λ where r is a real-valued function on Y and Re 〈λ, iψ〉 = 0, then

Re 〈ψ, φ〉 = Re 〈ψ, λ〉 ,
σ({∇Aψ,∇Aφ}T∗Y ) = σ({∇Aψ,∇Aλ}T∗Y ) + σ({∇Aψ, idr ⊗ ψ}T∗Y ) .

Hence (2.6) can be written as

∆q =
(κ

2
+ |ψ|2

)

q + ∗FA(Re 〈ψ, λ〉)

+ 2σ({∇Aψ,∇Aλ}T∗Y ) + σ(ψ,−∇α+2idr
A ψ) . (2.7)

To complete the proof, we only need to show that λ,∇Aλ and α+ 2idr can be

written as combinations of linear maps on q and ∇q. On the set of points where

ψ 6= 0, Ω = Y − ψ−1(0), we write ψ = |ψ|τ1 where τ1 is a unit-length spinor.

Choose a local basis {τ1, τ2} for the Spinc bundle, so that Clifford multiplication in

the local orthonormal coframe {e1, e2, e3} for T ∗Y is given by

ρ(e1) =

(

i 0

0 −i

)

, ρ(e2) =

(

0 −1

1 0

)

, ρ(e3) =

(

0 i

i 0

)

,

where {e1, e2, e3} can be expressed as

e1 = −2iσ(τ1, τ1), e2 = 2iσ(τ1, iτ1), e3 = −2iσ(τ1, τ2) .

Write λ = uτ1 + vτ2 for a real-valued function u and a complex-valued function

v, then

q = σ(ψ, φ) =
i

2
|ψ|(ue1 − Im (v)e2 + Re (v)e3) .
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On Ω, σψ = σ(ψ, ·) defines a bundle isomorphism between

R · ψ ⊕ (C.ψ)⊥ → T ∗Y ⊗ iR .

Thus, we obtain that λ = σ−1
ψ (q), and

∇λ = (∇(σ−1
ψ ))(q) + σ−1

ψ (∇q) .
Let b = a+ 2idr, then from (3) of (2.4), we have

b · ψ = −26∂Aλ ,
as λ can be written in terms of q and ∇q, so is b. This completes the proof of

Taubes’ lemma.

3. Monopoles on a 3-manifold with a Cylindrical End

In this section we use techniques developed in [26] to study the moduli space of

Seiberg–Witten monopoles on the knot complement V endowed with an infinite

cylindrical end T 2 × [0,∞). Our main aim is to present the proof of Theorem 1.1.

Before we give details, we present an overview of the section, introducing notation.

Consider the three-manifolds V and ν(K), respectively the knot complement

and the tubular neighbourhood of the knot K in the homology sphere Y . Both

are 3-manifolds with boundary a torus T 2. On T 2 we use the standard flat metric

induced from R2. Equip V with a cylindrical end metric and a Spinc-structure s with

trivial determinant along the half cylinder T 2 × [0,∞). This amounts to a choice of

an asymptotic framing condition (cf. [28], [11, Definition 3.5], [32, Sec. 4.1.1]) on V .

More precisely, an asymptotic framing condition is given by a fixed trivialization

of the determinant bundle detW over the cylindrical end ∂V × [0,∞)

φV : C × (∂V × [0,∞))
'→ detW |∂V×[0,∞) . (3.1)

Two asymptotic framings are equivalent if they are related by a bundle isomorphism

T : W → W over V . Topologically, an asymptotic framing condition is equivalent

to the choice of a relative Euler structure in the sense of [37, 38]. From now on, we

assume that a Spinc structure s on V is endowed with a fixed asymptotic framing

φV as given by (3.1).

The perturbed Seiberg–Witten equations on (V, s) are the equations
{

∗FA = σ(ψ, ψ) + µ ,

6∂Aψ = 0 ,
(3.2)

for a pair (A,ψ) consisting of a L2
1,loc U(1) connection on det(W ) and a L2

1,loc

spinor section ψ of W . The perturbation term µ is a co-closed and imaginary value

1-form with compact support contained in a fixed open set U ⊂ V − (T 2 × [0,∞)).

We denote the corresponding class of perturbations by Z(U, iR)

We define the energy of any Seiberg–Witten monopole (A,ψ) to be
∫

V

|FA|2d volV <∞ , (3.3)
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Let MV denote the Seiberg–Witten moduli space of solutions of the equa-

tions (3.2) with finite energy condition modulo the gauge transformations GV =

MapL2
2,loc

(V, U(1)).

The flat connections on the determinant bundle, modulo the even gauge group

GT 2 = Map (T 2, U(1)), form a torus

χ(T 2) ∼= H1(T 2,R)/2H1(T 2,Z) ,

which is a Z2 × Z2 cover of the standard torus Hom(π1(T 2), U(1)) = R
2/Z2. In

fact, χ(T 2) is the quotient of the vector space of harmonic 1-forms on T 2 modulo

the group of even characters of T 2 and there is a holonomy map

hol : χ(T 2) → Hom(H1(T 2,Z),R/Z) ∼= H1(T 2,R)/H1(T 2,Z) .

Then the identification χ(T 2) ∼= H1(T 2,R)/2H1(T 2,Z) is given explicitly by a map

Φ : χ(T 2) → H1(T 2,R)/2H1(T 2,Z)

which is a lift to the Z2 ×Z2 cover H1(T 2,R)/2H1(T 2,Z) → H1(T 2,R)/H1(T 2,Z)

of the map hol,

(3.4)

The tangent bundle of T 2 is equipped with a natural framing (cf. [38, Sec. 1.2])

which identifies it with the trivial bundle C := C × T 2 and determines the trivial

connection Θ. For any GT 2-gauge class of a flat connection A on C, we have Φ(A) :

H1(T 2,Z) → R/2Z given by

〈Φ(A), c〉 :=
1

2πi

∫

c

(A− Θ)mod 2Z, ∀ c ∈ H1(T 2,Z) . (3.5)

Let χ(T 2, V ) be the moduli space of flat connections modulo the subgroup of

the gauge transformations on T 2 which can be extended to V . This subgroup can

be viewed as the image of asymptotic values of GV in GT 2 , that is, the connected

components of GT 2 corresponding to the image of the map H1(V −[0,∞)×T 2,Z) →
H1(T 2,Z). Let π denote the quotient map π : χ(T 2, V ) → χ(T 2), which is a Z-

covering map.

Suppose we are given a smooth solution (A,ψ) of the Seiberg–Witten equations,

satisfying the finite energy condition (3.3). Then we will see that there is a choice of

a connection Ã in the GV -gauge class of A that approaches a flat connection on T 2,

while the corresponding spinor ψ̃ vanishes in the limit on the cylindrical end. That

is, if s is the coordinate on [0,∞), we will show that lims→∞(Ã, ψ̃) = (a∞, 0) in the

appropriate topology, for each finite energy solution (A,ψ) to the Seiberg–Witten

equations (3.2). Thus the asymptotic limit of the Seiberg–Witten monopoles on the
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manifold V with a cylindrical end defines a boundary value map ∂∞:

(3.6)

Here the lift ∂∞ to χ(T 2, V ) depends on the choice of the asymptotic framing φV
as in (3.1).

We will show that, in a suitable topology, this boundary value map is well-

defined and continuous. Then, we will describe the structure of the moduli space

MV .

3.1. Monopoles on T 2
× [0, ∞)

We begin with the investigation of the behaviour of the solutions of the Seiberg–

Witten equations on the cylindrical end T 2× [0,∞). Fix an asymptotic framing and

a flat background connection A0 on the determinant bundle det(W ) with asymp-

totic limit a0.

Lemma 3.1. Choose the coordinate s ∈ [0,∞) on the cylindrical end T 2 × [0,∞).

Choose the Spinc structure over T 2×[0,∞) to be the pull-back of the Spinc structure

on T 2 with trivial determinant, induced by the complex structure. We can write

(A,ψ) as

{

A = A0 + a(s) + h(s)ds ,

ψ = (α(s), β(s)) ∈ Λ0,0 ⊕ Λ0,1 = Γ(W ) ,

where a(s) = a1,0(s) + a0,1(s) ∈ Λ1(T 2, iR), h(s) ∈ Λ0(T 2, iR). Then the Seiberg–

Witten equations (3.2) can be written in the form







































FA0+a =
i

2
(|α|2 − |β|2)ω ,

∂a0,1(s)

∂s
= iᾱβ + ∂̄h ,

(

i(∂s + h) ∂̄∗a(s)

∂̄a(s) −i(∂s + h)

)(

α

β

)

= 0 ,

(3.7)

where ω is the area 2-form on T 2 with
∫

T 2 ω = 1.

Proof. We may choose a trivialization of the cotangent bundle to T 2 × [0,∞) so

that, using a full-stop to denote Clifford multiplication by a one form, we can make
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the identifications:

ds. =

(

i 0

0 −i

)

, dx. =

(

0 −1

1 0

)

, dy. =

(

0 i

i 0

)

. (3.8)

Letting the Hodge ∗ on forms on T 2 × [0,∞) be denoted by ∗3, then under the

preceding identifications we have

∗3(σ(ψ, ψ)) =
i

2
(|α|2 − |β|2)ω − i(αβ̄ + ᾱβ) ∧ ds

FA = FA0+a + (dT 2h− ∂sa) ∧ ds ,

hence we get














FA0+a =
i

2
(|α|2 − |β|2)ω ,

∂a0,1(s)

∂s
= iᾱβ + ∂̄h .

The form a(s) ∈ Λ1(T 2, iR) is uniquely determined, as an iR-valued 1-form, by

its (0, 1)-part a0,1 ∈ Λ0,1(T 2). Similarly, the Dirac operator on T 2 × [0,∞) can be

expressed as

6∂a(s)+h(s)ds =





i(∂s + h) ∂̄∗a(s)

∂̄a(s) −i(∂s + h)



 .

This gives the Dirac equation as in the lemma.

Let (A,ψ) be an irreducible solution of the Seiberg–Witten equations on the

manifold V . Along the cylindrical end T 2 × [0,∞) we can use Lemma 3.1 to write

the Seiberg–Witten equations in the form


















∂sa
0,1 = iᾱβ + ∂̄h,

∂sα = i∂̄∗a(s)β − hα,

∂sβ = −i∂̄a(s)α− hβ ,

with the constraint Fa = i
2 (|α|2 − |β|2)ω. These equations are gauge-equivalent,

through a gauge transformation in GV , to the following equations:


















∂sa
0,1 = iᾱβ ,

∂sα = i∂̄∗a(s)β ,

∂sβ = −i∂̄a(s)α ,

(3.9)

on the configuration space AT 2 of triples (a, α, β), where a is a U(1)-connection on

det(W ) and (α, β) is a section of Spinc bundle W over T 2. The following lemma

shows that (3.9) can be interpreted as a gradient flow equation.
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Lemma 3.2. The equations (3.9) are the downward gradient flow equations of the

GT 2 = Map (T 2, U(1))-invariant functional

f(a, α, β) = −
∫

T 2

〈α, i∂̄∗aβ〉ω (3.10)

on the space AT 2 , where the product 〈 , 〉 denotes the natural inner product using

the Hodge star operator.

Proof. Direct calculation shows that we have

∇ f(a, α, β) = (−iᾱβ − iαβ̄,−i∂̄∗aβ, i∂̄aα) .

Critical points of the functional (3.10) with the condition Fa = i
2 (|α|2 − |β|2)ω

are all the elements (a∞, 0, 0), with a∞ a flat connection. This critical point set is

denoted by χ(T 2), the quotient space of flat connection by the even gauge transfor-

mation. If (A(s), ψ(s)) is a solution to the Seiberg–Witten equation on [0,∞)× T 2

in temporal gauge, then

(A(s), ψ(s)) = (A0 + a1,0 + a0,1, (α, β))

satisfies the gradient flow equation of f as given by (3.9).

The next few lemmata describe some fundamental properties about the solution

to the Seiberg–Witten equation on the cylinder over T 2 in temporal gauge.

Lemma 3.3. Let γ(s) = (A(s), ψ(s)) be a solution to the Seiberg–Witten equation

on [s1, s2] × T 2 in temporal gauge, then

∫ s2

s1

‖∇f(γ(s))‖2
L2(T 2)ds =

∫

[s1,s2]×T 2

(|∇Aψ|2 + |FA|2)d vol .

Proof. Since (A(s), ψ(s)) satisfies the Seiberg–Witten equation on [s1, s2] × T 2:

{

6∂Aψ = 0 ,

∗FA = σ(ψ, ψ)

The Weitzenböck formula for the Dirac operator on [s1, s2] × T 2 with flat metric

then gives

6∂∗A 6∂Aψ = ∇∗
A∇Aψ − 1

2
(∗FA) · ψ = 0 .

Take the inner product of both sides with ψ, use the Seiberg–Witten equation, and

note that 〈(− ∗ FA) · ψ, ψ〉 = 2〈∗FA, σ(ψ, ψ)〉 = 2|FA|2. We obtain

1

2
d∗d|ψ|2 + |∇Aψ|2 + |FA|2 = 0 .
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Integrating the above identity over [s1, s2] × T 2, we can write the result as
∫

[s1,s2]×T 2

(|∇Aψ|2 + |FA|2)d vol

= −1

2

∫

[s1,s2]×T 2

d ∗ d|ψ|2 = −1

2

∫

∂([s1,s2]×T 2)

(∂s〈ψ, ψ〉)ω

=

∫

T 2

〈α(s1), i∂̄∗A(s1)β(s1)〉ω −
∫

T 2

〈α(s2), i∂̄∗A(s2)β(s2)〉ω .

Here we write ψ(s) = (α(s), β(s)) as a spinor on T 2 and use (3.9) for ∂sψ. Note

that γ(s) = (A(s), α(s), β(s)) solves the gradient flow equation of f , hence
∫ s2

s1

‖∇f(γ(s))‖2
L2(T 2)ds

=

∫

T 2

〈α(s1), i∂̄∗A(s1)
β(s1)〉ω −

∫

T 2

〈α(s2), i∂̄∗A(s2)
β(s2)〉ω

=

∫

[s1,s2]×T 2

(|∇Aψ|2 + |FA|2)d vol .

Lemma 3.4. Let γ(s) = (A(s), ψ(s)) be a solution to the Seiberg–Witten equation

on N = [t−1, t+1]×T 2 in temporal gauge for any t ∈ [0,∞). If
∫

N |FA|2d vol = EN ,

then there exists a constant C0 such that the following estimates hold
∫

[t− 1
2 ,t+

1
2 ]×T 2

|∇Aψ|2d vol ≤ C0

√

EN ;

∫ t+ 1
2

t− 1
2

‖∇f(γ(s))‖2
L2ds ≤ C0

√

EN +EN .

Moreover, if (A(s), ψ(s)) is a solution to the Seiberg–Witten equation on [−1,∞)×
T 2 in temporal gauge with finite energy, then the corresponding flowline on AT 2 of

f has finite variation of f along [0,∞) × T 2.

Proof. From the L2-bound on |FA|, we immediately obtain a L4-bound on ψ from

the Seiberg–Witten equation,

‖ψ‖4
L4(N) =

∫

N

|ψ|4d vol =
1

4

∫

N

|FA|2d vol .

By the Cauchy–Schwartz inequality, we get

‖ψ‖2
L2(N) ≤

√

Vol(N)‖ψ‖2
L4(N) =

√
2

2
‖FA‖L2(N) .

Here we use that V ol(N) = 2. In the proof the previous lemma, we found that ψ

satisfies

1

2
d∗d|ψ|2 + |∇Aψ|2 + |FA|2 = 0.
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Multiplying both sides of the above equation with a cut-off function ρ which equals

1 on [t− 1
2 , t+ 1

2 ]× T 2 and vanishes near the boundary of N , and then integrating

by parts, we obtain

‖∇Aψ‖2
L2([t− 1

2 ,t+
1
2 ]×T 2) ≤ −1

2

∫

N

d∗d|ψ|2ρd vol ≤ C1‖ψ‖2
L2(N) ≤

√
2

2
C1‖FA‖L2(N) ,

where C1 is a constant depending only on the cut-off function ρ. Putting the above

inequalities together we get the estimates as claimed with C0 =
√

2
2 C1.

The finite variation of f along [0,∞) × T 2 for a solution on [−1,∞) × T 2 is

the direct consequence of adding up over a sequence of middle tubes of length 2,

namely, {[i− 1, i+ 1] × T 2|i = 0, 1, 2, . . .}, hence
∫ ∞

0

‖∇f(γ(s))‖2
L2(T 2)ds

≤ 2

∫ ∞

−1

‖FA‖2
L2(T 2)ds+ 2C0

√

∫ ∞

−1

‖FA‖2
L2(T 2)ds <∞ .

Lemma 3.5. Let (a(s), α(s), β(s)) be a monopole on T 2× [0,∞) with finite energy
∫

T 2×[0,∞)

|F |2d vol <∞ .

Then there exists a sequence {sn} such that limsn→∞(a(sn), α(sn), β(sn)) exists

and represents a point in χ(T 2).

Proof. Write the curvature of a(s) on T 2 × [0,∞) as Fa(s) − ∂s(a(s)) ∧ ds, where

Fa(s) is the curvature on T 2. Then we have the following calculation:
∫

T 2×[0,∞)

|F |2d vol =

∫

T 2×[0,∞)

(|Fa(s)|2 + |∂s(a(s))|2)d vol ,

which implies that as s→ ∞,

|Fa(s)| → 0, |∂s(a(s))| → 0 .

By Uhlenbeck’s weak compactness result and the compactness of χ(T 2), we know

that a(s) weakly converges to a flat connection.

By the monopole equation on T 2 × [0,∞), we also obtain

|α(s)|2 − |β(s)|2 → 0, ᾱ(s)β(s) → 0 .

This implies that [a(s), α(s), β(s)] converges weakly to a point in χ(T 2).

To establish strong convergence to a point in χ(T 2) for any finite energy

monopole on [0,∞) × T 2, we need to apply L. Simon’s type result of “small en-

ergy implying small length” as in [26]. We will address this issue at the end of this

subsection.
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Let G0
T 2 be the based gauge group on det(W ), that is, those gauge transforma-

tions which equal the identity at a fixed based point. Denote by B0
T 2 the quotient

space of AT 2 by the free action of G0
T 2 . Note that the gradient flow of f preserves

the constraint Fa = i
2 (|α|2 − |β2|)ω, hence we can consider gradient flow lines of f

restricted to

CT 2 =

{

(a, α, β)|Fa =
i

2
(|α|2 − |β2|)ω

}

/G0
T 2

as a subset of B0
T 2 .

The space CT 2 is a singular space, the singular set consisting of [a, α, β] where a

is a flat connection and (α, β) is a spinor section satisfying the pointwise condition

|α| = |β|. We want to study the asymptotic behavior of finite energy monopoles on

T 2 × [0,∞), that is, the asymptotic behavior of the gradient flow of f restricted to

CT 2 .

If we consider a neighborhood of CT 2 in the whole configuration space B0
T 2 , this

introduces new critical points which consist of the [Θ, α, β], with Θ ∈ χ(T 2) and

(α, β) satisfying

ᾱβ = ∂̄Θ(α) = ∂̄∗Θ(β) = 0.

Note that there is a unique point Θ ∈ χ(T 2) with ker (∂̄Θ + ∂̄∗Θ) non-trivial, which

satisfies

Ker ∂̄Θ
∼= Ker ∂̄∗Θ ∼= C .

Since we are only interested in the behavior of the monopoles on T 2 × [0,∞),

among flowlines of f on B0
T 2 , we only study those that flow to the critical manifold

χ(T 2). The Hessian operator of f at the critical point [a∞, 0, 0] in χ(T 2) is given

by

Q[a∞,0,0](a1, α1, β1) = (0,−i∂̄∗a∞β1, i∂̄a∞α1) , (3.11)

where (a1, α1, β1) is a L2
1-tangent vector of B0

T 2 at [a∞, 0, 0], that is, (a1, α1, β1) sat-

isfies the condition d∗a1 = 0, and we view (0,−i∂̄∗a∞β1, i∂̄a∞α1) as a L2-tangent vec-

tor of B0
T 2 at [a∞, 0, 0]. Then the following lemma is obtained by a direct calculation.

Lemma 3.6. For a∞ 6= Θ in χ(T 2), f is non-degenerate at a∞ in the sense of

Morse–Bott, that is, the Hessian operator Q at [a∞, 0, 0] is non-degenerate in the

normal direction to the critical manifold in the tangent space of B0
T 2 at [a∞, 0, 0].

At the point Θ, the kernel of the Hessian operator is given by

H1(T 2, iR) ⊕ Ker ∂̄Θ ⊕ Ker ∂̄∗Θ ∼= C
3 .

Let UΘ be a small open neighbourhood of Θ in χ(T 2). For any point a∞ ∈
χ(T 2)\UΘ, the spectrum of Qa∞ = Q[a∞,0,0] (as a first order elliptic operator

(3.11)) is discrete, real and without accumulation points. Let µa∞ > 0 be the

smallest absolute value of the non-zero eigenvalues of the Hessian operator Qa∞ .

Now we can establish the decay estimate for the Seiberg–Witten monopoles along
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the cylindrical end of V . The first exponential decay estimate is for a solution to

the Seiberg–Witten equation on [0, R] × T 2 (R > 1) which is near a critical point

in χ(T 2).

Lemma 3.7. Suppose that x(s) = [a(s), ψ(s)] is a flow line of f, corresponding

to an irreducible finite energy monopole on T 2 × [0, R] in temporal gauge. There

is a representative (A(s), ψ(s)) which is gauge equivalent to (a∞, 0) + (b, η), where

[a∞, 0] 6= Θ. There exist positive constants ε, δ, C1 such that, if (b, η) has L2
1 -norm

less than ε on any s-slice, then

‖(b(s), η(s))‖L2
1(T

2) ≤ C1(exp(−δs) + exp(−δ(R− s)))

on any constant s-slice (s ∈ [0, R]).

Proof. Write λ = (b, η), then λ satisfies the following equation:

∂sλ = Qa∞λ+ n(λ),

Here n(λ) is second order in λ with ‖n(λ)‖L2(T 2) ≤ ε‖λ‖L2(T 2) and Qa∞ = Q[a∞,0,0].

Note that the flowline of f on χ(T 2) is static, hence we can establish the analogous

result as [26, Lemma 5.4.1] as follows.

Let λ± denote the projection of λ onto the eigenspaces of Qa∞ with positive and

negative eigenvalues. Let ‖λ±‖ be the functions on [0, R] given by the L2(T 2)-norm

on the s-slice of [0, R] × T 2. Then we have

∂s‖λ+‖ − (µa∞ − ε)‖λ+‖ + ε‖λ−‖ ≥ 0 ;

∂s‖λ−‖ + (µa∞ − ε)‖λ−‖ − ε‖λ+‖ ≤ 0 .

When ε� µa∞ , from the above inequalities together with the comparison principle

(cf. [35, Lemma 9.4]), we obtain that the L2-norm of λ on the s-slice is decaying

exponentially with decay rate δ ≤ µa∞/2. Then the claim of the lemma follows

from the standard bootstrapping argument.

Proposition 3.8. Suppose that γ(s) = [a(s), ψ(s)] is an irreducible flow line of f,

corresponding to an irreducible finite energy monopole on T 2 × [0,∞), with asymp-

totic limit [a∞, 0, 0] where [a∞] 6= Θ ∈ χ(T 2). Then, there exist gauge representa-

tives (a(s), ψ(s)) for γ(s) and a∞ for [a∞, 0, 0] such that (a(s) − a∞, ψ(s)) decays

exponentially along with its first derivative as s→ ∞.

Proof. From Lemma 3.4, we know that the variation of f is finite, that is,
∫ ∞

1

‖∇f(γ(s))‖2
L2(T 2)ds

is finite. Then we have the following estimate, whose proof is analogous to the proof

of [27, Lemma 6.14]. We sketch the proof here.
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Claim. There exist constants E0 and C such that for any R > 1, and for γ(s) =

(A(s), ψ(s)) any solution to the Seiberg–Witten equation in temporal gauge on

[0, R+ 1] × T 2 satisfies

∫ R+1

0

‖∇f(γ(s))‖2
L2(T 2)ds ≤ E0 .

Then we have the estimate
∫ R

1

‖∇f(γ(s))‖2
L2

1(T
2)ds ≤ C

∫ R+1

0

‖∇f(γ(s))‖2
L2(T 2)ds .

Proof of Claim. Let γ(s) = ((A(s), ψ(s)) be a solution to the Seiberg–Witten

equation on N = [s1, s2] × T 2 in temporal gauge, then from Lemma 3.3, we have
∫ s2

s1

‖∇f(γ(s))‖2
L2(T 2)ds =

∫

[s1,s2]×T 2

(|∇Aψ|2 + |FA|2)d vol .

Denote by

E =

∫ s2

s1

‖∇f(γ(s)‖2
L2(T 2)ds

=

∫

N

(|∂sA|2 + |∂sψ|2)d vol .

Then we have the following estimates

‖FA‖L2(N) ≤
√
E; ‖ψ‖2

L4(N) = 2‖FA‖L2(N) ≤ 2
√
E .

We proceed as in [27, Lemma 6.14] and differentiate the Seiberg–Witten equa-

tions to get

d∂sA = ∗σ(∂sψ, ψ)

6∂A∂sψ + (∂sA) · ψ = 0 .

The gauge fixing condition implies that

d∗(∂sA) + i Im〈∂sψ, ψ〉 = 0 .

Introduce a cutoff function ρ identically equal to 1 on the middle third piece of

N and vanishes near the boundary such that |dρ| is at most M
s2−s1 where M is a

universal constant. Set (V, λ) = (ρ∂sA, ρ∂sψ). Then we can estimate the quantity

SW (V, λ) = (dV − ∗σ(λ, ψ), 6∂A(λ) + V · ψ, d∗V + i Im〈λ, ψ〉)

by

‖SW (V, λ)‖2
L2(N) ≤

C

(s2 − s1)2
(‖∂sA‖2

L2(N) + ‖∂sψ‖2
L2(N)) .

Here C is a universal constant depending only on ρ.
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On the other hand, we can estimate

‖SW (V, λ)‖2
L2(N) ≥

1

2
(‖dV ‖2

L2(N) + ‖6∂A(λ)‖2
L2(N) + ‖d∗V ‖2

L2(N))

− 2(‖σ(λ, ψ)‖2
L2(N) + ‖V · ψ‖2

L2(N)‖Im〈λ, ψ〉‖2
L2(N)) .

Assume that l = s2 − s1 ≤ 1, then the Sobolev multiplication theorem and Sobolev

embedding theorem imply that there are constants C0 and C1 such that

‖σ(λ, ψ)‖2
L2(N) ≤ C0‖λ‖2

L4(N)‖ψ‖2
L4(N)

≤ C1

√
E‖λ‖2

L2
1(N) .

Similarly, by choosing C1 appropriately, we have

‖V · ψ‖2
L2(N) ≤ C1

√
E‖V ‖2

L2
1(N)

;

‖Im〈λ, ψ〉‖2
L2(N) ≤ C1

√
E‖λ‖2

L2
1(N)

.

These inequalities imply that

‖dV ‖2
L2(N) + ‖6∂A(λ)‖2

L2(N) + ‖d∗V ‖2
L2(N)

≤ 8C1

√
E(‖V ‖2

L2
1(N) + ‖λ‖2

L2
1(N)) + 2‖SW (V, λ)‖2

L2(N)

Standard estimate for the elliptic operator (d + d∗, 6∂A) can be employed to show

that there is a constant C2 such that

‖V ‖2
L2

1(N) + ‖λ‖2
L2

1(N) ≤ C2(‖dV ‖2
L2(N) + ‖6∂A(λ)‖2

L2(N) + ‖d∗V ‖2
L2(N))

+C2(‖V ‖2
L2(N) + ‖λ‖2

L2(N)) .

The Cauchy–Schwartz inequality and the Sobolev embedding theorem imply that

there exists a constant C3 such that

(‖V ‖2
L2(N) + ‖λ‖2

L2(N)) ≤ C3

√
s2 − s1(‖V ‖2

L2
1(N) + ‖λ‖2

L2
1(N)) .

Put all these inequalities together, we have

‖V ‖2
L2

1(N) + ‖λ‖2
L2

1(N) ≤
2CC2

(s2 − s1)2
(‖∂sA‖2

L2(N) + ∂sψ‖2
L2(N))

+ 8C1C2

√
E(‖V ‖2

L2
1(N) + ‖λ‖2

L2
1(N))

+C2C3

√
s2 − s1(‖V ‖2

L2
1(N) + ‖λ‖2

L2
1(N))

Then there is a constant E0 and a constant l0 satisfying

1 − 8C1C2

√

E0 − C2C3

√

l0 ≥ 1

2

such that if E ≤ E0 and s2 − s1 = l0, there is a constant C4 with the following

estimate

‖V ‖2
L2

1(N) + ‖λ‖2
L2

1(N) ≤
C4

l20
(‖∂sA‖2

L2(N) + ‖∂sψ‖2
L2(N)) .
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Since on the middle third piece N ′, V |N ′ = ∂sA|N ′ and λ|N ′ = ∂sψ|N ′ , this implies

that for any tube N = [s1, s2]× T 2 of length l0 and any solution (A(s), ψ(s)) on N

of energy at most E0, we have

‖∂sA‖2
L2

1(N
′) + ‖∂sψ‖2

L2
1(N

′) ≤
C4

l20
(‖∂sA‖2

L2(N) + ‖∂sψ‖2
L2(N)) .

Then the estimate in the claim follows by adding up a sequence of middle third

pieces of tubes (length l0) with the constant C = 3C4/l
2
0 and E0 as above.

With the claim and Lemma 3.7, we can prove Proposition 3.8 using the method

of the proof of [27, Proposition 6.16] and the fact that f is a Morse–Bott function

on B0
T 2 and satisfies the Palais–Smale condition on paths coming from monopoles

on [0,∞) × T 2.

Since χ(T 2)\UΘ is compact, we can set δ = 1
2 min{µa∞ |a∞ ∈ χ(T 2)\UΘ}. Then,

when restricted to the cylindrical end, any Seiberg–Witten monopole on V with

finite energy and with asymptotic limit in χ(T 2)\UΘ has an exponential decay at

a rate at least δ.

In order to prove that the boundary value map (3.6) is well-defined and contin-

uous, we need to resort to the “finite energy implies finite length” principle of L.

Simon [34] (see also [26, Corollary 4.2.5]).

Remark 3.9. Given that f is a real analytic function, the work of L. Simon as

explained in [26] can be employed to prove a more general  Lojasiewicz inequality

for f at any critical point in χ(T 2). Let γ(s) be a flow line of f , corresponding to an

irreducible finite energy solution of the Seiberg–Witten equations on T 2 × [0,∞).

Then, there exist constants 0 < b ≤ 1 and 0 < c ≤ 1
2 such that, when s > R � 1,

we have

inf
a∞∈χ(T 2)

‖γ(s) − a∞‖L2 ≤ (‖∇f(x(s))‖L2)b ,

|f(γ(s))|1−c ≤ ‖∇f(γ(s))‖L2 . (3.12)

At the smooth critical points in χ(T 2), the  Lojasiewicz inequalities have the best

exponents b = 1 and c = 1
2 . The direct consequence of these  Lojasiewicz inequalities

is the following finite length result for flow lines:

∫ s2

s1

∥

∥

∥

∥

∂γ(s)

∂s

∥

∥

∥

∥

L2

ds ≤ 4

c
|f(γ(s1)) − f(γ(s2))|c .

Now we have a setting analogous to the key results in [26, pp. 60–70] in our

situation. The arguments in [26], adapt to the present context, hence imply that

the boundary value map (3.6) is well-defined and continuous as a map

∂̄∞ : M∗
V → χ(T 2) .
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In the next subsection, we will study the local properties of the map ∂̄∞ around

the singular point Θ and the structure of M∗
V . We remind the reader that we have

established the exponential decay property of the monopoles in M∗
V with asymptotic

limits away from Θ.

3.2. Local structure of moduli space of irreducible monopoles

Let UΘ be a small neighbourhood of Θ in χ(T 2). In this section, we will study the

local structure of the moduli spaces M∗
V \(∂̄∞)−1(UΘ) and (∂̄∞)−1(UΘ). Here ∂̄∞

is the composition of ∂∞ and π in (3.6).

For the structure of the moduli space M∗
V \(∂̄∞)−1(UΘ), the exponential decay

property implies that we can introduce weighted Sobolev norms in order to study

the Fredholm theory of the linearization of the equations. With δ as in the previous

subsection, we define the space

AV,T 2 =

{

(A,ψ)

∣

∣

∣

∣

∣

(1) A is an extended L2
2,δ-connection on det(W )

(2) ψ is an L2
2,δ-spinor on W

}

, (3.13)

where extended L2
2,δ-connection means that there exists an imaginary-valued har-

monic 1-form A∞ in H1(T 2, iR) such that A−A∞ is an L2
2,δ-connection on det(W ),

where L2
2,δ denotes the Sobolev norm with weight as in [20]. To be precise, we choose

the weight function eδ(t) = eδ̃(t)/2, where δ̃(t) is a smooth function with bounded

derivatives, such that δ̃(t) ≡ −δt for t ≤ −1 and δ̃(t) ≡ δt for t ≥ 1, and for some

fixed positive number δ defined as

δ =
1

2
min{µa∞ | a∞ ∈ χ(T 2)\UΘ}.

The L2
k,δ norm is defined as ‖f‖2,k,δ = ‖eδf‖2,k. The weight eδ imposes an exponen-

tial decay as an asymptotic condition along the cylinder. We define the gauge group

GV,T 2 to be the L2
3,loc-gauge transformations such that there exists g∞ ∈ U(1) with

g−1
∞ g − 1 an L2

3,δ-gauge transformation.

Assume that x = (A,ψ) ∈ AV,T 2 is an irreducible (ψ 6= 0) perturbed Seiberg–

Witten monopole on V with finite energy, where the perturbation is in the form of

Sec. 2 with compact support. Then from the results of the previous subsection, we

can assume further that A∞ represents a flat connection a∞ in χ(T 2)\UΘ. Then

the irreducible part of the fiber (∂̄∞)−1(a∞) has a deformation complex

0 → Λ0
L2

3,δ
(V, iR)

G→ Λ1
L2

2,δ
(V, iR) ⊕ L2

2,δ(W )
L→ Λ1

L2
1,δ

(V, iR) ⊕ L2
1,δ(W ) (3.14)

where G is the map which gives the infinitesimal gauge transformations:

G|(A,ψ)(f) = (−df, fψ)

and L is the linearization

LA,ψ(α, φ) =







∗dα− σ(ψ, φ)

6∂Aφ+
1

2
α · ψ ,

(3.15)
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of the perturbed Seiberg–Witten equations (3.2) on V . We can assemble the defor-

mation complex (3.15) into the following operator:

(G∗
δ , L): Λ1

L2
2,δ

(V, iR) ⊕ L2
2,δ(W ) → Λ0

L2
1,δ

(V, iR) ⊕ Λ1
L2

1,δ
(V, iR) ⊕ L2

1,δ(W ) (3.16)

where (G∗
δ , L)(α, φ) is given by
(

e−1
δ d∗(eδα) + i Im 〈ψ, φ〉, ∗dα − σ(ψ, φ), 6∂Aφ+

1

2
α · ψ

)

.

With the choice of eδ as in the previous section, (G∗
δ , L) is a Fredholm operator of

index 0.

The deformation complex for the moduli space MV \(∂̄∞)−1(UΘ) is given by

0 → TidGV,T 2
G→ TxAV,T 2

L→ Λ1
L2

1,δ
(V, iR) ⊕ L2

1,δ(W ) . (3.17)

These two complexes are related by the fact that (3.14) is a sub-complex of

(3.17) with the quotient complex

0 → Lie (Stab (a∞))
0→ H1(T 2, iR) → 0 .

Therefore, the virtual dimension of MV \(∂̄∞)−1(UΘ) at x = (A,ψ) is

dim(∂̄∞)−1(a∞) + dimH1(T 2, iR) − dim Stab (a∞) = 1 ,

where dim(∂̄∞)−1(a∞) is the virtual dimension of the fiber.

Theorem 3.10. Fix an open set U in V − (T 2 × [0,∞)). There exists a Baire set

P0 of perturbations µ on V with compact supports in U, such that the perturbed

Seiberg–Witten moduli space M∗
V \(∂̄∞)−1(UΘ) is a smooth, oriented manifold of

dimension 1. Moreover,

∂̄∞ : M∗
V \(∂̄∞)−1(UΘ) → χ(T 2)

is an immersion and transversal to any given immersed curves in χ(T 2).

Proof. The transversality argument is the same as in the closed case, see the

proof of Proposition 2.2, namely, we look at the deformation complex (3.17) for the

parametrized moduli space MV,Z(U,iR) to get the transversality for the parametrized

moduli space MV,Z(U,iR). We then apply the infinite dimensional version of Morse–

Smale theory to the projection MV,Z(U,iR) → Z(U, iR), and obtain that, for µ in

a Baire space P0 ⊂ Z(U, iR), the moduli space M∗
V,µ\(∂̄∞)−1(UΘ) is a smooth

manifold of dimension given by virtual dimension calculated as above.

We first show that for a generic perturbation µ (a co-closed imaginary valued

1-form with compact support in U), the map (G∗
δ , L) as given by (3.16) is surjective.

At an irreducible monopole [A,ψ] in (∂̄∞)−1(a∞) for a∞ ∈ χ(T 2)\UΘ, we will show

that

L: KerG∗
δ × Z(U, iR) → KerG∗

δ
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is surjective. Suppose that (α1, φ1) is L2
δ-orthogonal to the image of the above map,

then (α, φ) = e2δ(t)(α1, φ1) is L2-orthogonal to the image of the above map, hence,

(α, φ) is in L2
1,−δ and satisfies (2.4) as in the proof of Proposition 2.2. Hence, there

is a real valued function f on V (with infinite cylindrical end) such that φ = ifψ,

α = −2idf and

2d∗df + |ψ|2f = 0 .

df ∈ L2
1,−δ implies that on T 2 × [0,∞), ∂f

∂t is in L2
−δ. Then by Cauchy–Schwartz

inequality

|f(t) − f(0)|2 ≤
∫ t

0

e2δsds

∫ t

0

∣

∣

∣

∣

e−δs
∂f

∂t
(s)

∣

∣

∣

∣

2

ds

this implies that for T � 0,
∫

∂V (T )

|f |2 ≤ C0e
2Tδ

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

2

L2
−δ

≤ Ce2Tδ , (3.18)

for some constants C0, C. For [A,ψ] ∈ (∂̄∞)−1(a∞), whose asymptotic behaviour

has been studied in the previous subsection, we see that there exist gauge repre-

sentatives (A,ψ) and a∞ of [A,ψ] and [a∞], so that (A,ψ) decays to (a∞, 0) expo-

nentially at the rate at least
µa∞

2 , where µa∞ is the smallest absolute value of the

non-zero eigenvalue ofQa∞ (cf. (3.11)). On T 2×[0,∞), write α = π∗(a∞)+α1+α0dt

with αi ∈ Ωi(T 2, iR), from the analysis in Appendix of [28], we get

‖α0‖C0(T 2×[T,T+1]) ≤ C1e
−T µa∞2 ,

from some constant C1. As −2i∂f∂t = α0, we obtain
∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

∂V (T )

∣

∣

∣

∣

≤ C2e
−T µa∞2 , (3.19)

for some constant C2. From (3.18) and (3.19), and since δ ≤ µa∞/2, we have
∣

∣

∣

∣

∫

V

d∗d(f2)d vol

∣

∣

∣

∣

≤ lim
T→∞

∫

∂V (T )

2|f | ·
∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

d vol

≤ lim
T→∞

2

(

∫

∂V (T )

|f |2d vol

)
1
2
(

∫

∂V (T )

∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

2

d vol

)
1
2

≤ lim
T→∞

2CC1e
T (δ−µa∞/2) = 0 .

Now multiplying 2d∗df + |ψ|2f = 0 by f and integrating it by parts, we get f = 0,

hence (α1, φ1) = 0.

The proof that ∂∞ is an immersion and transversal to any given immersed curves

follows from the Sard–Smale theorem.

An orientation of MV is obtained from a trivialization of the determinant line

bundle of the assembled operator of the deformation complex (3.17). The trivial-

ization of the determinant line bundle of the complex of (3.14) is obtained from the
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orientation of H0
δ (V )⊕H1

δ (V ), the cohomology groups of δ-decaying forms. In fact,

we can deform the operator H(A,ψ) with a homotopy εψ, ε ∈ [0, 1]. The asymptotic

operator Q[a∞,0,0] is preserved in the deformation. Thus, if the weight δ is chosen in

such a way that δ/2 is not in the spectrum of Q[a∞,0,0], then ([20, 26, Lemma 8.3.1])

we can ensure that the operator H(A,εψ) is Fredholm, for all ε ∈ [0, 1]. Since the

Dirac operator is complex linear and it preserves the orientation induced by the

complex structure on the spinor bundle, a trivialization of the determinant line

bundle at ε = 0 is obtained by the orientation of H0
δ (V ) ⊕ H1

δ (V ). This in turn

determines a trivialization of the determinant line for ε = 1, hence an orientation

of MV .

Similar results were obtained by [9, 18].

Now we need to understand the local structure of M∗
V around (∂̄∞)−1(Θ). The

center manifold technique developed in [26] is a useful model to study the structure

of (∂̄∞)−1(UΘ).

We briefly recall a few facts about center manifolds [26]. In general, suppose we

are given a system of the form

ẋ = Qx+N(x) , (3.20)

with Q a linear operator acting on a Hilbert space X . Assume we also have the

decomposition X = X+
h ⊕Xc ⊕X−

h determined by the positive, negative, and zero

spectrum of the operator Q. Let Xh = X+
h ⊕ X−

h , and consider the projections

πc : X → Xc and πh : X → Xh. We denote by Q±
h and Qc the induced operators

on X±
h and Xc. By construction Qc is trivial. The evolution semigroups e−sQ

+
h and

esQ
−

h , for s ≥ R0 > 0, satisfy

sup
s≥R0

max{eδs‖e−sQ+
h ‖, e−δs‖esQ−

h ‖} ≤ C , (3.21)

for some constant C > 0. This follows from the bound

1

2
inf{|λ| | λ ∈ spec(Q), λ 6= 0} = δ > 0 .

The center manifold theorem (in [26]) states that there exists a map ϕ :

Xc → Xh that vanishes to second order at the origin, and such that an element

x̃(s) is a solution of (3.20) if and only if the projection πcx̃(s) is a solution of the

equation

ẋc = πcN(xc + ϕ(xc)) . (3.22)

The center manifold H is defined as H = {xc + ϕ(xc)|xc ∈ Xc}.

We now describe explicitly the center manifold and the stable set for the un-

perturbed equations (3.9). In this case, we are considering the operator QΘ, the

Hessian of the functional f at the degenerate critical point Θ. The center manifold

HΘ for the functional f at the degenerate critical point Θ is a C2-manifold which
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is invariant under the gradient flow of f , contains a small neighbourhood UΘ of Θ,

and has tangent space at Θ given by

H1
Θ = H1(T 2, iR) ⊕ ker ∂̄Θ ⊕ ker ∂̄∗Θ ∼= C

3 .

Lemma 3.11. At every point x = (a, α, β) ∈ H1
Θ, the gradient vector ∇f(a, α, β)

is tangent to H1
Θ, hence H1

Θ is a center manifold of f around Θ.

Proof. Using the natural complex structure on T 2, we can identify H1
Θ as the

space of constant sections of

Λ1(T 2, iR) ⊕ Λ0,0(T 2,C) ⊕ Λ0,1(T 2,C) .

For (a, α, β) ∈ H1
Θ, we have ∇f(a, α, β) = (−iᾱβ,−i∂̄∗aβ, i∂̄aα), which is a constant

section. Take (z1, z2, z3) as the coordinates on H1
Θ
∼= C3, we have

∇f(z1, z2, z3) =
(

−z̄2z3,−
z̄1z3

2
,−z1z2

2

)

.

The downward gradient flow of f on H1
Θ is given by































∂z1
∂s

= z̄2z3 ,

∂z2
∂s

=
z̄1z3

2
,

∂z3
∂s

=
z1z2

2
.

(3.23)

Note that this gradient flow is invariant under the U(1)-action (the constant gauge

transformation):

(z1, z2, z3)
eiα∈U(1)→ (z1, e

iαz2, e
iαz3) .

Lemma 3.12. The quantities |z2|2 − |z3|2, |z1|2 − |z2|2 − |z3|2 and Im(z1z2z̄3) are

preserved under the gradient flow on HΘ.

Proof. This is a direct calculation using the gradient flow equations (3.23).

The stable set of (a∞, 0) ∈ HΘ is defined to be

Sa∞={x ∈ HΘ such that the flowline of (3.23) starting at x converges to (a∞, 0)}.
The stable set S of f in HΘ is the union of these Sa∞ , for (a∞, 0) ∈ HΘ.

Lemma 3.13. Let (a, φ) = (z1, z2, z3) ∈ HΘ. Then (a, φ) ∈ S if and only if we

have














|z2|2 − |z3|2 = 0 ,

|z1|2 − |z2|2 − |z3|2 = |a∞|2 ≥ 0 ,

Im(z1z2z̄3) = 0 .

(3.24)
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In particular, (a, φ) = (z1, z2, z3) ∈ SΘ (the stable set of the point Θ) if and only if














|z2|2 − |z3|2 = 0 ,

|z1|2 − |z2|2 − |z3|2 = 0 ,

Im(z1z2z̄3) = 0 .

(3.25)

These equations describe a cone over a torus T 2 with vertex at Θ. Furthermore,

S\{(Θ, 0)} is a 4-dimensional manifold with boundary SΘ\{(Θ, 0)}.

Proof. It follows from Lemma 3.12 that (a, φ) ∈ S converges to some (a∞, 0) as

t → ∞. The equations (3.25) define a torus over Θ and, as |a∞|2 → 0, points

defined by (3.24) approach points in SΘ.

As in [26], the restriction of the gradient flow of f to the center manifold provides

a model for the structure of the space of flows with asymptotic values in a small

neighbourhood UΘ of Θ, in the following sense. Given a point x in HΘ, the stable

set Sx at x is defined as

Sx = {y ∈ HΘ such that the flowline starting at y converges to x} .
The stable set S = ∪x∈HΘSx defines a refinement of the boundary value map, as

described in the following commutative diagram:

(3.26)

Here Υ is a map defined by taking a flow line on the stable set S that is exponentially

close to a monopole in (∂̄∞)−1(UΘ). The map Γ is the limit value map under the

flow line of f on S.

The results of [26] show that if the projection πcx̃(s) of a flow line x̃(s) satisfies

an estimate

‖∂sπcx̃(s) −∇f(πcx̃(s))‖ < Ce−δs , (3.27)

for all s ≥ R0, then there exists a unique flow line xc(s) in the center manifold

HΘ that is exponentially close to πcx̃(s) for large s ≥ R0, with the same exponent

δ determined by the smallest absolute value of the non-zero eigenvalues of QΘ.

Moreover, for a flow line x̃(s) satisfying

‖πcx̃(s) − a∞‖L2
2(T

2×{s}) + ‖πhx̃(s)‖L2
2(T

2×{s}) ≤ C

for all s ≥ R0, the projection πhx̃(s) is exponentially small for large s, with exponent

δ. The condition (3.27) follows from our explicit construction of the center manifold.

This shows that every flow line in (∂̄∞)−1(UΘ) is exponentially close to a flow line
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in the center manifold. Thus, the refinement Υ of the boundary map is well defined

and continuous.

The results of the previous discussion and the arguments in [26, pp. 82–100]

imply the following structure theorem for our moduli space MV near (∂̄∞)−1(Θ).

Theorem 3.14. Fix a metric g and perturbation P ∈ P as in Theorem 3.10. Let

K ⊂ M∗
V,P be defined as K = (∂̄∞)−1(Θ), and let K′ denote the subset Υ−1(Θ, 0, 0),

with Υ defined as in (3.26). Then, generically, the following holds.

(1) K′ is empty and K consists of only finitely many points.

(2) There is a neighbourhood UΘ of Θ in χ(T 2), such that the following holds.

The moduli space M∗
V ∩ (∂̄∞)−1(UΘ) is a smooth manifold of dimension 1, with

boundary K = (∂̄∞)−1(Θ).

Proof. By the center manifold theorem in [26], the restriction of any finite energy

monopole

[A,ψ] ∈ MV,µ(UΘ) = (∂̄∞)−1(UΘ)

to the tube T 2 × [T0,∞) (for a fixed large T0) is exponentially close to a flow line

in the center manifold starting from the point Υ([A,ψ]) given by the refinement

boundary map (3.26). The exponential weight is at least a half of the smallest

absolute value of the non-zero eigenvalues of (∂̄Θ + ∂̄∗Θ). Theorem 3.10 shows that,

for a generic choice of the perturbation, the moduli space M∗
V (UΘ) is a smooth

manifold of dimension 1, away from Υ−1(SΘ). From the analysis of the center

manifold theorem, since S\{(Θ, 0)} is a 4-manifold with boundary SΘ\{(Θ, 0)}, we

know that generically K′, if non-empty, is a smooth manifold of dimension given by

the virtual dimension: dim M∗
V − 4 = −3, so K′ must be empty and M∗

V (UΘ) is a

smooth oriented 1-dimensional manifold with boundary K = (∂̄∞)−1(Θ).

One useful observation that we can derive directly from the analysis of the center

manifold is the following estimate of the rate of decay of solutions approaching the

singular point Θ.

Remark 3.15. Let x(s) = (a(s), α(s), β(s)) be an irreducible finite energy solution

of the Seiberg–Witten equations on V , with asymptotic value Θ, that is, [x] ∈
∂̄−1
∞ (Θ). Then the rate of decay in the s→ ∞ direction is polynomial with

‖(a(s) − Θ, α(s), β(s))‖L2(T 2×{s}) ∼
1

s
.

3.3. Proof of Theorem 1.2

From the discussions in the previous subsection, in order to complete our analysis

of the structure of the moduli space MV , we only need to prove the following result.
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Lemma 3.16. M∗
V is compact except for finitely many open ends limiting to χ(V ),

the reducible moduli space of V, after a generic perturbation ∂∞(M∗
V ) can be made

transversal at any interior points to any given finite set of curves in χ(T 2, V ).

Proof. We first analyze the set of reducible solutions of the monopole equations

on V . The reducible moduli space Mred
V can be identified with the space χ(V ) of

deformed flat connections over V , modulo gauge transformations, which is diffeo-

morphic to a circle. The asymptotic value map ∂∞ is simply the restriction map,

which is an embedding

∂∞: Mred
V = χ(V ) ↪→ χ(T 2, V ) .

Let χ(V ) ↪→ χ(T 2, V ) be the circle of reducibles on V modulo gauge equiva-

lence, embedded via the restriction map inside the cylinder χ(T 2, V ). Fix a smooth

parameterization a(t) of χ(V ), consider the family of Dirac operators 6∂a(t) on V ,

twisted with the connection a(t). We can perturb χ(V ) such that χ(V ) ↪→ χ(T 2, V )

is away from a small neighbourhood of the singular point Θ. Then we know that

the Dirac operator ∂̄a(t) + ∂̄∗a(t) on T 2 has trivial kernel. The 3-dimensional Dirac

operator 6∂a(t) (a(t) ∈ χ(V )) on V may acquire a non-trivial kernel. However, this

only happens at finitely many points on χ(V ), for a generic perturbation in P0

(cf. [23, Sec. 7]). We show that, if these occur, then the irreducible set M∗
V has an

open end limiting to such points. If the irreducible set M∗
V has an open end limiting

to the reducible set χ(V ), then the 3-dimensional Dirac operator 6∂a(t) has a non-

trivial kernel: this can be seen by studying the linearization of the spinor part of the

Seiberg–Witten equations. On the other hand, suppose that there is a point a(t0)

on χ(V ), where the operator 6∂a(t0) acquires a non-trivial kernel. We can proceed as

in [23, Sec. 7.3] to analyse the local model of the moduli space MV = M∗
V ∪ χ(V )

in a neighbourhood of [a(t0), 0], which shows that there exists an open end limiting

to a(t0).

Thus, the rest of the proof of compactness for MV = M∗
V ∪χ(V ) is now reduced

to the (by now standard) proof of compactness for Seiberg–Witten moduli spaces

[16, 19, 25]. Transversality at the interior of the ∂̄∞(M∗
V ) to any given finite set

of curves in χ(T 2, V ) can also be achieved by a generic choice of perturbation

on V .

Thus, we have completed the proof of the structure theorem for MV (Theo-

rem 1.2).

4. Gluing of 3-dimensional Monopoles

Now we begin to discuss the gluing theory. Suppose that V (r) = V − (T 2 × [r,∞))

lies in a closed 3-manifold Z such that T 2 splits Z into two components (for example,

V (r) ∪T 2 ν(K)). We identify the solutions of the Seiberg–Witten equations on V

differing only by those gauge transformations on V which can be extended to Z,
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and denote the resulting moduli space by M∗
V,Z . Then the boundary value map in

Theorem 1.2 has a refinement:

∂Z∞ : M∗
V,Z −→ χ(T 2, Z) ,

where the notation χ(T 2, Z) indicates the moduli space of flat connections on a

trivial line bundle over T 2 modulo the gauge transformations on T 2, which can be

extended to Z. This gives a refined boundary value map and the moduli spaces

M∗
V,Z enjoy all the properties described in Theorem 1.2 for M∗

V .

Assume that Z = V (r) ∪T 2 ν(K) where ν(K) is a tubular neighbourhood of

a knot K in Z. We denote by χ(ν(K), Z) the moduli space of flat connections on

ν(K) modulo the gauge transformations on ν(K), which can be extended to Z.

There is a natural map χ(ν(K), Z) ↪→ χ(T 2, Z), which realizes χ(ν(K), Z) as a line

in the affine space χ(T 2, Z).

Thus we can define the following fiber product:

M∗
V,Z ×χ(T 2,Z) χ(ν(K), Z) . (4.1)

This is the main object in the gluing Theorem 1.3. We shall present the argument

for the case of the homology sphere Y . The argument is analogous in the case of Y1

and, up to minor modifications that we shall point out, in the case of Y0 as well.

Consider a tubular neighborhood ν(K) ⊂ Z endowed with a metric with suf-

ficiently large positive curvature inside ν(K) and flat near the boundary. When

stretching the neck in Z(r), using the standard pointwise estimate on the spinor

for Seiberg–Witten monopoles we can ensure that, on ν(K) endowed with an in-

finite cylindrical end, the only finite energy solutions of the unperturbed Seiberg–

Witten equations are reducibles (with vanishing spinor part). Modulo gauge trans-

formations, these correspond to the moduli space of flat connections on ν(K). In

Lemma 4.10, we will show that, if we choose such a metric for ν(K) ⊂ Y , it is still

possible to have a metric with the same properties for ν(K) ⊂ Y1 and ν(K) ⊂ Y0.

Recall that we have a splitting of Y along the torus T 2 as Y = V ∪T 2 ν(K),

with ∂V = ∂ν(K) = T 2. Assume that the metric g on Y is the product metric on a

small neighbourhood of T 2, and can be extended to a metric on ν(K) with positive

scalar curvature. On both V and ν(K) we consider as underlying Spin structure the

one induced from the restriction of the trivial Spin structure on Y . This induces a

non-trivial Spin structure on T 2. The corresponding Spinc structures s
′, s

′′ on V

and ν(K) have trivial determinant. In gluing the Spinc structures s
′ and s

′′ on V

and ν(K) we can only obtain the unique trivial Spinc structure on Y since Y is a

homology sphere. The same holds for Y1. In the case of Y0, the gluing of the trivial

structures s
′ and s

′′ on V and ν(K) by gauge transformations along the common

boundary T 2 provides different Spinc structures on Y0, classified by H2(Y0,Z).

Let Y (r) = V ∪T 2 ([−r, r] × T 2) ∪T 2 ν(K). We can also consider the manifolds

V and ν(K) with infinite cylindrical ends as

V ∪T 2 ([0,∞) × T 2), ((−∞, 0] × T 2) ∪T 2 ν(K) .
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We continue to use the same notation V and ν(K) for the manifolds with infinite

cylindrical ends, as we did in the previous sections.

The proof of the gluing Theorem 1.3 consists of several steps. First, we show

that, upon stretching the neck [−r, r]×T 2 to infinity, the Seiberg–Witten monopoles

(Ar, ψr) on Y (r) approach a pair of finite energy solutions (A′, ψ′), and (A′′, 0) on

the two manifolds V and ν(K) with infinite cylindrical ends. Then we construct a

gluing map, under the hypothesis that the gluing takes place away from Θ in the

character variety χ(T 2). At the end of this section, we justify the assumption that

gluing at Θ can be avoided.

4.1. Convergence of monopoles on a 3-manifold with a long neck

We need to introduce some ad hoc assumptions on the class P of perturbations

for the Seiberg–Witten monopoles on Y (r), so that it behaves nicely under the

splitting r → ∞. We consider perturbations of the monopole equations as in (2.1),

induced by the perturbations of the Chern–Simons–Dirac functional. Notice that,

if we choose a perturbation with compact support on the manifold V with infinite

cylindrical end, this perturbation induces a perturbation on Y (r), for sufficiently

large r � r0, which is supported inside the knot complement in Y (r) (which we

still denote by V ).

The convergence result we prove in this section depends on a uniform pointwise

bound on the solutions (Ar , ψr) in MY (r) which is independent of r. The argument

for the manifold Y1(r) is the same. The case of the manifold Y0(r) is also analogous,

whenever Y0 is endowed with a Spinc structure that restricts to the trivial Spinc

structures on V and ν(K).

In order to derive the estimates we need, we consider first, for Y a 3-manifold

(either without boundary, or with boundary T 2) a functional on the configuration

space of U(1)-connections and spinors of the form

EY,µ(A,ψ) =

∫

Y

(

|∇Aψ|2 +
κ

4
|ψ|2 +

1

2
|FA|2 +

1

2
|σ(ψ, ψ) + µ|2

)

dv . (4.2)

Here we consider compactly supported perturbations µ of the form described in

Sec. 2.

Lemma 4.1. If (A,ψ) is a solution of the perturbed SW equations

(∗FA − σ(ψ, ψ) − µ, 6∂Aψ) = (0, 0) ,

on a compact 3-manifold Y without boundary, then we obtain

EY,µ(A,ψ) =

∫

Y

FA ∧ µ . (4.3)

If we consider an open submanifold Z ⊂ Y with boundary ∂Z = T 2, such that the

perturbation µ is supported away from ∂Z, then for the functional EZ,µ we have

EZ,p(A,ψ) =

∫

Z

FA ∧ µ−
∫

∂Z

〈α, i∂̄∗aβ〉 , (4.4)
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where we write the connection and spinor as (a, α, β) on T 2 = ∂Z. In particular for

a cylinder region Z = T 2 × [s0, s1], and perturbation term µ supported away from

Z, we have

f(a(s1), α(s1), β(s1)) − f(a(s0), α(s0), β(s0)) = EZ,µ(A,ψ) , (4.5)

where we write (A,ψ) in the form (a(s), α(s), β(s)) on the cylinder Z.

Proof. First notice that we have
∫

Y

|6∂Aψ|2 dv =

∫

Y

|∇Aψ|2 +
κ

4
|ψ|2 − 1

2
〈∗FA · ψ, ψ〉 .

Here the term 1
2 〈∗FA · ψ, ψ〉 can be written as −FA ∧ σ(ψ, ψ). We also have

∫

Y

| ∗ FA − σ(ψ, ψ) − µ|2 dv

=

∫

Y

|FA|2 + |σ(ψ, ψ) + µ|2 dv + 2

∫

Y

FA ∧ (σ(ψ, ψ) + µ) .

Thus, we can rewrite the functional (4.2) in the form

Eµ(A,ψ) =

∫

Y

|6∂Aψ|2 +
1

2
| ∗ FA − σ(ψ, ψ) − µ|2 dv +

∫

Y

FA ∧ µ .

The identity (4.3) for a compact manifold then follows. In the case of (4.4) for Z

with ∂Z = T 2, see the proof of Lemma 3.3, the boundary term is the difference of
∫

Z

(

|6∂Aψ|2 − 〈6∂∗
A 6∂Aψ, ψ〉

)

dv

and
∫

Z

(

|∇Aψ|2 − 〈∇∗
A∇Aψ, ψ〉

)

dv .

The last case (4.5) for a cylinder follows, since by the assumption on the pertur-

bation term
∫

FA ∧ µ is trivial, and the boundary terms give the variation of the

functional f along the cylinder.

Notice that the above result allows us to obtain estimates for the L2 norms of

ψ, ∇Aψ, and FA.

Lemma 4.2. Suppose we are given solutions (Ar, ψr) of the perturbed Seiberg–

Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation µ sup-

ported in the knot complement V ⊂ Y (r) for all r ≥ r0. Then we have pointwise

bounds

|ψr(y)| ≤ κ(Y ), |FAr (y)| ≤ C(κ(Y ))2 ,

for y ∈ Y (r), where C, κ(Y ) are constants independent on r.
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Proof. Consider κ(Y (r)) = maxy∈Y (r){−κ(y) + C, 0}, where κ(y) is the scalar

curvature and C is a constant depending only on the perturbation µ. Notice that,

by our assumptions on the choice of the perturbation, we can assume that C is

independent of r. The minimum of the scalar curvature also remains constant upon

stretching the cylinder T 2 × [−r, r], so that we have κ(Y (r)) = κ(Y ) for all r > 0.

The Weitzenböck formula provides a uniform bound on the spinors in terms

of the scalar curvature, namely at a point y where |ψr(y)| achieves a maximum

we have either ψr(y) = 0 or |ψr(y)|2 ≤ −κ(y) + C. The pointwise bound for the

curvature form FAr follows from the bound on |ψr| and from the equations.

Using these pointwise estimates and the results of Lemma 4.1, we obtain L2 and

L2
1 estimates.

Lemma 4.3. Suppose we are given solutions (Ar, ψr) of the perturbed Seiberg–

Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation µ sup-

ported in the knot complement V ⊂ Y (r), for r ≥ r0.

(i) Consider an open submanifold Z ⊂ Y (r), with ∂Z = T 2 a slice in the product

region of Y (r). Then the values f(ar, αr, βr) on ∂Z are uniformly bounded in r ≥ r0.

Here the (ar, αr, βr) are restrictions to ∂Z of the solutions (Ar, ψr).

(ii) The total variation of the functional f along a cylinder Zr = T 2 × [−r, r] ⊂
Y (r) is uniformly bounded in r ≥ r0.

Proof. Applying (4.3) together with the assumptions on the perturbation, we

obtain

c ≤ −κ(Y (r0))

4
‖ψr‖2

L2(Y (r0))
≤ EY (r),µ(Ar, ψr) =

∫

Y (r0)

FAr ∧ µ ≤ C ′ ,

with κ(Y (r0)) = max(−κ(y) + C, 0), for y ∈ Y (r0). We are using the fact that the

scalar curvature satisfies κ ≡ 0 on the cylinders T 2 × [−(r − r0), r − r0], and the

lower and upper bounds by constants c, C ′ > 0 independent of r ≥ r0 follow by the

pointwise bound on ψr and FAr . The constant C ′ depends on the perturbation µ.

Now consider the case of a compact set Z = V ∪T 2 [0, r0]×T 2 in Y (r). Applying

(4.4) we estimate

c ≤ −κ(Y (r0))

4
‖ψr‖2

L2(Z) ≤ EZ,µ(Ar, ψr) = f |∂Z +

∫

Z

FAr ∧ µ ,

with the boundary term

f |∂Z = f(ar, αr, βr) = −
∫

∂Z

〈αr, i∂̄∗βr〉 dvT 2 .

By the assumptions on the metric and on the perturbation we know that on Zc =

Y (r)\Z we have EZc,µ ≥ 0, and µ ≡ 0, hence EZc,µ = f |∂Zc = −f |∂Z ≥ 0. Moreover,

for Z of the form as above, we have

−C ′ ≤
∫

Z

FAr ∧ µ =

∫

Y (r0)

FAr ∧ µ ≤ C ′ .
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Thus we have an estimate

c− C ′ ≤ f(ar, αr, βr) ≤ 0 .

In the case of the cylinder region Zr, by considering the two components

in the complement Zcr and arguing as above, we obtain uniform bounds on

f(ar(r), αr(r), βr(r)) and f(ar(−r), αr(−r), βr(−r)). The variation

f(ar(r), αr(r), βr(r)) − f(ar(−r), αr(−r), βr(−r)) = EZr ,p(Ar, ψr)

is therefore uniformly bounded in r ≥ r0.

Lemma 4.4. Suppose we are given solutions (Ar, ψr) of the perturbed Seiberg–

Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation µ sup-

ported in the knot complement in Y (r), for r ≥ r0. Suppose given a compact set Z

of the form V ∪T 2 [0, r0]× T 2 or ν(K)∪T 2 [−r0, 0]× T 2 in Y (r) with r > r0. Then

we have uniform bounds

‖∇Arψr‖2
L2(Z) ≤ C(κ, µ), ‖FAr‖2

L2(Z) ≤ C(κ, µ)

where C(κ, µ) is a positive constant, depending on the scalar curvature and on the

perturbation, independent of r ≥ r0.

Proof. In order to derive the estimate for the L2-norm of ∇Aψ, we use the result

of Lemma 4.3. We have

c ≤ ‖∇Arψr‖2
L2(Z) +

∫

Z

κ

4
|ψr|2dv ≤ C ′

and

c ≤ 1

2
‖FAr‖2

L2(Z) +

∫

Z

κ

4
|ψr|2dv ≤ C ′ .

Since the second term is uniformly bounded in r ≥ r0, we obtain the result.

Notice that the uniform bound on the curvature justifies our choice of the finite

energy condition (3.3) for monopoles on the manifold V with infinite cylindrical

end.

Now we can establish the convergence result for the Seiberg–Witten monopoles

on Y (r) as r → ∞.

Proposition 4.5. Assume that the metric on Y (r) and the perturbation are chosen

as specified in the beginning of this section. Suppose the moduli spaces M∗
Y (r)(sr)

are non-empty for r � 0, and let (Ar, ψr) be a solutions representing elements in

M∗
Y (r)(sr).

(a) For any fixed compact set Z = V ∪T 2 (T 2 × (0, r0]) ⊂ Y (r), and for any r �
0, there exist gauge transformations λr on Y (r), such that a subsequence of

λr(Ar, ψr) converges smoothly on Z as r → ∞ to either a solution (A′, ψ′)
with [A′, ψ′] in MV (s′), or to a solution (a′′∞, 0), with [a′′∞, 0] in Mred

ν(K)(s
′′) =

χ(ν(K), Y ).
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(b) As r → ∞, the solutions λr(Ar , ψr) restricted to the cylinder [−r, r] × T 2

converge smoothly on compact sets to a constant flat connection a∞ on T 2.

(c) Let ∂∞[A′, ψ′] = a′∞ be the asymptotic limit, that is, an element of χ(T 2, V ).

Then there exist two gauge transformations λ′ and λ′′ on T 2 that extend to V

and ν(K) respectively, such that we have λ′′a′′∞ = λ′a′∞ in χ(T 2, Y ).

(d) In the case of Y0, we obtain similarly λ′′a′′∞ = λ′a′∞ in χ(T 2, Y0). The gauge

transformation (λ′)−1λ′′ over T 2 determines a cohomology class in H2(Y0,Z)

which is the class C1(det(s)) associated to the Spinc structure s on Y0.

Proof. (a) Suppose we are given a fixed compact set Z = V ∪T 2 (T 2 × (0, r0])

in Y (r). We show that a sequence of elements [Ar , ψr] of M(Y (r), sr) has a sub-

sequence that converges smoothly on Z to a solution of the equations. The same

result holds for compact sets Z of the form T 2 × [−r0, r0] ∪T 2 ν(K). These results

were essentially established in [16].

The estimates of Lemma 4.3 and Lemma 4.4 show that there is a uniform bound

for the L2 norms

‖ψr‖L2(Z) ≤ C(κ, µ), ‖FAr‖L2(Z) ≤ C(κ, µ) .

This implies an L2
1 bound on the connections

‖Ar −A0‖L2
1(Z) ≤ C̃ · C(κ, µ) ,

with the constant C̃ depending on the fixed compact set Z, and independent of

r ≥ r0. The bound

‖∇Arψr‖L2(Z) ≤ C(κ, µ)

of Lemma 4.4, together with the L2 bound on the spinors, implies a bound on the

L2
1-norms of the spinors by the elliptic estimate.

Notice that here Z is a compact set of the following form

V ∪T 2 [0, r0] × T 2; or ν(K) ∪T 2 [−r0, 0] × T 2 ,

thus we have elliptic estimates in the form

‖ψr‖L2
k
(Z) ≤ C(‖∇Arψr‖L2

k−1(Z
′) + ‖ψr‖L2

k−1(Z)) ,

where Z ′ is a smaller set Z ′ = V ∪T 2 [0, r′0]×T 2, for some r′0 < r0, cf. [23, Sec. 4.1].

Since we are only taking estimates on a fixed compact set Z of the form specified

above, the constant C in the elliptic estimate depends on Z but does not depend

on the parameter r of the underlying manifold Y (r). For the elliptic estimate for

the connections, we choose any smooth connection A0 on det(s) over Z and gauge

transformations λr in the identity connected component of the gauge group GY (r),

such that the forms λrAr − A0 are co-closed and annihilate the normal vector at

the boundary T 2. We use an elliptic estimate of the form considered above for the

operator d+d∗. Thus, we can bound the L2
2-norms of the connections on Z, and use

a bootstrapping argument to bound the higher Sobolev norms as in [16, 23, 25].
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Upon passing to a subsequence, we have obtained elements (Ari , ψri) that con-

verge smoothly on Z to a solution of the equations. This defines a solution (A′, ψ′)
on V with the cylindrical end T 2 × [0,∞). The case of ν(K) is analogous. With

our choice of metric on ν(K), a finite energy solution on ν(K) will necessarily be

reducible.

To complete the proof of (a) we need to show that the resulting solution on V

with infinite end satisfies the finite energy condition (3.3). This follows from the

curvature estimate in Lemma 4.4

(b) To prove the second claim, consider the elements xr = (Ar, ψr) restricted

to the cylinder [−r, r] × T 2. Up to a gauge transformation, they can be written in

the form

xr(s) = (ar(s), αr(s), βr(s)) .

The functional f is monotone along the cylinder, with variation

f(ar(r), αr(r), βr(r)) − f(ar(−r), αr(−r), βr(−r))

=

∫ r

−r
‖∇f(ar(s), αr(s), βr(s))‖2ds .

By the result of Lemma 4.3, there is a uniform bound, independent of r for the

variation of the functional f along the cylinder,

f(ar(r), αr(r), βr(r)) − f(ar(−r), αr(−r), βr(−r)) ≤ C .

This uniform bound for

c ≤ EZr ,µ(Ar, ψr) ≤ C ,

with Zr = T 2 × [−r, r], gives bounds on compact sets Z ⊂ Zr for the L2-norms

‖∇Arψr‖, ‖ψr‖, ‖FAr‖, as well as for the L4 norm of the spinor. This is enough to

start the bootstrapping argument, with elliptic estimates as before, hence we obtain

smooth convergence on compact sets in Zr to a solution of the unperturbed SW

equations on T 2×R. Such solution must be a flat connection and the trivial spinor.

This implies EZr ,µ(Ar, ψr) → 0, hence, using again Lemma 4.1 together with the

estimate (3.12), we obtain that the limit is actually a critical point a∞ of f .

Thus, up to gauge transformations, the sequence of solutions (Ar, ψr) has

a subsequence (Ari , ψri) that converges smoothly on compact sets to a pair

((A′, ψ′), (a′′∞, 0)). In the asymptotic limit we get

lim
s→∞

λ′(A′, ψ′) = λ′a′∞ = λ′′a′′∞ .

In the case of the manifold Y0,

[λ′a′∞] = [λ′′a′′∞]

in χ(T 2, Y0) imply that xr = [Ar, ψr] ∈ M∗
Y0(r)

(sk) where sk corresponds to the

cohomology class

[(λ′)−1λ′′] ∈ H1(T 2,Z)/H
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where H = Im(i∗1) + Im(i∗2) with i∗1: H1(V,Z) → H1(T 2,Z) and i∗2: H1(ν(K),Z) →
H1(T 2,Z) are the maps induced by the inclusion of the boundary T 2 in V and

ν(K) inside Y0.

This completes the proof of the convergence part of the gluing theorem

(Theorem 1.3) for generators. Namely, we have shown that a gauge class in the

moduli space MY (r)(s), for a sufficiently large r, and perturbation as prescribed,

determines an element in

M∗
V,Y ×χ(T 2,Y ) χ(ν(K), Y ) .

4.2. Proof of Theorem 1.3

In this subsection we will construct an approximate monopole on Y (r) from any

element in M∗
V,Y ×χ(T 2,Y ) χ(ν(K), Y ), and study the gluing that will produce the

corresponding monopole on Y (r) for a sufficiently large r.

First, we define a pre-gluing operation, where we splice together solutions in M∗
V

and χ(ν(K)) with matching asymptotic values, via a smooth cutoff function. This

produces an approximate solution (A′, ψ′)#r(a
′′
∞, 0) of the monopole equations on

Y (r) for ((A′, ψ′), (a′′∞, 0)) representing an element in M∗
V,Y ×χ(T 2,Y ) χ(ν(K), Y ).

We can assume that (A′, ψ′)|T 2×[0,∞)⊂V is in temporal gauge with asymptotic

limit (a∞, 0), and there is a gauge transformation λ′′ on ν(K) such that λ′′(a′′∞) =

a∞ as a flat connection on T 2. Let (A′, ψ′) = a∞ + (a′(s), ψ′(s)) on T 2 × [0,∞).

We can choose smooth cutoff functions ρr(s) (s ∈ [−2, 2]) with values in [0, 1],

satisfying ρr(s) ≡ 1 for s ∈ [−2,−1] and ρr(s) ≡ 0 for s ∈ [1, 2] with 0 ≤ ρ′(s) ≤ 1.

Define the pre-gluing map with values in B(Y (r)) by setting

xr = (A,ψ) = (A′, ψ′)#0
r(a

′′
∞, 0)

=















(A′, ψ′) on V (r − 2)

a∞ + ρr(s)λ
′′(a′(s+ r), ψ′(s+ r)) s ∈ [−2, 2]

λ′′(a′′∞, 0) on ν(K)(−r + 2)

(4.6)

Definition 4.6. An approximate solution is by definition an element in the

image of the pre-gluing map (4.6). We use the notation

M∗
V,Y (a∞) := ∂−1

∞ (a∞) ⊂ M∗
V,Y .

Then U(a∞, r) is defined to be the image of the pregluing map (4.6) #0
r :

M∗
V,Y (a∞) × [a′′∞, 0] → B(Y (r)).

In order to show that the approximate solutions in U(a∞, r) can be deformed

to actual solutions of the monopole equations on Y (r), we consider the span of

eigenvectors corresponding to the small eigenvalues of the linearization operator at

the approximate solutions.
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Consider the linearization operator of the Seiberg–Witten equations on Y (r) at

the approximate solution (A′, ψ′)#0
r(a

′′
∞, 0)

H(A′,ψ′)#0
r(a

′′

∞
,0)(f, α, φ) =

{

L(A′,ψ′)#0
r(a

′′

∞
,0)(α, φ) +G(A′,ψ′)#0

r(a
′′

∞
,0)(f)

G∗
(A′,ψ′)#0

r(a
′′

∞
,0)(α, φ) .

We also need the linearization operators of the Seiberg–Witten equations on V and

ν(K) with infinite cylindrical ends, as defined in the deformation complex (3.14),

acting on L2 forms and spinors:

H(A′,ψ′)(f, α, φ) =

{

L(A′,ψ′)(α, φ) +G(A′,ψ′)(f)

G∗
(A′,ψ′)(α, φ)

H(a′′
∞
,0)(f, α, φ) =

{

L(a′′
∞
,0)(α, φ) +G(a′′

∞
,0)(f)

G∗
(a′′

∞
,0)(α, φ)

,

where the operator L is defined as in (3.15). We think of H(A′,ψ′)#0
r(a

′′

∞
,0) as acting

on the elements (α, φ) in the L2 tangent space of the configuration space over the

closed manifold Y (r). We continue to denote by H(A′,ψ′) and H(a′′
∞
,0) the operators

defined in the deformation complex (3.17) acting on the extended L2 spaces of

connections and spinors, over V and ν(K) respectively.

Now we discuss the eigenfunctions corresponding to slowly decaying eigenvalues

of these operators. The model for our analysis of the operator H(A′,ψ′)#0
r(a

′′

∞
,0) is

based on the work of Capell, Lee, and Miller [4, 5]. With operators differing from a

translation invariant operator by exponentially decaying terms, we shall adopt the

more general setting as in the work of Nicolaescu, [31].

We use the following result, which is the analog in our context of [4, Theorem A].

Proposition 4.7. Assume that a∞ is a point in χ(T 2) away from a small neigh-

bourhood UΘ of Θ. Let

N(r) = dim KerL2(H(A′,ψ′)) + dim KerL2(H(a′′
∞
,0)) + dim Ker(Qa∞) .

Then, there exists an N(r)-dimensional family of eigenvectors of the operator

H(A′,ψ′)#0
r(A

′′,ψ′′) with eigenvalues satisfying λ(r) → 0 as r → ∞ at the rate at

most 1/r. The dimension N(r, r−(1+ε)) of the span of eigenvectors of the operator

H(A′,ψ′)#0
r(a

′′

∞
,0) with eigenvalues λ < r−(1+ε) is given by

N(r, r−(1+ε)) = dim KerL2(H(A′,ψ′)) + dim KerL2(H(a′′
∞
,0)) + dim `1 ∩ `2 ,

where `1 and `2 are the two Lagrangian submanifolds in Ker(Qa∞) = H1(T 2,R), de-

termined by the extended L2 solutions of H(A′,ψ′)(α, φ) = 0 and H(a′′
∞
,0)(α, φ) = 0.

Proof. In order to prove the first claim it is sufficient to check that elements of

H1(T 2,R) = Ker(Qa∞) give rise to approximate eigenfunctions on Y (r) with slowly

decaying eigenvalues, that is, with eigenvalues λ(r) satisfying λ(r) → 0 at most like

1/r. The first statement is then an analogue, in our case, of [4, Proposition 6.B].
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Suppose we are given an element ξ ∈ Ker(Qa∞). If χ(s) is a cutoff function

supported in [r/2 − ε, 3r/2 + ε] satisfying χ(s) ≡ 1 on [r/2, r], we have an estimate

‖(∂s +Qa∞)χξ‖L2(Y (r))

‖χξ‖L2(Y (r))
≤ C

r
.

This implies a similar estimate for the operator H(A′,ψ′)#0
r(a

′′

∞
,0) on Y (r), for r ≥ r0

large enough, since we are assuming that this operator differs from ∂s + Qa∞ by

terms that are exponentially small in r. This is the setting used in [31].

The second part of the statement can be derived from the asymptotically exact

sequence

0 → K(r−(1+ε)) → Kerext
L2 (H(A′,ψ′)) ⊕ Kerext

L2 (H(a′′
∞
,0))

∆→ `1 ⊕ `2 → 0 ,

as in the Main Theorem of [31]. Here K(r−(1+ε)) denotes the span of the eigenvectors

of H(A′,ψ′)#0
r(A

′′,ψ′′) with small eigenvalues that decay at a rate of at least r−(1+ε).

We use the notation Kerext
L2 for the extended L2-solutions, and `i for the asymptotic

values of the extended L2-solutions.

Proposition 4.7 yields the following.

Corollary 4.1. There are no fast decaying eigenvalues, that is, in our problem

N(r, r−(1+ε)) = 0. However, there is a non-trivial family of eigenvectors of the

linearization H(A′,ψ′)#0
r(a

′′

∞
,0) at the approximate solution (A′, ψ′)#0

r(a
′′
∞, 0), with

slowly decaying eigenvalues, satisfying λ(r) → 0 at most like 1/r.

Proof. We have

dim KerL2(H(A′,ψ′)) = dim KerL2(H(a′′
∞
,0)) = 0 .

Moreover, for a generic choice of the perturbation of the monopole equations on V ,

the Lagrangian subspaces `1 and `2 intersect transversely. Thus, we have N(r) =

dim Ker(Qa∞) andN(r, r−(1+ε)) = 0. The previous Proposition shows that the span

of eigenvectors with slowly decaying eigenvalues is non-trivial. In fact, it shows the

existence of (at least) a two dimensional family parameterized by the elements of

H1(T 2,R) = Ker(Qa∞).

Suppose we are given an element (a, φ) on Y (r) such that xr+(a, φ) is a solution

of the monopole equations on Y (r). Then (a, φ) satisfies

Hxr(a, φ) +Nxr(a, φ) + Σ(xr) = 0 ,

where Σ is the error term defined by

Σ(xr) =

(

∗FA − σ(ψ, ψ) − µ

6∂Aψ

)

,
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as by equation (2.1), and N is the non-linear term

NA,ψ(a, φ) =

(

σ(φ, φ)

a · φ

)

.

Though we do not treat the more general case in this paper, we mention that

one can consider the same argument with an additional perturbation term P (A,ψ).

In this case, an additional term P (A,ψ) enters the expression for the error term

Σ(xr), and an additional non-linear part NPA,ψ of the perturbation

NPA,ψ = P ((A,ψ) + (a, φ)) −DPA,ψ(a, φ)

is added to the expression of NA,ψ. This case will be discussed elsewhere.

Choose λ = λ(r) > 0 such that λ(r) is not an eigenvalue of Hxr =

H(A′,ψ′)#0
r(a

′′

∞
,0), for all approximate solutions xr = (A′, ψ′)#0

r(a
′′
∞, 0) in U(a∞, r).

Consider the projection maps Π(λ(r), xr) onto the span of the eigenvectors of Hxr

with eigenvalues smaller than λ(r).

The condition that, for a given approximate solution xr, the element xr + (a, φ)

is an actual solution of monopole equations can be written as a system of two

equations:

Π(λ(r), xr)(N(a, φ) + Σ(xr)) = 0 (4.7)

Hxr(a, φ) + (1 − Π(λ(r), xr))(N(a, φ) + Σ(xr)) = 0 . (4.8)

If the equation (4.8) admits a unique solution (a, φ), then the condition that xr +

(α, φ) is a solution of the monopole equations on Y (r) can be rephrased as the

condition that (4.7) is satisfied, with (a, φ) the unique solution of (4.8).

The second equation (4.8) can be written as the fixed point problem

(a, φ) = −H−1
xr (1 − Π(λ(r), xr))(N(a, φ) + Σ(xr)) . (4.9)

The following result proves existence and uniqueness of the solution to (4.9).

Lemma 4.9. There exists a positive constant C > 0, such that, if a given approx-

imate solution xr satisfies ‖Σ(xr)‖L2(Y (r)) ≤ Cε(r)2, for some small and positive

ε(r) satisfying ε(r) < λ(r)
2C , then the map

Tr(a, φ) := −H−1
xr (1 − Π(λ(r), xr))(N(a, φ) + Σ(xr))

maps the ball Bε(r) = {(a, φ)| ‖(a, φ)‖2
L2

1(Y (r))
≤ ε(r)} to itself and is a contraction

on Bε(r).

Proof. Let C > 0 be a constant such that the quadratic term satisfies the estimate

‖N(a, φ) −N(ã, φ̃)‖L2 ≤ C(‖(a, φ)‖L2
1

+ ‖(ã, φ̃)‖L2
1
)‖(a, φ) − (ã, φ̃)‖L2

1
,
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independent of r ≥ r0. This follows from the Sobolev multiplication theorem in

dimension 3.

On the image of (1 − Π(λ(r), xr)), the operator H−1
xr is bounded with norm

bounded by λ(r)−1. We have an estimate for (a, φ) ∈ Bε(r)

‖Tr(a, φ)‖L2
1(Y (r)) ≤

1

λ(r)
‖N(a, φ) + Σ(xr)‖L2(Y (r))

≤ Cε(r)2

λ(r)
+

‖Σ(xr)‖L2(Y (r))

λ(r)

≤ 2Cε(r)2

λ(r)
≤ ε(r),

which implies that Tr maps the ball Bε(r) to itself.

Let (a1, φ1), (a2, φ2) ∈ Bε(r), we have

‖Tr(a1, φ1) − Tr(a2, φ2)‖L2
1(Y (r))

≤ 1

λ(r)
‖N(a1, φ1) −N(a2, φ2)‖L2

≤ C

λ(r)
‖(a1, φ1) + (a2, φ2)‖L2

1
‖(a1, φ1) − (a2, φ2)‖L2

1

≤ 2Cε(r)

λ(r)
‖(a1, φ1) − (a2, φ2)‖L2

1
.

Thus, from ε(r) < λ(r)
2C as chosen, we obtain that Tr is a contraction on Bε(r).

Proposition 4.10. For sufficiently large r ≥ r0, and for all approximate solutions

xr in U(a∞, r), there exists a unique solution (a, φ) of (4.8), such that equation

(4.7) is trivially satisfied.

Proof. For all approximate solutions xr in U(a∞, r), we have an estimate on the

error term

‖Σ(xr)‖L2(Y (r)) ≤ C ′e−δr ,

for r ≥ r0, which follows from the exponential decay estimate proved in Propo-

sition 3.8. Thus, we can apply Lemma 4.9, with λ(r) = O(r−(1+ε)) and ε(r) =

O(e−δr/2). By Corollary 4.1 we know that, for λ(r) = O(r−(1+ε)), the projection

Π(λ(r), xr) ≡ 0, hence the solution (a, φ) of (4.8), provided by Lemma 4.9 also

satisfies trivially equation (4.7).

Thus, the resulting element (A′, ψ′)#r(a
′′
∞, 0) = xr + (a, φ) is a true monopole

solution on Y (r), close to the approximate solution xr. The gluing map for Y1(r)

can be obtained analogously.
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In order to complete the proof of the gluing theorem (Theorem 1.3), we still

need to address the problem of global injectivity and surjectivity of the gluing map.

Namely, it is necessary to rule out the existence, for each r � 0, of a pair of

monopoles xr,i, i = 1, 2, on Y (r) which split, as r → ∞, into the same pair xV =

[A′, ψ′] and xν(K) = [a′′∞, 0].

In fact, it could happen, for instance, that xr,1 converges, as r → ∞ to the pair

(xV , xν(K)) at an exponential rate e−δr while xr,2 converges to the same geometric

limits at a much slower rate, say 1/r. Since the gluing procedure only produces

monopoles that split at an exponential rate, the xr,2 would not be in the range of

the gluing map. In other words, the range of the gluing map is an open set in MY (r)

and we need to show it does in fact cover everything (cf. [23, Sec. 4] for a more

detailed account of these issues).

In the case of four-dimensional Seiberg–Witten monopoles, this issue was dis-

cussed in [23, Theorem 4.9] as well as in [32, Theorem 4.5.15]. The arguments extend

easily to the present case. Thus, we can state the following result.

Proposition 4.11. Let Z = V ∪T 2 ν(K) be Y (r) or Y1(r). For sufficiently large

r � 0, the gluing map #Z,r : MV,Z×χ(T 2,Z)χ(ν(K), Z) → MZ(r) is one to one and

onto.

A proof of global surjectivity of the gluing map for three-dimensional Seiberg–

Witten monopoles was also given in [9, Proposition 3.2.2], and in the Yang–Mills

case in [12, Sec. 7.3].

In the case of Y0, we have to define the gluing maps using different asymptotic

framings (cf. (3.1)) on T 2 ⊂ Y0, as there are a Z-family of asymptotic framings

corresponding to

H1(T 2,Z)/(Im (i∗1) + Im (i∗2)) ,

where i∗1 : H1(V,Z) → H1(T 2,Z) and i∗2 : H1(ν(K),Z) → H1(T 2,Z) are the

maps induled by the inclusion of the boundary T2 in V and ν(k) inside Y0. These

correspond to a Z-family of Spinc structures on Y0(r). Hence, we have the following

map for Y0:

#Y0,r : M∗
V,Y ×χ(T 2,Y0) χ̃(ν(K), Y0) −→

⋃

s∈Spinc(Y0)

M∗
Y0(r)

(s) ,

which is an orientation preserving diffeomorphism. Here χ̃(ν(K), Y0) is a Z-covering

space of χ(ν(K), Y0) with mapping to χ(T 2, Y0) given by the Z-family of asymptotic

framings on T 2 ⊂ Y0.

This completes the proof of the gluing theorem (Theorem 1.3).

4.3. Metric

Concerning the metric after surgery, on ν(K) inside Y1 we consider the metric g1
as in the following Lemma 4.10, which is due to Liviu Nicolaescu [33].
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Let g = du2 + dv2 with
∫

T 2 du ∧ dv = 4π2, where the torus T 2 is the boundary

of the tubular neighbourhood of the knot ν(K) in Y . We introduce a choice of a

metric on ν(K) inside Y1, for which we can still derive the result that the moduli

space of monopoles on ν(K) inside Y1 consists of the circle of reducibles.

Lemma 4.10 (Nicolaescu). Let A be an element in SL(2,Z). Suppose we are

given ε > 0 sufficiently small. Consider the flat metric on T 2 given by g0 = A∗g.
There exists a constant c and a smooth path g(s) (s ∈ R) of flat metrics on T 2 with

the following properties :

(i) g(s) ≡ 1
δ2 g0, for all s ≤ ε and g(s) = g1 for all s ≥ 1 − ε;

(ii) g1 = g(1) is a metric of the form g1 = k1du
2 + k2dv

2 with positive constants

ki;

(iii) The scalar curvature of the metric ĝ := g(s) + ds2 on T 2 × R is non-negative;

(iv) The metric g1 can be extended to a metric inside the solid torus ν(K) with

positive scalar curvature.

Proof. Choose a unit vector ∂u with respect to the metric 1
cg0, and complete it to

an oriented orthonormal frame. Let {ϕ1, ϕ2} ⊂ Ω1(T 2) be the dual coframe. This

is related to {du, dv} by

ϕ1 = du+ a0dv ϕ2 = k dv ,

for some positive constant k > 0.

The path g(s) is defined by requiring that the coframe

ϕ1(s) = du+ a(s)dv ϕ2(s) = k dv

be orthonormal with respect to g(s), where a(s) is a smooth function satisfying

a(s) ≡ 0 for all s ≥ 1− ε and a(s) = a0 for all s ≤ ε. The only conditions that need

to be verified are (iii) and (iv).

We have an orthonormal coframe {ϕ0, ϕ1, ϕ2} on X = T 2 × R, with respect to

the metric ĝ, with ϕ0 = ds, and a corresponding orthonormal frame {e0, e1, e2}.

The Levi–Civita connection is of the form

Γ =









0 x y

−x 0 z

−y −z 0









x, y, z ∈ Ω1(X) .

The Cartan structural equation gives dϕ = Γ ∧ ϕ, with ϕ = (ϕ0, ϕ1, ϕ2). By

the expression of ϕi, we have

dϕ0 = dϕ2 = 0, dϕ1 =
ȧ

k
ϕ0 ∧ ϕ2, ,
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hence we obtain

x ∧ ϕ1 + y ∧ ϕ2 = 0 ,

ȧ

k
ϕ0 ∧ ϕ2 = −x ∧ ϕ0 + z ∧ ϕ2 ,

−y ∧ ϕ0 − z ∧ ϕ1 = 0 .

These equations imply

Γ =
ȧ

2k









0 ϕ2 ϕ1

−ϕ2 0 ϕ0

−ϕ1 −ϕ0 0









.

Thus, we can compute the scalar curvature of ĝ = g(s) + ds2 on T 2 × R which is

3(ȧ/k)2 by direct calculation.

Claim (iv) then follows by noticing that any diagonal metric of the form

g1 = k1du
2 + k2dv

2

realizes the torus T 2 metrically as the product of two circles of different radii. Each

can bound a hemisphere, endowed with a positive scalar curvature metric, thus

extending g1 to a metric on a solid torus, with positive scalar curvature.

4.4. Lines in χ(T 2)

In this subsection we justify why it is sufficient to consider the gluing map in

Theorem 1.3 away from the singular point Θ ∈ χ(T 2).

Lemma 4.11. The intersection points ∂̄∞M∗
V ∩ χ(ν(K)), with χ(ν(K)) ⊂ χ(T 2)

the circle of reducibles for ν(K) in either Y, Y1, or Y0, are contained in χ(T 2)\UΘ,

for some neighborhood UΘ of the singular point Θ. Thus, the gluing of Theorem 1.3

happens away from the reducible point.

Proof. To study the intersection points ∂̄∞M∗
V ∩ χ(ν(K)) in each of gluing maps

for Y , Y1, or Y0, we need some explicit descriptions of the images of χ(ν(K)) in

χ(T 2) with respect to the boundary value map (3.6).

The torus T 2 inside Y inherits from the trivial Spin structure of Y the non-

trivial Spin structure in which both circles (longitude and meridian) bound, that

is, the one determined by the element (1, 1) in H1(T 2,Z2).

We choose coordinates (u, v) on H1(T 2,R) defined by the property that, under

the projection to χ(T 2) the corresponding (ū, v̄) satisfy

ū(A) = 1 + y(A) v̄(A) = 1 + x(A) , (4.10)

where we have

x(A) = 〈Φ(A),m〉, y(A) = 〈Φ(A), `〉 ,
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where Φ is defined as in (3.5) and m and ` are the meridian and longitude. In this

coordinate system, the singular point Θ is given by the point (1, 1).

The embedding ∂∞(χ(V )) ⊂ χ(T 2, V ) satisfies

y(∂∞(A)) =
1

2πi

∫

`

(∂∞(A) − Θ) =
1

2πi

∫

`

(φ∗V (A|∂V ) − Θ) ∈ 2Z + 1 . (4.11)

This follows [39, Lemma 1.3], by identifying the asymptotic framing with a relative

Euler structure. Thus, the reducible circle χ(V ) = Mred
V is given in coordinates by

{u = 0}.
Let (`ν(K),mν(K)) and (`V ,mV ) denote the pairs of longitude and right-hand

meridian on ∂ν(K) and ∂V , respectively. For a 3-manifold Yn obtained from Y by

Dehn surgery along K with the framing given by nmν(K) + `ν(K) ∈ H1(∂ν(K),Z),

using the asymptotic framing (cf. (3.1)) φν(K) given by the relative Euler structure

on ν(K), we have

1

2πi

∫

mν(K)

φ∗ν(K)(A|∂ν(K)) − Θ) ∈ 2Z + 1

⇐⇒ 1

2πi

∫

nmV −`V
ι∗(φ∗ν(K)(A|∂ν(K)) − Θ) ∈ 2Z + 1 ,

where ι : ∂V → ∂ν(K) is the orientation reversing identification that glues mν(K)

to nmV − `V . Since the elements ι∗φ∗ν(K)(A|∂ν(K)) are the asymptotic values of

χ(ν(K)) in the gluing model for Yn we obtain that the reducible circle χ(ν(K), Yn)

is given by

nx(∂V∞(A)) − y(∂V∞(A)) ∈ 2Z + 1 .

Thus, for the unperturbed Seiberg–Witten equations on ν(K) ⊂ Y , with the

metric of non-negative scalar curvature, strictly positive away from the boundary,

the reducible circle χ(ν(K), Y ) in the gluing model M∗
V,Y ×χ(T 2,Y ) χ(ν(K), Y ) is

given by

LY := {v = 0} ⊂ χ0(T 2, Y ) .

Similarly, in the case of Y1, choose a metric with a long cylinder [−r, r] × T 2,

which agrees with the original metric on Y when restricted to the knot comple-

ment V , and such that the induced metric in the torus neighbourhood ν(K) is as

described in Lemma 4.10, then the reducible circle χ(ν(K), Y1) in the gluing model

M∗
V,Y1

×χ(T 2,Y1) χ(ν(K), Y1) is given by

LY1 := {v − u = 1} ⊂ χ0(T 2, Y1) .

In the case of Y0, the reducible circles χ̃(ν(K), Y0) with respect to the Z-family

of asymptotic framings on T 2 ⊂ Y0 in the gluing model MV,Y0 ×χ(T 2,Y0) χ̃(ν(K), Y0)

is mapped to a circle {u = 0} ⊂ χ(T 2). Note that

χ(T 2, ν(K)) = χ(T 2, V ) = χ(T 2, Y0) ∼= R × S1 ,
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so that χ̃(ν(K), Y0) consist of a Z-family of circles given by {u = 2k, k ∈ Z} where

u is the coordinate of R in R × S1. The gluing map on the fiber product

M∗
V,Y0

×χ(T 2,Y0) {u = 2k}
will correspond to the moduli space MY0(sk) where sk is the Spinc structure with

c1(det sk) = 2k ∈ H2(Y0,Z). For the trivial Spinc structure s0, there will be

a circle of reducible monopoles in MY0(s0) resulting from gluing the reducibles

χ(V, Y )#{u = 0}. We need to introduce a small perturbation inside ν(K) such

that χ(ν(K), Y0) = {u = η} where η is small number in R for the trivial Spinc

structure s0.

Clearly, in all the cases, χ(ν(K)) does not go through the singular points

{π−1(Θ)}, hence there is no need to consider the gluing map at the singular point

Θ. Note that, after perturbing the metric inside a compact set on the manifold V

with an infinite cylindrical end, we can make the open ends in MV not limit to any

intersection points of χ(V ) = Mred
V = {u = 0} with any circle χ(ν(K)) for either

Y, Y1 or Y0.

Thus, with our choice of metric as in the previous subsection, and with the

choice of perturbation as in Theorem 3.10, we see that the gluing result stated in

Theorem 1.3 holds for the manifolds Y , Y1, and Y0. This completes the proof of

Theorem 1.3.

Remark 4.14. Note that gluing the reducible monopoles on V and ν(K) with

matching boundary condition just gives the extension of the flat connections to

the whole manifold (after a possible gauge transformation). We call this the trivial

gluing. The unique reducible point θY in MY is obtained by the trivial gluing of

the unique intersection point between the lines LY = {v = 0} and {u = 0} =

π−1(χ(V )) ⊂ χ(T 2, Y ). The unique reducible point θY1 in MY1 is obtained by the

trivial gluing of the unique intersection point between the lines LY = {v − u = 1}
and {u = 0} = π−1(χ(V )) ⊂ χ(T 2, Y0).

5. The Geometric Triangle and Proof of Theorem 1.1

In the previous section, we showed that the moduli spaces for irreducible monopoles

on Y, Y1 and Y0 are given by the gluing maps on the following fiber products:

M∗
Y (r)

∼= M∗
V,Y ×χ(T 2,Y ) {v = 0} ,

M∗
Y1(r)

∼= M∗
V,Y1

×χ(T 2,Y1) {v − u = 1} ,

M∗
Y0(r)

(sk) ∼= M∗
V,Y0

×χ(T 2,Y0) {u = 2k}, for k 6= 0 ,

M∗
Y0(r)

(s0) ∼= M∗
V,Y0

×χ(T 2,Y0) {u = η} ,

(5.1)

where (u, v) is the coordinate system on χ(T 2) and its covering spaces, η > 0 is

a small parameter, and r � 0 is a sufficiently large number. We can study these
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LY0
(s0 )

LY0
(s1 )LY0

(s-1 )LY1

(0,0)

v=f ’(u)

LY={v =0}

Fig. 1. The geometric triangles.

moduli spaces on the common character variety χ(T 2, Y0) which can be identified

as a cylinder R
1 × S1. Specifically we take it to be the domain (see Fig. 1)

{(u, v)|u ∈ R, v ∈ [−1, 1]}/{(u,−1) ∼ (u, 1)}
in which the lines corresponding to LY , LY1 and LY0(sk)(k ∈ Z) are drawn.

In this section, we introduce a suitable perturbation of the curvature equation,

supported in the solid torus D2 ×S1, that simulates the effect of surgery such that

the reducible line corresponding to ν(K) ⊂ Y is given by the curve v = f ′(u) as

shown in Fig. 1.

For a generic perturbation we can assume the curves ∂∞(M∗
V ) stay away from

the intersection points {LY ∩ LY1 , LY ∩ LY0 , LY1 ∩ LY0}, hence ∂∞(M∗
V ) is away

from small neighbourhood U of those intersection points. Then we can choose a

function f : R → R such that the curve v = f ′(u) is arbitrarily close to LY1 and

LY0 away from the region U . This curve is illustrated in Fig. 1. The closeness can

be measured by a small parameter ε, such that as ε→ 0, v = f ′(u) approaches LY1

and LY0 away from the region U . We suppress the dependence of v = f ′(u) on ε.

Fix a U(1)-connection A0 representing (0, 0) on χ(T 2). For any U(1)-connection

A, define TA to be

Tz(A) = −i
∫

{z}×S1

(A−A0), (z ∈ D2) .

Choose a compactly supported 2-form µ representing the generator of H2
cpt(D

2 ×
S1), such that we have

∫

D2×{pt} µ = 1 for any point on S1. Under the isomorphism

H2
cpt(ν(K)) ∼= H1(ν(K)), given by Poincaré duality, this form corresponds to the

generator [µ] = PDν(K)(l). The class of µ in H2(D2 × S1) is trivial, and we can

write µ = dν, where ν is a 1-form satisfying
∫

S1×{pt} ν = 1, i.e. ν = PDT 2(l).

Now perturb the Chern–Simons–Dirac functional on ν(K) ⊂ Y (r) by adding

the term
∫

D2

f(Tz(A))µ .

Then the perturbed Seiberg–Witten equations can be written in the following way:






FA = ∗σ(ψ, ψ) + f ′(TA)µ

6∂A(ψ) = 0
. (5.2)
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Denote by MY,µ the moduli space of (5.2) on Y (r) with generic perturbation from

P0. With respect to the chosen metric on ν(K), with sufficiently large positive

scalar curvature on the support of µ, the only solutions of the perturbed monopole

equations on ν(K) ⊂ Y (r) are reducibles (A, 0), that satisfy

FA = f ′(TA)µ . (5.3)

With these preliminary results in place, we can prove the main theorem

(Theorem 1.1) of this paper.

Proof of Theorem 1.1. This now follows from the previous discussions and the

gluing map (cf. Theorem 1.3). From Theorem 1.3 and the surgery perturbation

(5.2) on ν(K) ⊂ Y (r), we have

M∗
Y, µ

∼= M∗
V,Y ×χ(T 2,Y ) {v = f ′(u)} .

Since we are gluing away from the lattice of π−1(Θ), the limiting points of

the open ends of M∗
V and the neighbourhood U of the intersections between the

character lines, we obtain that solutions of the equations (5.2) can be identified

with

M∗
Y, µ

∼= M∗
V ×χ(T 2,Y ) {either v − u = 1, or u = 2k, 0 6= k ∈ Z or u = η} ,

when the curve v = f ′(u) is sufficiently close to the line {v − u = 1} on χ(T 2, Y1)

and the lines

{u = 2k, 0 6= k ∈ Z}, and {u = η}

on χ(T 2, Y0) (see Fig. 1). This shows that

M∗
Y, µ

∼= MY1 ∪
⋃

sk

MY0(sk) ,

as claimed in Theorem 1.1.

6. Relative Grading

In this section we show that the grading of the Floer complex C∗(Y, µ), defined

with respect to the unique reducible point θY , induces compatible gradings on the

Floer complexes C∗(Y1) and C∗(Y0, sk). The main tools we need in this Section are

splitting formulae for the spectral flow, as in [5, 10, 30]. We shall first set up the

necessary notation.

As in Sec. 5, we will use χ(T 2, Y0) as the common character variety in the

gluing maps of (5.1) and identify χ(T 2, Y0) as the quotient space of R2. On the

space χ(T 2, Y0) whose tangent space at any point is H1(T 2,R), we introduce the

symplectic structure: (a, b) 7→
∫

T 2 a∧b, for a, b ∈ H1(T 2,R). Consider the following

Lagrangian submanifolds of χ(T 2, Y0)

`Y1 = π∗(∂∞(Mν(K),Y1
)) = {(u, v) ∈ R

2|v − u = 1} ,
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under the identification determined by the covering map

π : χ(T 2, Y0) → χ(T 2, ν(K)) .

We can identify this Lagrangian submanifold with a constant path of Lagrangian

subspaces in H1(T 2,R), given by the tangent spaces along `Y1 , which we denote
˜̀
Y1(t). Similarly, we can consider the lines

`Y0(k) = {(2k, v)|v ∈ R} ,
for any fixed 0 6= k ∈ Z, and

`Y0(0) = {(η, v)|v ∈ R} ,
then we have

∪k∈Z`Y0(k) = ∂∞(Mν(K),Y0
) .

Each Lagrangian submanifold `Y0(k) in χ(T 2, Y0) determines a path ˜̀
Y0(k) of

Lagrangian subspaces in the tangent space H1(T 2,R).

Moreover, there is a smooth curve

`µ = π∗(∂∞(Mν(K),Y )) = {(u, v) ∈ R
2|v = f ′(u)} ,

with π : χ(T 2, Y0) → χ(T 2, ν(K)). We can form smoothly varying Lagrangians of

H1(T 2,R), by taking the tangent space along the curve. We denote the resulting

Lagrangians by ˜̀
µ.

Given any choice of two Lagrangians ˜̀± in the tangent space H1(T 2,R)

at the same point on χ(T 2, Y0) we can define the operators that linearize the

monopole equations on the manifolds with boundary V (r) = V ∪T 2 T 2 × [0, 2r]

and ν(K)(r) = ν(K)∪T 2 T 2 × [0, 2r]. More precisely, for a sufficiently large r ≥ r0,

the gluing theorem gives a splitting (A,ψ) = (A′, ψ′)#r(a, 0), and we can consider

the operators (cf. Sec. 4.2) on the extended L2
1 spaces

H(A′,ψ′),˜̀+
: L2

1(P+ ⊕ ˜̀
+) → L2

H(A′,ψ′),˜̀−
: L2

1(P− ⊕ ˜̀−) → L2 ,

where P± are APS boundary conditions [1] on the extended L2
1 forms and spinors.

Suppose we are given a path ˜̀(τ) of Lagrangians in H1(T 2,R), which can be

written in the form ˜̀(τ) = Ta(τ)`, for some Lagrangian submanifold ` of χ(T 2, Y0)

with a regular parameterization a(τ). Assume that, for 0 ≤ τ ≤ 1 the arc a(τ)

of the Lagrangian submanifold ` avoids the lattice of {π−1(Θ)} and the limiting

points of ∂∞(M∗
V ) on the circle χ(V ). Moreover, we assume that we have a and b in

`∩`Y1 and that ` and `Y1 intersect transversely. Assume the arc of `Y1 between these

endpoints is parameterized over the same interval 0 ≤ τ ≤ 1. Moreover, for small

enough ε in the surgery perturbation µ, there are distinct points aε and bε in `∩ `µ.

We can assume that, for ε sufficiently small, also ` and `µ intersect transversely,

and there are parameterizations of the arcs of Lagrangians ` and `µ with endpoints

aε and bε.
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We have the following result, which is the key lemma in the comparison of the

Maslov indices.

Lemma 6.1. With the hypothesis as above, we have

Maslov(˜̀(τ), ˜̀
Y1) = Maslov(˜̀(τ), ˜̀

µ(τ)) ,

where the first Maslov index is computed with respect to the parameterizations with

endpoints a and b, and the second with respect to the parameterizations with end-

points aε and bε, as specified above.

Proof. By applying the properties of the Maslov index (cf. [6, Sec. 1]), we can see

that the claim follows, upon showing that we have

Maslov(˜̀
µ(τ), ˜̀

Y1) = 0

which is obvious by the choice of `µ(τ) and `Y1 .

As a consequence of this result, we obtain the following proposition relating the

relative gradings on M∗
Y,µ and M∗

Y1
respectively. Given a path {(A′(τ), ψ′(τ))|τ ∈

[0, 1]}, and a corresponding path {(a(τ), 0)|τ ∈ [0, 1]}, we can consider the corre-

sponding paths of operators H(A′(τ),ψ′(τ)), H(a(τ),0), and H(A′(τ),ψ′(τ))#r(a(τ),0).

Proposition 6.2. Suppose we are given two irreducible critical points a = [Aa, ψa]

and b = [Ab, ψb] in M∗
Y1
d, and the corresponding elements aε = [Aεa, ψ

ε
a] and bε =

[Aεb, ψ
ε
b] in M∗

Y,µ. Then we have

degY,µ(aε) − degY,µ(bε) = degY1
(a) − degY1

(b) .

Proof. Under the pre-gluing map, we can assume that (Aεa, ψ
ε
a) and (Aεb, ψ

ε
b) are

connected by a path (A′(τ), ψ′(τ))#r(a(τ), 0) (τ ∈ [0, 1]), where we have

(Aεa, ψ
ε
a) = (A′(0), ψ′(0))#r(a(0), 0) ,

(Aεb, ψ
ε
b) = (A′(1), ψ′(1))#r(a(1), 0) .

Then by definition,

degY,µ(Aεa, ψ
ε
a) − degY,µ(Aεb, ψ

ε
b) =

1

r2
SFY (r)(H(A′(τ),ψ′(τ))#r(a(τ),0)) ,

we can compute this spectral flow with the splitting formula on Y (r) from ([5,

Theorem C]). We obtain

εSF (H(A′(τ),ψ′(τ)),˜̀(τ)) + Maslov (˜̀(τ), ˜̀
µ) + εSF (H(a(τ),0),˜̀µ

) .

With the analogous splitting formula on Y1(r), by applying the Capell–Lee–Miller

decomposition of the spectral flow ([5, Theorem C]), we obtain

degY1
(Aa, ψa) − degY1

(Ab, ψb)

= εSF (H(A′(τ),ψ′(τ)),˜̀(τ)) + Maslov(˜̀(τ), ˜̀
1) + εSF (H(a(τ),0),˜̀1

) .
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In both cases, we can assume that we consider the same boundary value problem

(the same choice of Lagrangians) for the operator on the knot complement V . We

choose ˜̀
µ or ˜̀

1 for the operator on the tubular neighbourhood of the knot ν(K). The

previous Lemma shows that the quantities εSF (H(a(τ),0),˜̀1
) and εSF (H(a(τ),0),˜̀µ

)

coincide, and that the two Maslov indices are also the same.

Similarly, we can now compare the relative grading of two solutions in MY0(sk)

with the relative grading of the corresponding solutions in MY,µ.

Again, suppose we are given a path ˜̀(τ) of Lagrangians in the tangent space

H1(T 2,R), of the form ˜̀(τ) = Ta(τ)`, for some Lagrangian submanifold ` of χ(T 2, V )

with a regular parameterization a(τ). Assume that, for 0 ≤ τ ≤ 1 the arc a(τ) of

the Lagrangian submanifold ` avoids the lattice of {π−1(Θ)} and the limiting points

∂∞(M∗
V ) on the circle χ(V ). Moreover, we assume that we have a and b in `∩`Y0(k)

and that ` and `Y0(k) intersect transversely. Assume the arc of `Y0(k) between these

endpoints is parameterized over the same interval 0 ≤ τ ≤ 1. Moreover, for small

enough ε in the surgery perturbation µ, there are points aε and bε in `∩ `µ. We can

assume that, for ε sufficiently small, also ` and `µ intersect transversely, and there

are parameterizations of the arcs of Lagrangians ` and `µ with endpoints aε and bε.

With these hypothesis we have the following lemma, whose proof is analogous

to the proof of Lemma 6.1.

Lemma 6.3. With the hypothesis as above, we have

Maslov(˜̀(τ), ˜̀
Y0 (k)) = Maslov(˜̀(τ), ˜̀

µ(τ)) ,

where the first Maslov index is computed with respect to the parameterizations with

endpoints a0 and b0, and the second with respect to the parameterizations with

endpoints aε0 and bε0, as specified above.

We have the following proposition relating the relative gradings on M∗
Y,µ and

MY0,sk (for k ∈ Z) respectively.

Proposition 6.4. Suppose we are given a = [Aa, ψa] and b = [Ab, ψb] representing

two elements in MY0,sk , and let aε = [Aεa, ψ
ε
a] and bε = [Aεb, ψ

ε
b] be the corresponding

elements in M∗
Y,µ. We have

degY0,sk(Aa, ψa) − degY0,sk(Ab, ψb) = degY,µ(Aεa, ψ
ε
a) − degY,µ(Aεb, ψ

ε
b) mod 2k .

Proof. With the notation as in the Lemma 6.3, we have

(Aa, ψa) = (A′(0), ψ′(0))#(a(0), 0) ;

and

(Ab, ψb) = (A′(1), ψ′(1))#(a(1), 0) .
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We can calculate the relative grading using the splitting formula on Y0(r)

degY0,sk
(Aa, ψa) − degY0,sk

(Ab, ψb)

= (εSF )(H(A′(τ),ψ′(τ)),˜̀(τ)) + Maslov(˜̀(τ), ˜̀
0(τ)) + εSF (H(a(τ),0),˜̀0(τ)

)

We can then compare directly these terms with the corresponding terms in the

splitting formula for the spectral flow of the operators on Y (r), as in the case

of Corollary 6.2. The result of Lemma 6.3 guarantees that we obtain the same

result.

Notice that the results of Lemma 6.3 and Corollary 6.4 imply that the grad-

ing degY,µ defines a choice of an integer lift of the Z2k-valued relative grading of

C∗(Y0, sk) given by

degY0,sk(Aa, ψa) − degY0,sk(Ab, ψb) = degY,µ(Aa, ψa) − degY,µ(Ab, ψb) ,

under the identification MY0,sk ↪→ MY,µ. We will discuss the properties of the

integer lift C(∗)(Y0, sk) of C∗(Y0, sk) elsewhere.
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