Communications in Contemporary Mathematics
Vol. 5, No. 2 (2003) 197-250

© World Scientific Publishing Company

e

World Scientific

www.worldscientific.com

THE GEOMETRIC TRIANGLE FOR 3-DIMENSIONAL

SEIBERG-WITTEN MONOPOLES

A. L. CAREY

School of Mathematical Sciences, Australian National University,

Canberra ACT, Australia
acarey@Quintermute. anu. edu. au

M. MARCOLLI

Maz-Planck-Institut fiir Mathematik, D-53111 Bonn, Germany

marcolli@mpim-bonn.mpg.de

B. L. WANG

Department of Pure Mathematics, University of Adelaide, Adelaide SA 5005, Australia

bwang@maths.adelaide.edu.au

Received 2 April 2002
Revised 14 May 2002

In this paper we prove the surgery formula relating the moduli spaces of solutions of
suitably perturbed 3-dimensional Seiberg—Witten equations on a homology 3-sphere Y
and on the 3-manifolds Y7 and Yj obtained, respectively, by +1 and 0-surgery on a knot

KinY.

Keywords: 3-manifolds; Seiberg—Witten equations; moduli spaces; gluing monopoles;

relative grading.

Mathematics Subject Classification 2000: 58D29, 58E15, 81T'13

Contents

1. Introduction

2. Seiberg—Witten Equations on 3-manifold

3. Monopoles On a 3-Manifold with a Cylindrical End
3.1. Monopoles on T? x [0, 0c) .
3.2. Local structure of moduli space of 1rreduc1ble monopoleb
3.3. Proof of Theorem 1.2 .

4. Gluing of 3-dimensional Monopoles

4.1. Convergence of monopoles on a 3-manifold with a long neck .

4.2. Proof of Theorem 1.3 .
4.3. Metric ..
4.4. Lines in x(T?) .

197

198
201

206
208
218
224

225
227
233
238
240



198 A. L. Carey, M. Marcolli €& B. L. Wang

5. The Geometric Triangle and Proof of Theorem 1.1 242
6. Relative Grading 244

1. Introduction

This paper is part of a program aimed at a better understanding of how the recently
defined Seiberg—Witten—Floer homology for any closed 3-manifold Y with a Spin®
structure s [8, 15, 21, 23, 40] behaves under surgery. The non-equivariant Seiberg—
Witten—Floer homology is constructed from the chain complex generated by the
irreducible critical points of the perturbed Chern—Simons—Dirac functional on the
space of L2-configurations modulo the action of L3-gauge transformations. The dif-
ferential is defined by counting the gradient flow lines connecting the critical points
of relative index one. These critical points are the equivalence classes of solutions to
the Seiberg—Witten equations on (Y, ) modulo gauge transformations. The gradient
flowlines are the equivalence classes of solutions to the Seiberg—Witten equations
on Y x R with the pull-back Spin® structure, modulo gauge transformations. For a
general introduction to Seiberg—Witten Floer theory see [23].

Throughout the paper we are considering an oriented, closed homology 3-sphere
Y and a knot K smoothly embedded in Y. We consider two other manifolds obtained
by Dehn surgery on K: a homology 3-sphere Y7, obtained by +1-surgery on K,
and a 3-manifold Y, which has the homology of S x S2, obtained by 0O-surgery
on K. Our main goal is to establish the existence of an exact triangle relating
the Seiberg—Witten—Floer homology groups of these manifolds. A similar setup for
instanton homology in Donaldson theory was considered in [3], where Floer’s ideas
on the corresponding construction of the exact triangle for instanton homology are
presented.

Because of various technical difficulties intrinsic in this program, we need to sub-
divide the problem into several steps. In this first paper we deal with the “geometric
triangle”, namely we introduce a suitable “surgery perturbation” p for the Seiberg—
Witten equations on Y that simulates the effect of surgery. We use the notation
My, for the moduli space of gauge classes of solutions of the perturbed Seiberg-
Witten equations on Y, My, and My, (s) for the moduli spaces of the perturbed
Seiberg-Witten monopoles on Y7 and (Yo, s), where s is a Spin® structure on Y.

Our main result in this paper is to prove the following decomposition theorem
for My,,.

Theorem 1.1. With a careful choice of perturbations and metrics on Y, Y7 and Yy,
we have the following relation between the critical sets of the Chern—Simons—Dirac
functional on the manifolds Y, Y1 and Yy:

My, = My, U UMYO (sk), (1.1)

Sk

where s;, Tuns over the Spin®-structures on Yj.
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In Sec. 2, we will briefly review the perturbation theory we use to define our
moduli spaces. In this paper, we only introduce perturbations sufficient to achieve
transversality of moduli spaces of critical points. Eventually, when dealing with
the full Seiberg—Witten—Floer homology, we shall need a more sophisticated class
of perturbations that achieve transversality simultaneously for moduli spaces of
critical points and of flow lines. These will be non-local perturbations of the Chern—
Simons—Dirac functional, somewhat similar to those proposed in [15]. We shall deal
with this more refined perturbation theory elsewhere.

In Sec. 3, we will study the Seiberg—Witten monopoles on the knot complement
V =Y — K, equipped with a cylindrical end metric modelled on T2 x [0, o). Fix an
isomorphism between the determinant bundle of the Spin® structure and the trivial
bundle over T? x [0,00). We use the notation x(72,V) for the moduli space of
flat connections on 72 modulo the subgroup of gauge transformations on 72 which
can be extended to V. Notice that x (T2, V) is a Z-covering of the moduli space of
flat connections on T2 modulo the gauge group Map(7?,U (1)), which we denote
by x(T?). In x(T?), there is a unique point © such that the Dirac operator on T2
coupled with © has non-trivial kernel. The main result in section 2 is the following
structure theorem for the monopole moduli space My, .

Theorem 1.2. For generic metrics and perturbations, the moduli space of Seiberg—
Witten monopoles on V, denoted by My, consists of the union of a circle of re-
ducibles x(V) = M4 and an irreducible piece M3, which is a smooth oriented
1-dimensional manifold, compact except for finitely many ends limiting to x (V).
Moreover, there is a continuous boundary value map Oy = 0¥,

x(T%,V)
% l« (1.2)

80
My x(T?),

defined by taking the asymptotic limit of the Seiberg—Witten monopoles on V over
the end. Under s, X(V') is mapped to a circle in x(T?, V'), and the compactification
7\_/[”{/ of M5, is mapped to a collection of compact immersed curves in xX(T?, V) whose
boundary points consist of a finite set of points in 7 1(0)Udw (x(V)). For generic
perturbations the interior of the curve 0. (M3,) is transverse to any given finite set
of curves in x(T?,V).

For simplicity of notation, in the following we shall not distinguish between
x(V) and its embedded image 9 (x(V)) C x(T?,V).

In Sec. 4, we will establish a gluing theorem for the moduli spaces of criti-
cal points of the Chern—Simons—Dirac functional when cutting and gluing the 3-
manifold along a torus. In our case, these are the moduli spaces of monopoles on a
closed manifold which is either Y, ¥7, or Yy. Let v(K) be a tubular neighbourhood
of K in a closed manifold Z, so Z = V Uv(K). We may cut Z along T? and glue in
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a long cylinder [—r,7] x T2, resulting in a new manifold denoted by Z(r). Use the
notation x (72, Z) for the character variety (or moduli space) of flat connections on
a trivial line bundle over T2, modulo the gauge transformations on 7’2 which can
be extended to Z. We denote by x(v(K), Z) the moduli space of flat connections
on ¥(K) modulo the gauge transformations on v(K) which can be extended to Z.
There is a natural map x(v(K),Z) — x(T?,Z). We denote by M3, , the moduli
space of the Seiberg—Witten monopoles on V' modulo the gauge transformations on
V' which can be extended to Z. We have a refinement of the boundary value map
of (1.2):

O i M, — X(T.2). (13)
Then we have the following gluing theorem.

Theorem 1.3. For a sufficiently large r, under suitable perturbations and choice
of metrics, there exist the following diffeormorphisms given by the gluing maps on
the fiber products

#y s My Xy ) X(K),Y) — M3,
#yi MUy, X2 vy X(W(K), Y1) — M5,

#YO : MT/,YO Xx(TQ,Yo) X(V(K)’YO) - UM*YO(T) (5) ’
S

Here, ./\/l”{/(r), ./\/l”{/l(r) and M”{/O(T) are the moduli spaces of irreducible monopoles
on Y (r),Y1(r) and Yo(r) respectively, and s runs over all the possible Spin® struc-
tures on Yy. X(W(K),Yo) is the Z-covering space of x(v(K),Yy) with maps to
X(TQ,YO) given by the action of even gauge transformations on T? representing
HY(T?,Z)/Im(H'(v(K),Z)). The fiber product is taken with respect to the refined
boundary value maps (1.3) from M3, v, My, y, and My, . to X(T?Y), x(T?,Y1) and
X(T?,Yy) respectively.

The proof of Theorem 1.3 is based on balancing the slow decay of certain eigen-
functions of the linearization at the approximate solutions, against the exponential
decay of the finite energy solutions on V' with non-degenerate asymptotic value,
thus obtaining an unobstructed gluing.

Using the gluing Theorem 1.3, together with the construction of the perturbation
i that “simulates the effect of surgery”, we will be able to derive a corresponding
deformation of the moduli spaces, and the expected relation between the generators
of the Floer groups as in Theorem 1.1.

In the last section, we apply the result of Capell-Lee—Miller on the decompo-
sition of spectral flow [5, Theorem C] to study the relative gradings of monopoles
under the identification of Theorem 1.1. We show that the identification of Theo-
rem 1.1 is compatible with the relative gradings on the Seiberg—Witten—Floer chain
complexes (cf. Propositions 6.2 and 6.4).
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2. Seiberg—Witten Equations on 3-manifold

The 3-dimensional Seiberg—Witten monopoles on a compact manifold have been ex-
tensively studied in [7, 9, 14, 16, 17, 23, 24, 27]. In this section we will briefly recall
some of the main features of 3-dimensional monopoles. A 3-dimensional monopole,
as noted first in [16], can be viewed as a critical point of the Chern-Simon-Dirac
functional on an infinite dimensional space (the orbit space of Spin® connections
and sections of the spinor bundle under the action of the gauge group). We recall
the basic setting of 3-dimensional Seiberg—Witten theory, then we will end this sec-
tion with the observation that, under a generic perturbation with compact support
in a fixed open set, the critical points are all non-degenerate.

Let (Y, g) be a closed, oriented Riemannian 3-manifold. A Spin® structure s on
(Y, g) is a pair (W, p) consisting of a rank 2 Hermitian bundle W together with a Clif-
ford multiplication p : T*Y — End (W). If {e1,e2,e3} is an oriented orthonormal
frame for TY, we choose the Clifford multiplication such that p(eq)p(e2)p(es) = 1.

Notice that both choices p(e1)p(e2)p(es) = £1 are adopted in the literature. Our
convention agrees with [29], while the opposite one is used in [15]. These choices
correspond to orientation conventions (cf. [2]): the corresponding Dirac operators
differ by a sign and so do their eta invariants.

With the Levi-Civita connection on the frame bundle of Y, a U(1)-connection
A on the determinant bundle det(TW) determines a Spin® connection V4 on W such
that p is parallel. Applying Clifford multiplication, we can define a Dirac operator,
denoted by @ 4. Then the Seiberg-Witten equations are the equations for a pair
(A, 1) consisting of a U(1)-connection on det(W') and a section 1 of W (¢ is called
a spinor):

{ xFa=0o(,¥) + p 21)

@A(Vﬁ) =0.

Here p is a co-closed imaginary-valued 1-form on Y, and o(-,-) is a symmetric
R-bilinear form W @ W — T*Y ® iR given by

2 .
_ " - * ¢ i
o) = = (W@ 7o) = o~ (vo - 1a) = S ptev,vie
Note that this R-bilinear form o(-,-) satisfies the following properties [8]:

(1) Under Clifford multiplication, we have o (¢, ) - ¥ = —%WJ\Q@D, and (-, ) =
2(a, o(1, 7))y, for a € QL(Y,iR).

(2) o(¢¥,¢) = 0 if and only if on Y — ¢~1(0) ¢ = irt for a real-valued function r
onY —~1(0).

(3) For any imaginary valued 1-form «, o(a - ¥, ¢) + o(¢,a - ¢) = —(Re (¥, ¢)) .

(4) If 9 is a nowhere vanishing section of W, then W = Cy @ 9=+, and o(¢,-)
defines a bundle isomorphism between Rt @ 1+ and T*Y ® iR.

Denote by Ay the configuration space of (Y, ) consisting of pairs (A, 1) with the
completion under L?-norm. The gauge group of automorphisms of the Spin®-bundle
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W is Gy = Map (Y, U(1)) with L2-completion. Gy acts on Ay by
w(A, ) = (A — 20\ du, up)

and the Seiberg—Witten equations are invariant under this action. Denote by By
the quotient space of Ay by the gauge group action. By is an infinite dimensional
Hilbert manifold except at points where the spinor part is zero, which are called
reducible points. Otherwise, points (A,%) with 1» # 0 are called irreducible. As
noted in [16], the Seiberg—Witten equations on (Y,s,g) are the equations for the
critical points of the following Chern—Simons—Dirac functional on Ay-:

€A ) = =5 [ (A= A) A (Fat Fay =250 + [ (0 Dathdvoly . (22)

where Ay is a fixed connection on det(W). Note that C,, descends to a circle-valued
function on By. The set of critical points of C,, on By is denoted by My, (s), its
irreducible critical point set is denoted by My, ,(s)*.

For any critical point (A,%) on Ay, the infinitesimal action of Gy and the
derivative of grad(C,) at (A, 1) define a complex

€] H,
0, (Y, iR) 4w Q1 (Y,iR) ® LI(W) & QL (Y, iR) @ L2(W), (2.3)

where the maps G(4,4) and H (4 ) are given by

Gay)(f) = (=2df, fv),

H(Avw)(a’ ¢) = <*da - 20(1/}7 ¢)7 !3,4¢ + %OK ' w) .

We say that [A, ] is a non-degenerate critical point of C,, on By if the middle
cohomology of (2.3) is zero:

KeI‘H(Avw)/ImG(Aw) =0.

At the smooth points of By, this definition is the same as saying that the derivative
of grad(C,,) at a critical point is non-degenerate. The gradient of C,, can be viewed
as an L2-tangent vector field on By, a section of the L2-tangent bundle over By,
while the tangent space of By at [A,)] is the L2-completion of

KerG’("A’w) ={(a, ¢)|d*a+ iIm (¢, ¢) = 0.}

The covariant derivative of grad(C,), denoted by H{4 4, defines a operator on
Ker G?‘A ») sending («a, ¢) € Ker G?‘A ) o

(*da—?a(t/),(ﬁ)—Qdfa é’A¢+%a¢+f1/f>,

where f is the unique solution to the equation

<d*d+ %W) f=iIm (P 4,6)
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Note that H{4 4 is a closed, unbounded, essentially self-adjoint, Fredholm operator
on the L2-completion of Ker GE‘“ Ay its eigenvectors form an L2-complete orthonor-
mal basis, its L2-spectrum forms a discrete subset of the real line with no accumu-
lation points. Hence, as in [23], the spectral flow of H[4 4, along a path connecting
two critical points defines a relative index on M3.  (s) x M3 ,(s). This relative index
depends only on the homotopy class of the connecting path for non-torsion Spin®
structure (cf. [23, Remark 4.5] and [8, Definition 3.6]).

The following properties about the critical points of C,, are now standard (see
23,9, 14, 17, 19)).

Proposition 2.1. There exists a Baire set of co-closed 1-form u € QlLﬁ (Y,iR) such
that all the critical points in My, (s) are non-degenerate. Moreover, if b1(Y) > 0,
My . (s) consists of only finitely many trreducible points in By; if Y is a rational
homology 3-sphere, assume that a generic u satisfies Ker @y = 0 (where 0 is the
unique reducible point in My, ,,(s), that is, «Fy = 1), then My ,(8)* = My, (s)— {0}
consists of only finitely many irreducible points.

In this paper and sequel work, it is convenient to use a perturbation with support
contained in a fixed open set, so that Proposition 2.1 still holds for perturbations
with compact support contained in a fixed open set. The first such statement was
made in [35, Proposition 7.1] by Taubes, who kindly communicated the proof to
us.

Proposition 2.2. Fiz a non-empty open set U in'Y and a Spin® structure s on
Y. If 5(Y) > 0 and ci(det (s)) = 0, we require that U is chosen so that the
map H*(Y,R) — H?(U,R) is non-zero. Then there exists a Baire set of co-closed
imaginary valued 1-forms p with compact support in U such that all the critical
points of C,, on By are non-degenerate.

Proof. We first study the family version of the critical points of C,, on B3, where
is from a set of imaginary valued co-closed 1-forms on Y with compact support in U.
Denote this set of perturbations as Z (U, iR). Let [y, A, ] be a critical point of C,,.
We need to show that the derivative of the gradient of {C,}.cz(v,r) is surjective.
Namely, consider

Ker Gy ) X Z(U,iR) — Ker G[4 4,

which sends («, ¢, 1) to

<*da - 20—(1/}7 ¢) + M1, 5A¢ + %O{ : 1!]) .
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Suppose that (a, @) is orthogonal to the image of the above map, then («, ¢)
satisfies the following equations:

(1) da+iTm (i) =0,
(2) *da — 20(¢7¢) = Oa
(3) Pad+ o v =0,

(4)  « is exact when restricted to U .

(2.4)

The elliptic regularity implies that («, ¢) is smooth. From (4) and (2) of equa-
tions (2.4), we know that o (1, ¢) = 0 on U. The following lemma due to Taubes [36]
will ensure that o(1¢, ¢) = 0 on Y. Hence, there is a real-valued smooth function f
on Y, such that ¢ = if. Using (3) of (2.4), we obtain

) 1
ﬁA(2f¢)+§@'¢=0
on Y, which leads to & = —2idf on Y. By the equation (1) in (2.4), we get
2d*df + flY)> =0

on Y. Note that ¢»~1(0) does not disconnect any domain in Y (the unique contin-
uation principle for Dirac operator (see [13, pp. 57-58])). Therefore, f = 0 which
implies that (a, ¢) = 0.

From the Sard-Smale theorem, there is a Baire set of u € Z(U,iR) such that
all critical points of C,, in Bj- are non-degenerate for a generic f.

Now we need to prove that the reducible critical point of C, is also non-
degenerate. By the assumption, C,, admits reducible critical point if and only if ¥’
is a rational homology 3-sphere. From the analysis in [23], we know that, in order
to achieve the non-degenerate condition at reducible critical point, u is required to
be away from the codimension one subset Z(U, iR) where the corresponding Dirac
operator has non-trivial kernel. This completes the proof of the Proposition. Now
we give the proof of Taubes’ lemma. O

Lemma 2.1 (Taubes). Let (A4,9) and (a, ¢) as above, where (A, 1)) is a solution
to the Seiberg—Witten equation (2.1) and (o, @) satisfies (1)—(3) of (2.4). Then ¢ =
oy, @) obeys an equation of the form

Ag=H g+ K -Vq

at all points where b # 0. Here A is the Laplacian on differential 1-forms and H
and K are linear maps that depend implicitly on 1. The set of points where 1 #£ 0
s a path connected open dense set in'Y . The unique continuation principle applies
to q so that q cannot vanish on U without vanishing everywhere on Y .

Proof. Apply the Laplacian to ¢ = o(¢, ¢). We have the following expression of
Ag:

Ag=0(AP,¢) + o (¥, A¢) +20({Vat), Vad}r-y), (2.5)
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here A acting on spinors is V4V 4, and {Vav, Va¢}r-y is the pairing using the
metric on T*Y . Now invoke the Weitzenbock formula for the Dirac operator,
" k1
PaPa=—0+ 5 —5p(xFa),

where £ is the scalar curvature on Y. Thus, from the Dirac equations for ¢ and ¢,
we obtain
K

Ab = 5= S(F) 0,

1 1 1
D¢ =6 = 5(+Fa) - ¢+ 5(d" ) — S (xda) -1 = V50,
here V49 = {a, Vayp}r-y. Plug these two equations into (2.5), and note that
o, (@*a)p) = 0 and o(p, ~L(+da) - 1) = pl%g. We get
Ba= (54 107)a+ o (~50Fn) 0.0) 4o (05050 - 0)
+20({Vah, Vadlr-y) + o(¢, =V54) (2.6)

= (5 + W) -+ *Fa(Re (4,6)) + 20({Vav, Vad}r-y) + 0 (4, ~V50)..
Write ¢ = iry + A where r is a real-valued function on Y and Re (), i) = 0, then
Re (¢, ¢) = Re (¢, ),
c({Vah, Vadtry) =o({Vay,Varlr-y) + o({Vay,idr @ P}r-y).

Hence (2.6) can be written as
K
Aq = (5 + V) q+ «FaRe (1, 1))

+20({Vat, Var}rey) + o0, =V§T2 ). (2.7)

To complete the proof, we only need to show that A\, V o\ and « + 2idr can be
written as combinations of linear maps on ¢ and Vq. On the set of points where
Y #0, Q=Y —471(0), we write ) = |[|71 where 71 is a unit-length spinor.
Choose a local basis {71, 72} for the Spin® bundle, so that Clifford multiplication in
the local orthonormal coframe {e!,e?, 3} for T*Y is given by

(i0 (0 -1 (0 i
p(61)<0 —i>7 P(@)(l 0)7 p(63)<i 0>’

2

where {e!,e2, €3} can be expressed as

el = —2io(my, 1), % = 2io(r,im), > = —2io(r1,72).

Write A = ur + vrp for a real-valued function v and a complex-valued function
v, then

1= 0($.9) = lyl(ue! — Tm (0)e? + Re (0)¢%).
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On Q, 0y = (%, -) defines a bundle isomorphism between
R-¢®(Cy)" - TY ®iR.
Thus, we obtain that \ = ail(q), and
VA= (Vo)) + o, (Va).
Let b = a + 2idr, then from (3) of (2.4), we have
by ==20,A,

as A can be written in terms of ¢ and Vg, so is b. This completes the proof of
Taubes’ lemma. O

3. Monopoles on a 3-manifold with a Cylindrical End

In this section we use techniques developed in [26] to study the moduli space of
Seiberg—Witten monopoles on the knot complement V' endowed with an infinite
cylindrical end 72 x [0, 00). Our main aim is to present the proof of Theorem 1.1.
Before we give details, we present an overview of the section, introducing notation.

Consider the three-manifolds V' and v(K), respectively the knot complement
and the tubular neighbourhood of the knot K in the homology sphere Y. Both
are 3-manifolds with boundary a torus 72. On T? we use the standard flat metric
induced from R?. Equip V with a cylindrical end metric and a Spin°-structure s with
trivial determinant along the half cylinder 72 x [0, 00). This amounts to a choice of
an asymptotic framing condition (cf. [28], [11, Definition 3.5], [32, Sec. 4.1.1]) on V.

More precisely, an asymptotic framing condition is given by a fixed trivialization
of the determinant bundle det W over the cylindrical end 9V x [0, c0)

¢y:C x (0V x [0,00)) = det W‘BVX[O,OO) . (3.1)

Two asymptotic framings are equivalent if they are related by a bundle isomorphism
T : W — W over V. Topologically, an asymptotic framing condition is equivalent
to the choice of a relative Euler structure in the sense of [37, 38]. From now on, we
assume that a Spin® structure s on V' is endowed with a fixed asymptotic framing
¢y as given by (3.1).

The perturbed Seiberg—Witten equations on (V) s) are the equations

*Fa = o)+,
{ ) 52)
aA,(/J =0 )
for a pair (A,%) consisting of a L7 . U(1) connection on det(W) and a L7,

spinor section ¢ of W. The perturbation term p is a co-closed and imaginary value
1-form with compact support contained in a fixed open set U C V — (T2 x [0, c0)).
We denote the corresponding class of perturbations by Z (U, iR)

We define the energy of any Seiberg—Witten monopole (4,1)) to be

/V |Fa)?dvoly < oo, (3.3)
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Let My denote the Seiberg—Witten moduli space of solutions of the equa-
tions (3.2) with finite energy condition modulo the gauge transformations Gy =
Mapy;, (V.U(1)).

c

The flat connections on the determinant bundle, modulo the even gauge group
Gr2 = Map (T%,U(1)), form a torus

x(T?) = HY(T? R)/2H(T?,7Z),

which is a Zy x Zg cover of the standard torus Hom(my(7?),U(1)) = R?/Z?. In
fact, x(T?) is the quotient of the vector space of harmonic 1-forms on 72 modulo
the group of even characters of T2 and there is a holonomy map

hol : x(T?%) — Hom(H,(T?,Z),R/Z) = H,(T*,R)/H (T, Z).
Then the identification x(7?) = H'(T? R)/2H*(T?,7Z) is given explicitly by a map
®:x(T%) — H'(T?,R)/2H(T?, Z)
which is a lift to the Zg x Zg cover H*(T? R)/2HY(T?,Z) — HY(T?,R)/HY(T?,Z)
of the map hol,
HY(T?,R)/2H" (T?,Z)
® l (3.4)

x(T?) —— HY(T%, R)/H (T2, Z).

The tangent bundle of T? is equipped with a natural framing (cf. [38, Sec. 1.2])
which identifies it with the trivial bundle C := C x T2 and determines the trivial
connection ©. For any Grz2-gauge class of a flat connection A on C, we have ®(A) :
Hy(T?,Z) — R/2Z given by
(®(A),c) = % (A—©)mod2Z, Vee HYT?7Z). (3.5)
(&

Let x(T2,V) be the moduli space of flat connections modulo the subgroup of
the gauge transformations on 7% which can be extended to V. This subgroup can
be viewed as the image of asymptotic values of Gy in G2, that is, the connected
components of Gz corresponding to the image of the map H'(V —[0,00) x T2, Z) —
HY(T? Z). Let m denote the quotient map 7 : x(T?, V) — x(T?), which is a Z-
covering map.

Suppose we are given a smooth solution (A, 1) of the Seiberg—Witten equations,
satisfying the finite energy condition (3.3). Then we will see that there is a choice of
a connection A in the Gy -gauge class of A that approaches a flat connection on T2,
while the corresponding spinor ¢ vanishes in the limit on the cylindrical end. That
is, if s is the coordinate on [0, 00), we will show that lim,_ .o (A, ) = (aes,0) in the
appropriate topology, for each finite energy solution (A4,1) to the Seiberg-Witten
equations (3.2). Thus the asymptotic limit of the Seiberg—Witten monopoles on the
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manifold V' with a cylindrical end defines a boundary value map Js:
(T%,V)
X\,

% lvr (3.6)

Boo
My x(T?).

Here the lift 9 to x(T?,V) depends on the choice of the asymptotic framing ¢y
as in (3.1).

We will show that, in a suitable topology, this boundary value map is well-
defined and continuous. Then, we will describe the structure of the moduli space
My .

3.1. Monopoles on T? X [0, c0)

We begin with the investigation of the behaviour of the solutions of the Seiberg—
Witten equations on the cylindrical end T2 x [0, 00). Fix an asymptotic framing and
a flat background connection Ay on the determinant bundle det(W') with asymp-
totic limit ag.

Lemma 3.1. Choose the coordinate s € [0,00) on the cylindrical end T? x [0, 00).
Choose the Spin® structure over T?x [0, 00) to be the pull-back of the Spin® structure
on T? with trivial determinant, induced by the complex structure. We can write

(A, ) as
{ A= Ao+ a(s)+ h(s)ds,
) = (als),B(s)) € A & A® =T(W),

where a(s) = ab%(s) + a®1(s) € AY(T?,iR), h(s) € A°(T?,iR). Then the Seiberg—
Witten equations (3.2) can be written in the form

9a’1(s)

Os

<z‘(0”'s+h) 3 ) (a) N
8(1(5) _Z(as + h) ﬁ

where w is the area 2-form on T? with sz w=1.

Proof. We may choose a trivialization of the cotangent bundle to T2 x [0,00) so
that, using a full-stop to denote Clifford multiplication by a one form, we can make
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the identifications:

(i 0 ) (0 —1) (o z)
ds. = , dzr.= ,  dy.= . (3.8)
0 —1 1 0 i 0

Letting the Hodge * on forms on T2 x [0,00) be denoted by #3, then under the
preceding identifications we have

{ o=
#3(0($,9)) = 5 (ol = |B*)w —i(aB + aB) A ds
FA = FA0+a + (dT2h - 6361/) /\dS,
hence we get
i
Fagta = §(|0¢|2 — 161w,

9a%1(s)
0s
The form a(s) € AY(T?,iR) is uniquely determined, as an iR-valued 1-form, by
its (0,1)-part a®! € A%Y(T?). Similarly, the Dirac operator on T2 x [0, 00) can be
expressed as

=iaf + Oh.

(s + h) o
aa(s)+h(s)ds = _ )
8a(s) —2(68 + h)
This gives the Dirac equation as in the lemma. O
Let (A,%) be an irreducible solution of the Seiberg—Witten equations on the

manifold V. Along the cylindrical end T2 x [0, 00) we can use Lemma 3.1 to write
the Seiberg—Witten equations in the form

0,0t = iaf + Oh,
0,0 = ié:(s)ﬂ — ha,
s = _iga(s)a —hg,

with the constraint F, = £(Ja|? — |3|?)w. These equations are gauge-equivalent,
through a gauge transformation in Gy, to the following equations:

0,a”! = iaf,
dsar =10} B, (3.9)
s = _iga(s)aa

on the configuration space A2 of triples (a, v, 3), where a is a U(1)-connection on
det(W) and (o, 8) is a section of Spin® bundle W over T2. The following lemma
shows that (3.9) can be interpreted as a gradient flow equation.
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Lemma 3.2. The equations (3.9) are the downward gradient flow equations of the
Gr2 = Map (T?,U(1))-invariant functional

fla, o, 8) = — / (o, i B)w (3.10)

T2

on the space Arz, where the product {,) denotes the natural inner product using
the Hodge star operator.

Proof. Direct calculation shows that we have
V fa,a, B) = (—iaf —iafB, —i0d3,i0.c) . m|

Critical points of the functional (3.10) with the condition F, = %(|a|? — |3]?)w
are all the elements (a0, 0,0), with as a flat connection. This critical point set is
denoted by x(T?), the quotient space of flat connection by the even gauge transfor-
mation. If (A(s),4(s)) is a solution to the Seiberg-Witten equation on [0, c0) x T2
in temporal gauge, then

(A(s),9(s)) = (Ao +a"? + ", (o, B))

satisfies the gradient flow equation of f as given by (3.9).
The next few lemmata describe some fundamental properties about the solution
to the Seiberg-Witten equation on the cylinder over T2 in temporal gauge.

Lemma 3.3. Let v(s) = (A(s),¥(s)) be a solution to the Seiberg—Witten equation
on [s1,s2] x T? in temporal gauge, then

/ IV F )2 gy ds = / (VAP + |Fal?)d vol.

S1 [31 732] xT2
Proof. Since (A(s),9(s)) satisfies the Seiberg—Witten equation on [s1, s2] x T

{ﬁA¢:07
*FA :U(ﬁ’a?/f)

The Weitzenbock formula for the Dirac operator on [s1, sa] X T? with flat metric
then gives

1
Dadat =VaVay = S(+Fa) -4 =0.

Take the inner product of both sides with 1, use the Seiberg—Witten equation, and
note that ((—* Fa) -, ¢) = 2(xFa,0(, 1)) = 2|Fa|?>. We obtain

1
§d*d|¢|2 +|Vay]? + |Fal>=0.
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Integrating the above identity over [s1, s3] x T, we can write the result as
/ (IVaY]? + |Fal*)d vol
[31,82] xT2

1 1
— __/ dxdjy|> = ——/ (0s (b, b))w
2 J(s1,80)xT? 2 Jo(ls1,52]xT2)

= [ e i@ s = [ a0, ).

T2
Here we write ¥(s) = (a(s),3(s)) as a spinor on T? and use (3.9) for 2. Note
that v(s) = (A(s), a(s), 5(s)) solves the gradient flow equation of f, hence

/ I )]s

= [ s i@y s = [ o). it e

T2
—/[ | T2(|VA¢|2+|FA|2)dV01. O
81,82 X

Lemma 3.4. Let v(s) = (A(s),9(s)) be a solution to the Seiberg—Witten equation
on N = [t—1,t+1]xT? in temporal gauge for any t € [0, 00). If [, |Fa|*dvol = Ex,
then there exists a constant Cy such that the following estimates hold

/ |V a|?dvol < Cov/En ;
[t—3,t+1]xT2

t+3
/ IV £(4(5))|2ads < Cor/Eny + Ex -
t

1
-3
Moreover, if (A(s),9(s)) is a solution to the Seiberg—Witten equation on [—1,00) x
T? in temporal gauge with finite energy, then the corresponding flowline on Ar> of

f has finite variation of f along [0,00) x T?.

Proof. From the L?-bound on |F4|, we immediately obtain a L*-bound on % from
the Seiberg—Witten equation,

1
[l ey = /N |op|*d vol = 1 /N |Fal2dvol.
By the Cauchy—Schwartz inequality, we get

V2
112y < VVOUN) Yl Lavy = - IFallz -

Here we use that Vol(N) = 2. In the proof the previous lemma, we found that
satisfies

1
§d*d|¢|2 + [Vav]? + [Fal> =0.
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Multiplying both sides of the above equation with a cut-off function p which equals
lon[t— %, t+ %] x T? and vanishes near the boundary of N, and then integrating
by parts, we obtain

1 . V2
IVAYIE (ot 143102 < 3 _/Nd d[yp[* pdvol < Cil[9[[72(ny < — CillFallz2vy

where C is a constant depending only on the cut-off function p. Putting the above
inequalities together we get the estimates as claimed with Cy = gC’l.

The finite variation of f along [0,00) x T? for a solution on [~1,00) x T? is
the direct consequence of adding up over a sequence of middle tubes of length 2,
namely, {[i — 1,i+ 1] x T?|i =0,1,2,...}, hence

/O N

(oo} oo
—1 -1

Lemma 3.5. Let (a(s),a(s), 3(s)) be a monopole on T? x [0, 00) with finite energy

/ |F|2dvol < oo.
T2 x[0,00)

Then there exists a sequence {sn} such that lims, o0 (a(sn),a(sy),B(sn)) exists
and represents a point in x(T?).

Proof. Write the curvature of a(s) on T2 x [0, 00) as Fy(s) — 0s(a(s)) A ds, where
Fy(s) is the curvature on T?. Then we have the following calculation:

/ |FPdvol = / (Fuioy? + 105 (als)))d vol,
T2 x[0,00) T2 x[0,00)

which implies that as s — oo,
[Fas)l = 0, [0s(a(s))] — 0.

By Uhlenbeck’s weak compactness result and the compactness of x(7?), we know
that a(s) weakly converges to a flat connection.
By the monopole equation on T2 x [0, 00), we also obtain

la(s)]? — |B(s)]* — 0, a(s)B(s) — 0.
This implies that [a(s), a(s), 3(s)] converges weakly to a point in x(7°2). O
To establish strong convergence to a point in x(7?) for any finite energy
monopole on [0,00) x T2, we need to apply L. Simon’s type result of “small en-

ergy implying small length” as in [26]. We will address this issue at the end of this
subsection.
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Let 90T2 be the based gauge group on det(W), that is, those gauge transforma-
tions which equal the identity at a fixed based point. Denote by BOT2 the quotient
space of A2 by the free action of 90T2. Note that the gradient flow of f preserves
the constraint F, = %(|a|? — |3?|)w, hence we can consider gradient flow lines of f
restricted to

rs = { (@0 B)IF. = Sal? = 197} /98-

as a subset of Bgﬂ.

The space Cr2 is a singular space, the singular set consisting of [a, a, ] where a
is a flat connection and («, ) is a spinor section satisfying the pointwise condition
|a] = |5]. We want to study the asymptotic behavior of finite energy monopoles on
T? x [0, 00), that is, the asymptotic behavior of the gradient flow of f restricted to
Cr2.

If we consider a neighborhood of C72 in the whole configuration space B%z, this
introduces new critical points which consist of the [0, a, 8], with © € x(T?) and
(a, B) satisfying

a8 = dola) = 35(8) = 0.

Note that there is a unique point © € x(7?) with ker (Jg + 9%) non-trivial, which
satisfies

Ker Jo = Ker 0§ =

Since we are only interested in the behavior of the monopoles on T2 x [0, 00),
among flowlines of f on %%2, we only study those that flow to the critical manifold
X(T?). The Hessian operator of f at the critical point [awe, 0, 0] in x(T?) is given
by

Qlace.0,0/(a1, 01, 81) = (0, =i} _p1,i0a, 1), (3.11)

where (a1, a1, 1) is a L3-tangent vector of BY., at [a, 0, 0], that is, (a1, a1, £1) sat-
isfies the condition d*a; = 0, and we view (0, —i0;_ 1,10, 1) as a L>-tangent vec-
tor of B%z at [0, 0,0]. Then the following lemma is obtained by a direct calculation.

Lemma 3.6. For as, # © in x(T?), f is non-degenerate at a~, in the sense of
Morse-Bott, that is, the Hessian operator Q at [aso,0,0] is non-degenerate in the
normal direction to the critical manifold in the tangent space of 3%2 at [aso,0,0].
At the point ©, the kernel of the Hessian operator is given by

HY(T?iR) @ Kerdo @ Kerd = C*.

Let Ug be a small open neighbourhood of © in x(7?). For any point as €
X(T?)\Ue, the spectrum of Q.. = Qlawe,0,0) (as a first order elliptic operator
(3.11)) is discrete, real and without accumulation points. Let p,. > 0 be the
smallest absolute value of the non-zero eigenvalues of the Hessian operator ), -
Now we can establish the decay estimate for the Seiberg—Witten monopoles along
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the cylindrical end of V. The first exponential decay estimate is for a solution to
the Seiberg—Witten equation on [0, R] x T2 (R > 1) which is near a critical point
in x(7?).

Lemma 3.7. Suppose that x(s) = [a(s),¥(s)] is a flow line of f, corresponding
to an irreducible finite energy monopole on T? x [0, R] in temporal gauge. There
is a representative (A(s),1¥(s)) which is gauge equivalent to (aso,0) + (b,n), where
[a00,0] # ©. There exist positive constants €,8,Cy such that, if (b,n) has L? -norm
less than € on any s-slice, then

[(b(8)sn(s))ll L2 (r2y < Cr(exp(—ds) + exp(—d(R — 5)))

on any constant s-slice (s € [0, R]).

Proof. Write A = (b,n), then X satisfies the following equation:
OsA = Qa A+ n(N),

Here n() is second order in A with ||n(A)[|z2(r2y < €l|A]|2(72) and Qa., = Q[a.. 0,0)-
Note that the flowline of f on x(T?) is static, hence we can establish the analogous
result as [26, Lemma 5.4.1] as follows.

Let Ay denote the projection of A onto the eigenspaces of @), with positive and
negative eigenvalues. Let ||| be the functions on [0, R] given by the L?(T?)-norm
on the s-slice of [0, R] x T2. Then we have

sl ll = (pas — A4 + €Al = 0;
O | A~ + (Hawe — Al = €A+ < 0.

When € < 4, from the above inequalities together with the comparison principle
(cf. [35, Lemma 9.4]), we obtain that the L?-norm of X\ on the s-slice is decaying
exponentially with decay rate 6 < p,__ /2. Then the claim of the lemma follows
from the standard bootstrapping argument. O

Proposition 3.8. Suppose that y(s) = [a(s),¥(s)] is an irreducible flow line of f,
corresponding to an irreducible finite energy monopole on T? x [0,00), with asymp-
totic limit [as0,0,0] where [as] # © € X(T?). Then, there exist gauge representa-
tives (a(s),1(s)) for ¥(s) and as for [aeo,0,0] such that (a(s) — aso,¥(s)) decays
exponentially along with its first derivative as s — oo.

Proof. From Lemma 3.4, we know that the variation of f is finite, that is,
(oo}
[ IT O e ds
1

is finite. Then we have the following estimate, whose proof is analogous to the proof
of [27, Lemma 6.14]. We sketch the proof here.
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Claim. There exist constants Ey and C such that for any R > 1, and for y(s) =
(A(s),%(s)) any solution to the Seiberg—Witten equation in temporal gauge on
[0, R+ 1] x T? satisfies

R+1
/0 IV £ (4(5) |22y ds < Fo.

Then we have the estimate
R R+1
J IV s < € [ IV SO acrayds.

Proof of Claim. Let v(s) = ((A(s),%(s)) be a solution to the Seiberg—Witten
equation on N = [s1,s2] x T2 in temporal gauge, then from Lemma 3.3, we have

[ IV By = [ (V4P + PaPd vl

51 [s1,82]xT?

Denote by

E= [ IVI00) oy ds

— [ G047 + .v)dvol.
N
Then we have the following estimates
IFallzy S VB 19]740v) = 20Fall vy < 2VE.

We proceed as in [27, Lemma 6.14] and differentiate the Seiberg—Witten equa-
tions to get

d0s A = x0(0s1), 1))
D05 + (0, 4) - =0.
The gauge fixing condition implies that
d*(0sA) + i Im(ds1p, ) = 0.

Introduce a cutoff function p identically equal to 1 on the middle third piece of
N and vanishes near the boundary such that |dp| is at most Py
universal constant. Set (V, A) = (pdsA4, pds1p). Then we can estimate the quantity

SW(V,A) = (dV — xa(M\), P4(N) + V -0, d*V + i Im(X, 1))

where M is a

by

ISW (VN[22 < (105 AlIZ2 () + 1059172y -

(s2 —s1)?

Here C is a universal constant depending only on p.
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On the other hand, we can estimate

1 *
ISW (VM2 () = 5NV vy + 12422 + 14V 2 ()

=2(llo (X )2y + IV - 9122y 1IN, ) 172 )

Assume that [ = s — s1 < 1, then the Sobolev multiplication theorem and Sobolev
embedding theorem imply that there are constants Cy and C; such that

oA )1 72(ay < CollMZaea 1912y
< CIVE| M2 () -
Similarly, by choosing C; appropriately, we have
IV - 6l2ar) < CIVEIV 23y,

||Im<)‘v'¢)>H%2(N) = Cl\/EH)‘H%’;’(N) :
These inequalities imply that
V(122 + 12422y + 1V (122

< SClﬁ(HVH%f(N) + ||/\||%§(N)) + 2[[SW(V, M)I720n

Standard estimate for the elliptic operator (d + d*, @,) can be employed to show
that there is a constant Cy such that

IVIZ2 vy + IMZ2 vy < ColldV 2wy + 124N Z2 ) + 14V (2 v))

+Co(IV 172wy + I 2(0y) -

The Cauchy—Schwartz inequality and the Sobolev embedding theorem imply that
there exists a constant C3 such that

(”V”%Z(N) + ”)‘H%Q(N)) < C3v/s2 — 31(||VH%§(N) + ||)\Hi§(1v)) .
Put all these inequalities together, we have
2CC,

(52— 51)2
+8C1ICVE(IV 122 (n + 1M 2(x)

+CaC3v/52 — st (V122 () + [N 220x)

Then there is a constant Ey and a constant [y satisfying

1 —8C1Cy\/Ey — C2C3+/1y > %

such that if F < Ey and sy — s1 = lp, there is a constant C; with the following
estimate

||V||%’;’(N) + ||)\H%’;’(N) < (105 Al 2y + 0¥ lI72(n)

Cy
||V||2L§(N) + ||>\Hi§(1v) = l_z(”asA”%Z(N) + 1052 () -
0
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Since on the middle third piece N', V|n: = 9sA|ns and A|n/ = 01| n-, this implies
that for any tube N = [s1, s3] x T2 of length Iy and any solution (A(s),%(s)) on N
of energy at most Ey, we have

Cy
||5sA||i§(N/) + ||5s¢||2L§(N/) = g(”asAH%z(N) + 105122 (w)) -

Then the estimate in the claim follows by adding up a sequence of middle third
pieces of tubes (length ly) with the constant C' = 3C,/I3 and E, as above.

With the claim and Lemma 3.7, we can prove Proposition 3.8 using the method
of the proof of [27, Proposition 6.16] and the fact that f is a Morse-Bott function
on %%2 and satisfies the Palais—Smale condition on paths coming from monopoles
on [0, 00) x T2 |

Since x(1?)\Ue is compact, we can set § = + min{/iq. |ase € x(T?)\Ue}. Then,
when restricted to the cylindrical end, any Seiberg—Witten monopole on V' with
finite energy and with asymptotic limit in x(7?)\Ue has an exponential decay at
a rate at least 4.

In order to prove that the boundary value map (3.6) is well-defined and contin-
uous, we need to resort to the “finite energy implies finite length” principle of L.
Simon [34] (see also [26, Corollary 4.2.5]).

Remark 3.9. Given that f is a real analytic function, the work of L. Simon as
explained in [26] can be employed to prove a more general Lojasiewicz inequality
for f at any critical point in x(72). Let v(s) be a flow line of f, corresponding to an
irreducible finite energy solution of the Seiberg-Witten equations on T2 x [0, 00).
Then, there exist constants 0 < b<1land 0 <c¢ < % such that, when s > R > 1,
we have

i () = allze < (19 (a(s)) 1)

FOENT < V()22 - (3.12)

At the smooth critical points in x(7'?), the Lojasiewicz inequalities have the best
exponents b =1 and ¢ = % The direct consequence of these Lojasiewicz inequalities

is the following finite length result for flow lines:

/ 2 19(s)

4
5 || L35 = ZIf(v(s1)) = fa(s2))I-
Now we have a setting analogous to the key results in [26, pp. 60-70] in our

Os

L2

situation. The arguments in [26], adapt to the present context, hence imply that
the boundary value map (3.6) is well-defined and continuous as a map

Oso v = X(Tz).
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In the next subsection, we will study the local properties of the map J. around
the singular point © and the structure of Mj,. We remind the reader that we have
established the exponential decay property of the monopoles in Mj, with asymptotic
limits away from ©.

3.2. Local structure of moduli space of irreducible monopoles

Let Ug be a small neighbourhood of © in X(T 2). In this section, we will study the
local structure of the moduli spaces M3\ (9x0) 1 (Us) and (9x) 1 (Us). Here Ou
is the composition of O and 7 in (3.6).

For the structure of the moduli space M3\ (0) "} (Us), the exponential decay
property implies that we can introduce weighted Sobolev norms in order to study
the Fredholm theory of the linearization of the equations. With § as in the previous
subsection, we define the space

(1) Ais an extended L3 s-connection on det(WW)

‘AVT2 = (Aa 1/’) . 2 . ' ) (313)
' (2) ¢ is an L; g-spinor on W

where extended L2 s-connection means that there exists an imaginary-valued har-

monic 1-form A, in H*(T?,iR) such that A— A, is an L2 5 s-connection on det(WW),

where L27 s denotes the Sobolev norm with weight as in [20]. To be precise, we choose

the weight function es(t) = /2 where 5(t) is a smooth function with bounded
derivatives, such that 0(t) = —dt for t < —1 and §(¢) = dt for t > 1, and for some
fixed positive number § defined as

1 .
0= 3 min{pta,, |as € X(TQ)\UG)}“

The Lz’ k.5 = |lesfll2,x- The weight e5 imposes an exponen-
tial decay as an asymptotic condition along the cylinder. We define the gauge group
Sv,r2 to be the Lg’loc—gauge transformations such that there exists go, € U(1) with
gxtg—1an Lg’ s-gauge transformation.

Assume that x = (A,1)) € Ay 2 is an irreducible (1) # 0) perturbed Seiberg-
Witten monopole on V' with finite energy, where the perturbation is in the form of
Sec. 2 with compact support. Then from the results of the previous subsection, we
can assume further that A., represents a flat connection a, in x(7?)\Ue. Then
the irreducible part of the fiber (9s) *(aso) has a deformation complex

0= ADy (ViiR) & Afy (ViiR) @ L3 5(W) 5 A, (V.iR)® L} 5(W)  (3.14)
where G is the map which gives the infinitesimal gauge transformations:

Gliaw (f) = (=df, f¥)
and L is the linearization

*dow — O'(’l/), d))

L L 0) = 3.15
Aw(a, @) ﬁA¢+%a-w, (3.15)
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of the perturbed Seiberg-Witten equations (3.2) on V. We can assemble the defor-
mation complex (3.15) into the following operator:

(G5, LAYy (ViiR) © L3, (W) — Al (V.iR)® ALy (VR) @ L3,(W)  (3.16)

where (G}, L)(a, ¢) is given by

<€61d*(e5a) + tIm <’l/}7 ¢>7 *do — U(wa ¢)a ﬁAgﬁ + %OZ : 'LZJ) .

With the choice of e5 as in the previous section, (G, L) is a Fredholm operator of
index 0.
The deformation complex for the moduli space My \(9s) ! (Us) is given by

0= TiaSvr2 = ToAyrs 5 Afs (V,iR) @ L3 5(W). (3.17)

These two complexes are related by the fact that (3.14) is a sub-complex of
(3.17) with the quotient complex

0 — Lie (Stab (as0)) > HY(T2,iR) — 0.
Therefore, the virtual dimension of My \(0s) "1 (Ug) at x = (A, 1) is
dim(9s0) (a0 ) + dim H'(T?,iR) — dim Stab (ao) = 1,
where dim (9 ) ! (@) is the virtual dimension of the fiber.

Theorem 3.10. Fiz an open set U in V — (T? x [0,00)). There exists a Baire set
Po of perturbations p on V. with compact supports in U, such that the perturbed
Seiberg-Witten moduli space M, \(9s0) " (Ue) is a smooth, oriented manifold of
dimension 1. Moreover,

oo : M\ (0s0) L (Us) — X(T?)

is an immersion and transversal to any given immersed curves in X(Tz).

Proof. The transversality argument is the same as in the closed case, see the
proof of Proposition 2.2, namely, we look at the deformation complex (3.17) for the
parametrized moduli space My, z(y,ir) to get the transversality for the parametrized
moduli space My, z(y,r)- We then apply the infinite dimensional version of Morse—
Smale theory to the projection My, z(y,r) — Z(U,iR), and obtain that, for p in
a Baire space Py C Z(U,iR), the moduli space M*V’H\(goo)fl(Ue) is a smooth
manifold of dimension given by virtual dimension calculated as above.

We first show that for a generic perturbation p (a co-closed imaginary valued
1-form with compact support in U), the map (G}, L) as given by (3.16) is surjective.
At an irreducible monopole [A, 1] in (Jso) ™ (o) for ane € X(T?)\Us, we will show
that

L:Ker Gy x Z(U,iR) — Ker G}
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is surjective. Suppose that (a1, ¢1) is L?;—orthogonal to the image of the above map,
then (v, ¢) = eas(t)(a1, ¢1) is L2-orthogonal to the image of the above map, hence,
(o, @) is in Li_é and satisfies (2.4) as in the proof of Proposition 2.2. Hence, there
is a real valued function f on V' (with infinite cylindrical end) such that ¢ = if,
a = —2idf and

2d*df + |2 f =0.

daf € L%,—é implies that on 72 x [0, c0), % is in L? ;. Then by Cauchy-Schwartz
inequality
2

~5:0f ds

10~ 1OF < [ eas e S

this implies that for 7" > 0,

/ |f‘2 S Coe2T5
ov(T)

for some constants Cp, C. For [A,1] € (0s) (as), whose asymptotic behaviour
has been studied in the previous subsection, we see that there exist gauge repre-
sentatives (A, 1) and as of [A, 1] and [ac], so that (A,1)) decays to (aeo,0) expo-
nentially at the rate at least £4=, where j,__ is the smallest absolute value of the
non-zero eigenvalue of Q,__ (cf. (3.11)). On T?x [0, o0), write a = 7* (@00 )+t +aldt

with of € Q¥(T?,iR), from the analysis in Appendix of [28], we get

2

of

at ¢

< , (3.18)
L2

Haoo

||a0||CO(T2><[T,T+1]) < Che T3 ,

from some constant Cp. As —22’% = oY, we obtain
of
ot

< Coe 755 (3.19)

Vv (T)

< lim 2|11 88—{ dvol

T—oo Jov(T)

< lim 2 / |f|?dvol
T—oo v (T)

for some constant Cs. From (3.18) and (3.19), and since § < p, /2, we have
< lim 2CC16T(67“%¢//2) =0.

/ d*d(f?*)dvol
|4
1
2 2
/ dvol
oV (T)
T—o0

Now multiplying 2d*df + |[¢|*f = 0 by f and integrating it by parts, we get f = 0,
hence (a1, ¢1) = 0.
The proof that 0, is an immersion and transversal to any given immersed curves

1
2

of

ot

follows from the Sard-Smale theorem.

An orientation of My is obtained from a trivialization of the determinant line
bundle of the assembled operator of the deformation complex (3.17). The trivial-
ization of the determinant line bundle of the complex of (3.14) is obtained from the
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orientation of HY(V) & H}(V'), the cohomology groups of d-decaying forms. In fact,
we can deform the operator H(, ) with a homotopy €1, € € [0,1]. The asymptotic
operator Q4 0,0] is preserved in the deformation. Thus, if the weight § is chosen in
such a way that ¢/2 is not in the spectrum of Q| 0,0], then ([20, 26, Lemma 8.3.1])
we can ensure that the operator H, ) is Fredholm, for all e € [0, 1]. Since the
Dirac operator is complex linear and it preserves the orientation induced by the
complex structure on the spinor bundle, a trivialization of the determinant line
bundle at € = 0 is obtained by the orientation of HY(V) @ H} (V). This in turn
determines a trivialization of the determinant line for € = 1, hence an orientation

of My,. O

Similar results were obtained by [9, 18].

Now we need to understand the local structure of M}, around (9..)~(0). The
center manifold technique developed in [26] is a useful model to study the structure
of (0s) 1 (Us).

We briefly recall a few facts about center manifolds [26]. In general, suppose we
are given a system of the form

i=Qu+N(z), (3.20)

with @ a linear operator acting on a Hilbert space X. Assume we also have the
decomposition X = X}j' ® X, ® &) determined by the positive, negative, and zero
spectrum of the operator (). Let X = X,j ® &, , and consider the projections
e : X — X, and 7, : X — Aj. We denote by Qf and Q. the induced operators
on X,ft and X,.. By construction @, is trivial. The evolution semigroups e=5@% and
es@n | for s > Ry > 0, satisfy

sup max{e‘ssHe_SQI , e7%%]e%@n

SZRO

}<C, (3.21)

for some constant C' > 0. This follows from the bound
1
§inf{‘)‘| | A €spec(Q),A#0}=6>0.

The center manifold theorem (in [26]) states that there exists a map ¢ :
X, — A that vanishes to second order at the origin, and such that an element
Z(s) is a solution of (3.20) if and only if the projection 7.Z(s) is a solution of the
equation

Ze =N (ze + 0(20)) . (3.22)

The center manifold H is defined as H = {z. + o(x.)|z. € X.}.

We now describe explicitly the center manifold and the stable set for the un-
perturbed equations (3.9). In this case, we are considering the operator Qg, the
Hessian of the functional f at the degenerate critical point ©. The center manifold
He for the functional f at the degenerate critical point © is a C2-manifold which
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is invariant under the gradient flow of f, contains a small neighbourhood Ug of ©,
and has tangent space at © given by

HE = HY(T?,iR) @ ker Og ® ker 0 = C3.

Lemma 3.11. At every point x = (a,a, 3) € Hy, the gradient vector V f(a,a, 3)
is tangent to Hy, hence HY is a center manifold of f around ©.
Proof. Using the natural complex structure on 72, we can identify Hg as the
space of constant sections of

AN(T?iR) @ AYO(T?,C) @ A% (T2,C).
For (a,a, B) € HY, we have V f(a, o, 3) = (—iaB3, —i0} 3,i0,c), which is a constant

section. Take (21, 22, 23) as the coordinates on Hg = C3, we have

_ Z123 2122
Vf(z1,22,23) = (_22237_Ta_7) . O

The downward gradient flow of f on Hg, is given by

821 _

E = Z2%23,

0z _ 21z (3.23)
Os 2’

82’3 o zZ122

ds 2

Note that this gradient flow is invariant under the U(1)-action (the constant gauge
transformation):

(21, 22, 23) © e—[{(l) (zl,eiO‘ZQ,eiaz;;).

Lemma 3.12. The quantities |z2|? — |23]2, |21]% — |22|® — |23]? and Im(212223) are
preserved under the gradient flow on He.

Proof. This is a direct calculation using the gradient flow equations (3.23). ]

The stable set of (as0,0) € He is defined to be
Sa..={x € He such that the flowline of (3.23) starting at « converges to (aes,0)}.
The stable set S of f in He is the union of these S,__, for (ax,0) € Ho.

Lemma 3.13. Let (a,¢) = (21,22,23) € Ho. Then (a,¢) € S if and only if we
have

|22|2 - |Z3|2 =0,

|21 — |22/ — |23)* = |ax|? > 0, (3.24)

Im(zleZ;;) =0.
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In particular, (a, ) = (21, 22, 23) € So (the stable set of the point ©) if and only if
|22|* = |2s]* =0,
21? — [2af? — |25 = 0, (3.25)
Im(z12223) = 0.

These equations describe a cone over a torus T? with vertex at ©. Furthermore,
S\{(©,0)} is a 4-dimensional manifold with boundary Se\{(©,0)}.

Proof. It follows from Lemma 3.12 that (a,¢) € S converges to some (a0, 0) as
t — o00. The equations (3.25) define a torus over © and, as |as|> — 0, points
defined by (3.24) approach points in Se. O

As in [26], the restriction of the gradient flow of f to the center manifold provides
a model for the structure of the space of flows with asymptotic values in a small
neighbourhood Ug of ©, in the following sense. Given a point x in He, the stable
set S, at x is defined as

S, = {y € He such that the flowline starting at y converges to x}.

The stable set & = Uzepo Sy defines a refinement of the boundary value map, as
described in the following commutative diagram:

(Bo) ! (Uo) —=——>Us
> T (3.26)
S

Here Y is a map defined by taking a flow line on the stable set S that is exponentially
close to a monopole in () !(Ug). The map I is the limit value map under the
flow line of f on S.

The results of [26] show that if the projection 7.Z(s) of a flow line Z(s) satisfies
an estimate

|8s7eE(s) — V f(me@(s))|| < Ce™%, (3.27)

for all s > Ry, then there exists a unique flow line z.(s) in the center manifold
He that is exponentially close to m.Z(s) for large s > Ry, with the same exponent
0 determined by the smallest absolute value of the non-zero eigenvalues of Qgo.
Moreover, for a flow line Z(s) satisfying

[meZ(s) — aoollLz(r2x(sy) + ITRE(S) || L2 (12 x(s}) < C

for all s > Ry, the projection 7, Z(s) is exponentially small for large s, with exponent
d. The condition (3.27) follows from our explicit construction of the center manifold.
This shows that every flow line in (95,)~!(Us) is exponentially close to a flow line
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in the center manifold. Thus, the refinement T of the boundary map is well defined
and continuous.

The results of the previous discussion and the arguments in [26, pp. 82-100]
imply the following structure theorem for our moduli space My near (9.,)~1(0).

Theorem 3.14. Fiz a metric g and perturbation P € P as in Theorem 3.10. Let
K C My, p be defined as K = (90) " (©), and let K’ denote the subset Y~1(0,0,0),
with T defined as in (3.26). Then, generically, the following holds.

(1) K" is empty and K consists of only finitely many points.

(2) There is a neighbourhood Ug of © in x(T?), such that the following holds.
The moduli space M3, N (o) "1 (Ug) is a smooth manifold of dimension 1, with
boundary K = (0s,)~1(O).

Proof. By the center manifold theorem in [26], the restriction of any finite energy
monopole

[A, 9] € My, (Us) = (9s0) ' (Ue)

to the tube T2 x [Ty, 00) (for a fixed large Tp) is exponentially close to a flow line
in the center manifold starting from the point Y([A,]) given by the refinement
boundary map (3.26). The exponential weight is at least a half of the smallest
absolute value of the non-zero eigenvalues of (Jg + 9). Theorem 3.10 shows that,
for a generic choice of the perturbation, the moduli space M}, (Ug) is a smooth
manifold of dimension 1, away from YT~!(Sg). From the analysis of the center
manifold theorem, since S\{(©,0)} is a 4-manifold with boundary Se\{(©,0)}, we
know that generically K’, if non-empty, is a smooth manifold of dimension given by
the virtual dimension: dim M}, — 4 = —3, so K’ must be empty and M}, (Ue) is a
smooth oriented 1-dimensional manifold with boundary K = (0x)~1(©). O

One useful observation that we can derive directly from the analysis of the center
manifold is the following estimate of the rate of decay of solutions approaching the
singular point ©.

Remark 3.15. Let z(s) = (a(s), a(s), 3(s)) be an irreducible finite energy solution
of the Seiberg—Witten equations on V', with asymptotic value ©, that is, [z] €

5;01(@). Then the rate of decay in the s — oo direction is polynomial with

[(a(s) = ©,a(s), B(s)ll L2 (T2 x{s}) ~ % :

3.3. Proof of Theorem 1.2

From the discussions in the previous subsection, in order to complete our analysis
of the structure of the moduli space My, we only need to prove the following result.
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Lemma 3.16. M;, is compact except for finitely many open ends limiting to x(V'),
the reducible moduli space of V, after a generic perturbation Oso(M3,) can be made
transversal at any interior points to any given finite set of curves in X(Tz, V).

Proof. We first analyze the set of reducible solutions of the monopole equations
on V. The reducible moduli space Mr‘,ed can be identified with the space x(V') of
deformed flat connections over V', modulo gauge transformations, which is diffeo-
morphic to a circle. The asymptotic value map 0 is simply the restriction map,
which is an embedding

Do MY = X(V)) = x(T2, V).

Let x(V) < x(T?,V) be the circle of reducibles on V modulo gauge equiva-
lence, embedded via the restriction map inside the cylinder x (72, V). Fix a smooth
parameterization a(t) of x(V'), consider the family of Dirac operators @,y on V,
twisted with the connection a(t). We can perturb x (V') such that x (V) < x(T2%,V)
is away from a small neighbourhood of the singular point ©. Then we know that
the Dirac operator 5a(t) + 5;* nonT 2 has trivial kernel. The 3-dimensional Dirac
operator @, (a(t) € x(V)) on V may acquire a non-trivial kernel. However, this
only happens at finitely many points on x(V'), for a generic perturbation in Pgy
(cf. [23, Sec. 7]). We show that, if these occur, then the irreducible set M}, has an
open end limiting to such points. If the irreducible set M7, has an open end limiting
to the reducible set x(V'), then the 3-dimensional Dirac operator @, has a non-
trivial kernel: this can be seen by studying the linearization of the spinor part of the
Seiberg—Witten equations. On the other hand, suppose that there is a point a(tg)
on x(V), where the operator @, ;) acquires a non-trivial kernel. We can proceed as
in [23, Sec. 7.3] to analyse the local model of the moduli space My = M3, U x(V)
in a neighbourhood of [a(tg), 0], which shows that there exists an open end limiting
to a(to).

Thus, the rest of the proof of compactness for My = M3, U x(V) is now reduced
to the (by now standard) proof of compactness for Seiberg-Witten moduli spaces
[16, 19, 25]. Transversality at the interior of the 0o (M},) to any given finite set
of curves in x(7T2,V) can also be achieved by a generic choice of perturbation
on V. O

Thus, we have completed the proof of the structure theorem for My (Theo-
rem 1.2).

4. Gluing of 3-dimensional Monopoles

Now we begin to discuss the gluing theory. Suppose that V(r) =V — (T2 x [r, 00))
lies in a closed 3-manifold Z such that T2 splits Z into two components (for example,
V(r) Upz2 v(K)). We identify the solutions of the Seiberg-Witten equations on V'
differing only by those gauge transformations on V' which can be extended to Z,
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and denote the resulting moduli space by My, ;. Then the boundary value map in
Theorem 1.2 has a refinement:

8020 : M*V,Z I X(T2v Z)’

where the notation y(7'?,Z) indicates the moduli space of flat connections on a
trivial line bundle over 72 modulo the gauge transformations on 72, which can be
extended to Z. This gives a refined boundary value map and the moduli spaces
Mj, 7 enjoy all the properties described in Theorem 1.2 for Mj;.

Assume that Z = V(r) Upr2 v(K) where v(K) is a tubular neighbourhood of
a knot K in Z. We denote by x(v(K), Z) the moduli space of flat connections on
v(K) modulo the gauge transformations on v(K), which can be extended to Z.
There is a natural map x(v(K), Z) — x(T?, Z), which realizes x(v(K), Z) as a line
in the affine space (72, 7).

Thus we can define the following fiber product:

My, z X x(r2,2) X(V(K), Z) . (4.1)

This is the main object in the gluing Theorem 1.3. We shall present the argument
for the case of the homology sphere Y. The argument is analogous in the case of Y;
and, up to minor modifications that we shall point out, in the case of Yy as well.

Consider a tubular neighborhood v(K) C Z endowed with a metric with suf-
ficiently large positive curvature inside v(K) and flat near the boundary. When
stretching the neck in Z(r), using the standard pointwise estimate on the spinor
for Seiberg—Witten monopoles we can ensure that, on v(K) endowed with an in-
finite cylindrical end, the only finite energy solutions of the unperturbed Seiberg—
Witten equations are reducibles (with vanishing spinor part). Modulo gauge trans-
formations, these correspond to the moduli space of flat connections on v(K). In
Lemma 4.10, we will show that, if we choose such a metric for v(K) C Y, it is still
possible to have a metric with the same properties for v(K) C Y; and v(K) C Y.

Recall that we have a splitting of Y along the torus 72 as Y = V Up2 v(K),
with OV = 9v(K) = T?. Assume that the metric g on Y is the product metric on a
small neighbourhood of T2, and can be extended to a metric on v(K) with positive
scalar curvature. On both V and v(K') we consider as underlying Spin structure the
one induced from the restriction of the trivial Spin structure on Y. This induces a
non-trivial Spin structure on T2. The corresponding Spin® structures s’, s” on V
and v(K) have trivial determinant. In gluing the Spin® structures s’ and s” on V
and v(K) we can only obtain the unique trivial Spin® structure on Y since Y is a
homology sphere. The same holds for Y;7. In the case of Yy, the gluing of the trivial
structures s and s” on V and v(K) by gauge transformations along the common
boundary T2 provides different Spin® structures on Yp, classified by H?(Yy,Z).

Let Y(r) = V U2 ([=7,7] x T?) Up2 v(K). We can also consider the manifolds
V and v(K) with infinite cylindrical ends as

V Upe ([0,00) x T2),  ((—00,0] x T?) Uz v(K).
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We continue to use the same notation V' and v(K) for the manifolds with infinite
cylindrical ends, as we did in the previous sections.

The proof of the gluing Theorem 1.3 consists of several steps. First, we show
that, upon stretching the neck [—r, 7] x T to infinity, the Seiberg—Witten monopoles
(Ar,%,) on Y (r) approach a pair of finite energy solutions (A4’, '), and (A”,0) on
the two manifolds V' and v(K') with infinite cylindrical ends. Then we construct a
gluing map, under the hypothesis that the gluing takes place away from © in the
character variety x(72). At the end of this section, we justify the assumption that
gluing at © can be avoided.

4.1. Convergence of monopoles on a 3-manifold with a long neck

We need to introduce some ad hoc assumptions on the class P of perturbations
for the Seiberg—Witten monopoles on Y(r), so that it behaves nicely under the
splitting r — co. We consider perturbations of the monopole equations as in (2.1),
induced by the perturbations of the Chern—Simons—Dirac functional. Notice that,
if we choose a perturbation with compact support on the manifold V' with infinite
cylindrical end, this perturbation induces a perturbation on Y'(r), for sufficiently
large 7 > 79, which is supported inside the knot complement in Y (r) (which we
still denote by V).

The convergence result we prove in this section depends on a uniform pointwise
bound on the solutions (A, ) in My () which is independent of r. The argument
for the manifold Y7 (r) is the same. The case of the manifold Yy(r) is also analogous,
whenever Y; is endowed with a Spin® structure that restricts to the trivial Spin®
structures on V' and v(K).

In order to derive the estimates we need, we consider first, for Y a 3-manifold
(either without boundary, or with boundary 7'2) a functional on the configuration
space of U(1)-connections and spinors of the form

) = [ (IVabP + 508+ SIPAR + o) +4l?) do. (02)

Here we consider compactly supported perturbations p of the form described in
Sec. 2.

Lemma 4.1. If (A,) is a solution of the perturbed SW equations
(*FA - 0(¢,¢) — M aAw) = (07 0) )

on a compact 3-manifold Y without boundary, then we obtain

Ev (A1) = / Fanp. (4.3)

Y
If we consider an open submanifold Z C'Y with boundary 8Z = T?, such that the
perturbation p is supported away from 0Z, then for the functional £z, we have

es(A0) = [ Fanu= [ (aios). (1.4)
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where we write the connection and spinor as (a,a, 3) on T? = 0Z. In particular for
a cylinder region Z = T? x [so, s1], and perturbation term u supported away from
Z, we have

fla(s1),a(s1), B(s1)) = fla(s0), a(s0), B(s0)) = Ezu(A, ), (4.5)
where we write (A, ) in the form (a(s), a(s), 3(s)) on the cylinder Z.

Proof. First notice that we have
K 1
[ 10avP v = [ 1940 + F10 = 6Fa 0.0
Y Y

Here the term %(*FA -1b, 1) can be written as —F4 A o(1,1). We also have

[ 15 Ea = otw.0) - P do
Y

:/ |FA|2+|a<w,w>+m2dv+2/ Fa A (o) + 1)
Y Y

Thus, we can rewrite the functional (4.2) in the form

Eu(A ) = [ |940P + 1% Fa— o) = uPdo+ [ Fanp.

The identity (4.3) for a compact manifold then follows. In the case of (4.4) for Z
with 0Z = T2, see the proof of Lemma 3.3, the boundary term is the difference of

/Z (P — (PP aths ) do

and
/Z (IVA%[2 — (V4 Vatb, ) dv.

The last case (4.5) for a cylinder follows, since by the assumption on the pertur-
bation term [ F A p is trivial, and the boundary terms give the variation of the
functional f along the cylinder. |

Notice that the above result allows us to obtain estimates for the L? norms of
¥, Va, and Fyu.

Lemma 4.2. Suppose we are given solutions (A,,1,) of the perturbed Seiberg—
Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation p sup-
ported in the knot complement V-.C Y (r) for all v > ro. Then we have pointwise
bounds

e < R(Y),  [Fa, ()] < C(s(Y))?,

fory € Y(r), where C, k(Y) are constants independent on r.
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Proof. Consider x(Y(r)) = maxycy){—r(y) + C,0}, where x(y) is the scalar
curvature and C is a constant depending only on the perturbation p. Notice that,
by our assumptions on the choice of the perturbation, we can assume that C is
independent of r. The minimum of the scalar curvature also remains constant upon
stretching the cylinder 72 x [—r, 7], so that we have k(Y (r)) = x(Y) for all r > 0.

The Weitzenbock formula provides a uniform bound on the spinors in terms
of the scalar curvature, namely at a point y where |1, (y)| achieves a maximum
we have either 1, (y) = 0 or |¢.(y)|*> < —k(y) + C. The pointwise bound for the
curvature form Fy, follows from the bound on |, | and from the equations. O

Using these pointwise estimates and the results of Lemma 4.1, we obtain L? and
L? estimates.

Lemma 4.3. Suppose we are given solutions (A,,v,) of the perturbed Seiberg—
Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation pu sup-
ported in the knot complement V- C Y (r), for r > ro.

(i) Consider an open submanifold Z C Y (r), with 0Z = T? a slice in the product
region of Y (). Then the values f(ar, ay, By) on 0Z are uniformly bounded inr > rg.
Here the (ar, o, By) are restrictions to 0Z of the solutions (A, .).

(ii) The total variation of the functional f along a cylinder Z, = T? x [—r,7] C
Y (r) is uniformly bounded in r > rg.

Proof. Applying (4.3) together with the assumptions on the perturbation, we
obtain

o< =2 iy < Evr e = [ Fannsc
ro

with k(Y (ro)) = max(—r(y) + C,0), for y € Y(ry). We are using the fact that the
scalar curvature satisfies k = 0 on the cylinders T2 x [—(r — rq),r — 70}, and the
lower and upper bounds by constants ¢, C’ > 0 independent of r > r¢ follow by the
pointwise bound on 1, and F4,_. The constant C’ depends on the perturbation u.

Now consider the case of a compact set Z = V Uy [0,70] x T? in Y (r). Applying
(4.4) we estimate

k(Y (r
e < =00 14, By < E2Arb) = floz + [ Fa

with the boundary term
floz = Farsar5) = = [ (ari05,) doga.

0z
By the assumptions on the metric and on the perturbation we know that on Z¢ =
Y (r)\Z we have £z, > 0, and p = 0, hence €z ,, = floze = —flaz > 0. Moreover,
for Z of the form as above, we have

_CIS/FAT/\,U:/ Fa Ap<C.
z Y (ro)
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Thus we have an estimate
C_C, S f(a’l’va’r‘a/B’I’) S 0.

In the case of the cylinder region Z,., by considering the two components
in the complement Z¢ and arguing as above, we obtain uniform bounds on

flar(r), (), Br(r)) and f(a,(—7r),a,(=r),Br-(—7)). The variation
far(r), an(r), Br(r)) = flar(=7), r(=7), Br(=7)) = €z, p(Ar, Y1)

is therefore uniformly bounded in r > ry. O

Lemma 4.4. Suppose we are given solutions (A,,v,) of the perturbed Seiberg—
Witten equations (2.1) on the compact 3-manifold Y (r), with a perturbation p sup-
ported in the knot complement in Y (r), for r > ro. Suppose given a compact set Z
of the form V Upz [0,70] x T? or v(K) Urp2 [=70,0] x T? in Y (r) with r > ro. Then
we have uniform bounds

IV 4, %0720z < Clr, ), 14, 172(z) < Clr, )

where C(k, 1) s a positive constant, depending on the scalar curvature and on the
perturbation, independent of v > 1.

Proof. In order to derive the estimate for the L?-norm of V 41, we use the result
of Lemma 4.3. We have

K
e <IVabiltas + [ ShoPdv<
z
and
< 1Pl + [ SoePdv < €
C S 2 A, L2(Z) . 4 r VS .
Since the second term is uniformly bounded in r > rg, we obtain the result. O

Notice that the uniform bound on the curvature justifies our choice of the finite
energy condition (3.3) for monopoles on the manifold V' with infinite cylindrical
end.

Now we can establish the convergence result for the Seiberg—Witten monopoles
on Y(r) as r — oo.

Proposition 4.5. Assume that the metric on Y (r) and the perturbation are chosen
as specified in the beginning of this section. Suppose the moduli spaces M”{/(T) (8)
are non-empty for r > 0, and let (A,,.) be a solutions representing elements in

M5y (7).

(a) For any fized compact set Z =V U2 (T? x (0,79]) C Y (r), and for any r >
0, there exist gauge transformations \. on Y (r), such that a subsequence of
Ar(Ar 1)) converges smoothly on Z as r — oo to either a solution (A',)")
with [A’, Y] in My (s), or to a solution (al,,0), with [a_,0] in ./\/lf,e(‘}{) (s") =
X((K),Y).
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(b) As r — oo, the solutions \.(Ay,v,) restricted to the cylinder [—r,r] x T?
converge smoothly on compact sets to a constant flat connection as, on T2,

(c) Let 0-0[A",9'] = a be the asymptotic limit, that is, an element of x(T?,V).
Then there exist two gauge transformations X' and X" on T? that extend to V
and v(K) respectively, such that we have \'a”, = Na'_ in x(T?,Y).

(d) In the case of Yy, we obtain similarly N'a’, = Na', in x(T? Ys). The gauge

transformation (\') "IN over T? determines a cohomology class in H*(Yy,Z)

which is the class C1(det(s)) associated to the Spin® structure s on Yj.

Proof. (a) Suppose we are given a fixed compact set Z = V Upz (T2 x (0,7))
in Y(r). We show that a sequence of elements [A,,1,] of M(Y (r),s,) has a sub-
sequence that converges smoothly on Z to a solution of the equations. The same
result holds for compact sets Z of the form T2 x [—rg, ro] U2 v(K). These results
were essentially established in [16].

The estimates of Lemma 4.3 and Lemma 4.4 show that there is a uniform bound
for the L? norms

[¥rllL2z) < Cls, ), [|Fa,

This implies an L? bound on the connections

Ay = AollL2(z) < C-C(k,p),

L2(2) S C(K},/J) .

with the constant C depending on the fixed compact set Z, and independent of
r > rg. The bound

IVa, ¥rllp2z)y < Ck, 1)

of Lemma, 4.4, together with the L? bound on the spinors, implies a bound on the
L3-norms of the spinors by the elliptic estimate.
Notice that here Z is a compact set of the following form

V Uz [0,70] x T% or  v(K)Ug2 [-70,0] x T?,
thus we have elliptic estimates in the form
[rllr2(zy < CUIVa¥rllr2_ 2y + 1¥rllzz_ (2))

where Z’ is a smaller set Z’ = V U= [0, 7] x T2, for some 7, < rg, cf. [23, Sec. 4.1].
Since we are only taking estimates on a fixed compact set Z of the form specified
above, the constant C' in the elliptic estimate depends on Z but does not depend
on the parameter r of the underlying manifold Y (r). For the elliptic estimate for
the connections, we choose any smooth connection Ay on det(s) over Z and gauge
transformations A, in the identity connected component of the gauge group Gy (),
such that the forms \,.A, — Ay are co-closed and annihilate the normal vector at
the boundary T2. We use an elliptic estimate of the form considered above for the
operator d+d*. Thus, we can bound the L3-norms of the connections on Z, and use
a bootstrapping argument to bound the higher Sobolev norms as in [16, 23, 25].
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Upon passing to a subsequence, we have obtained elements (A,,,.,) that con-
verge smoothly on Z to a solution of the equations. This defines a solution (A’,1)")
on V with the cylindrical end T? x [0,00). The case of v(K) is analogous. With
our choice of metric on v(K), a finite energy solution on v(K) will necessarily be
reducible.

To complete the proof of (a) we need to show that the resulting solution on V
with infinite end satisfies the finite energy condition (3.3). This follows from the
curvature estimate in Lemma 4.4

(b) To prove the second claim, consider the elements =, = (A4,,,) restricted
to the cylinder [—7,7] x T2. Up to a gauge transformation, they can be written in
the form

2:(5) = (a,(s), ar(s), B (s))

The functional f is monotone along the cylinder, with variation

F(ar (1), 0n (), 5o () — F(ar (=), 0 (=), By (—1))
-/ "I (ar(s), n (5), B (5)) | 2ds

By the result of Lemma 4.3, there is a uniform bound, independent of r for the
variation of the functional f along the cylinder,

flar(r), e (r), Be(r)) — flar(=r), ar(=7), Br(=7)) < C.
This uniform bound for
c< gZ,,.,u(Arvwr) < C,

with Z, = T? x [~r,r], gives bounds on compact sets Z C Z, for the L?-norms
IV a, %, |0rl, | Fa, ||, as well as for the L* norm of the spinor. This is enough to
start the bootstrapping argument, with elliptic estimates as before, hence we obtain
smooth convergence on compact sets in Z,. to a solution of the unperturbed SW
equations on T2 x R. Such solution must be a flat connection and the trivial spinor.
This implies £z, ,(Ar,¥r) — 0, hence, using again Lemma 4.1 together with the
estimate (3.12), we obtain that the limit is actually a critical point a, of f.

Thus, up to gauge transformations, the sequence of solutions (A;,,) has
a subsequence (A,,,1,,) that converges smoothly on compact sets to a pair
((A’,4¢"), (aZ,,0)). In the asymptotic limit we get

lim N(A,¢") = Nal, = \'aZ, .
S§—00
In the case of the manifold Yy,
[Nage] = [N'ag]

in x(T?,Yy) imply that x, = [A,,v,] € M;‘,O(T)(sk) where s, corresponds to the
cohomology class

[(\)'N) e HY(T?,2)/H
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where H = Im(i}) + Im(i3) with i%: HY(V,Z) — HY(T?,Z) and i}: H'(v(K),Z) —
H(T?,Z) are the maps induced by the inclusion of the boundary 72 in V and
v(K) inside Yp. m|

This completes the proof of the convergence part of the gluing theorem
(Theorem 1.3) for generators. Namely, we have shown that a gauge class in the
moduli space My (,y(s), for a sufficiently large 7, and perturbation as prescribed,
determines an element in

M*V,Y Xx(T2,Y) x(v(K),Y).

4.2. Proof of Theorem 1.3

In this subsection we will construct an approximate monopole on Y (r) from any
element in M,y X\ (72 y) x(¥(K),Y), and study the gluing that will produce the
corresponding monopole on Y (r) for a sufficiently large r.

First, we define a pre-gluing operation, where we splice together solutions in M5,
and x(v(K)) with matching asymptotic values, via a smooth cutoff function. This
produces an approximate solution (A’,v’)#,(a’ ,0) of the monopole equations on
Y (r) for ((A',9"), (a%,0)) representing an element in M3,y Xy (72 vy x(V(K),Y).

We can assume that (A", ¢")|72x[0,00)cv is in temporal gauge with asymptotic
limit (aeo,0), and there is a gauge transformation A’ on v(K) such that A’ (al2) =
aso as a flat connection on T2. Let (A’,9') = aoo + (a’(s),%'(s)) on T? x [0, 00).
We can choose smooth cutoff functions p,(s) (s € [—2,2]) with values in [0, 1],
satisfying p,(s) =1 for s € [-2,—1] and p,(s) = 0 for s € [1,2] with 0 < p/(s) < 1.

Define the pre-gluing map with values in B(Y (7)) by setting

o = (A, 0) = (A, ¢)#,(a%,, 0)

(A ") on V(r—2)
e b o N (s 4P (5 47) s € [-2,] (16)
N'(al,,0) on v(K)(—r+2)

Definition 4.6. An approximate solution is by definition an element in the
image of the pre-gluing map (4.6). We use the notation

My (as0) 7= 05 (as) C My

Then U(aso,r) is defined to be the image of the pregluing map (4.6) #9 :
M5y (aso) X [aZ,, 0] — B(Y(r)).

00

In order to show that the approximate solutions in U(as,7) can be deformed
to actual solutions of the monopole equations on Y(r), we consider the span of
eigenvectors corresponding to the small eigenvalues of the linearization operator at
the approximate solutions.
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Consider the linearization operator of the Seiberg—Witten equations on Y (r) at
the approximate solution (A’,")#2(a’,,0)

Largn#oaz0) (@ 8) + Garyngoaz, 0)(f)
Har s, 0 (fr . 9) = { )

Glarwn#o(ag, (@ 9) -
We also need the linearization operators of the Seiberg—Witten equations on V' and
v(K) with infinite cylindrical ends, as defined in the deformation complex (3.14),
acting on L? forms and spinors:

Liar yry(a, @) + Garyry ()

Hiar gy (f 0 0) = {G* (@.9)
(A7 )\

L(a’o’C,O) (Oé, ¢) + G(a’O’C,O) (f)
G?a;’c 7O) (a? (ZS)
where the operator L is defined as in (3.15). We think of H(ar yry#0(ar, 0) @S acting

)

H(a’o’c,())(faaagﬁ) = {

on the elements («, ¢) in the L? tangent space of the configuration space over the
closed manifold Y (r). We continue to denote by H4s ) and H a1 0 the operators
defined in the deformation complex (3.17) acting on the extended L? spaces of
connections and spinors, over V and v(K) respectively.

Now we discuss the eigenfunctions corresponding to slowly decaying eigenvalues
of these operators. The model for our analysis of the operator Has 440z 0) 18
based on the work of Capell, Lee, and Miller [4, 5]. With operators differing from a
translation invariant operator by exponentially decaying terms, we shall adopt the
more general setting as in the work of Nicolaescu, [31].

We use the following result, which is the analog in our context of [4, Theorem A].

Proposition 4.7. Assume that a is a point in x(T?) away from a small neigh-
bourhood Ug of ©. Let

N(r) = dim Kerpz(Har, ) + dim Kerpz(Hqz o)) + dim Ker(Qa., ) -

Then, there exists an N (r)-dimensional family of eigenvectors of the operator
Hgr yrywoar gy with eigenvalues satisfying A(r) — 0 as r — oo at the rate at
most 1/r. The dimension N(r,r~ (7€) of the span of eigenvectors of the operator
Har yprygo(arr, 0) with eigenvalues A < =+ s given by

N (r,r~F9)) = dim Kerpz(Har,47)) + dim Kerpz(H(ay o)) + dim €1 N0 £,

where {1 and {3 are the two Lagrangian submanifolds in Ker(Q,..) = HY(T?,R), de-
termined by the extended L solutions of Hiar yry(c, ¢) = 0 and Hay o)(c, p) = 0.

Proof. In order to prove the first claim it is sufficient to check that elements of
HY(T?,R) = Ker(Q,.,) give rise to approximate eigenfunctions on Y (r) with slowly
decaying eigenvalues, that is, with eigenvalues A(r) satisfying A(r) — 0 at most like
1/r. The first statement is then an analogue, in our case, of [4, Proposition 6.B].
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Suppose we are given an element & € Ker(Q,_ ). If x(s) is a cutoff function
supported in [r/2 — €, 3r/2 + €] satisfying x(s) = 1 on [r/2,r], we have an estimate

105 + Qo )XEll 2 v (ryy _ C
[IZRTO) o

This implies a similar estimate for the operator Has y/)#0 (a2 0) 00 Y (r), forr > rg
large enough, since we are assuming that this operator differs from 05 + Q.. by
terms that are exponentially small in 7. This is the setting used in [31].

The second part of the statement can be derived from the asymptotically exact
sequence

0 — K(r~ () = Ker P (Hiar yr)) © Ker$S (Hian o)) = 0 @ fz — 0,

as in the Main Theorem of [31]. Here KC(r~(1+¢)) denotes the span of the eigenvectors
of Har yny#o(ar gy with small eigenvalues that decay at a rate of at least ro (e,

We use the notation Ker$s for the extended L2-solutions, and ¢; for the asymptotic
values of the extended L2-solutions. O

Proposition 4.7 yields the following.

Corollary 4.1. There are no fast decaying eigenvalues, that is, in our problem
N(r,r=(+9) = 0. However, there is a non-trivial family of eigenvectors of the
linearization Har yrypo(ar 0y at the approzimate solution (A", " #0(a,, 0), with
slowly decaying eigenvalues, satisfying A(r) — 0 at most like 1/r.

Proof. We have
dim Kerp2(H s yy) = dim Kerpz(Har 0)) = 0.

Moreover, for a generic choice of the perturbation of the monopole equations on V,
the Lagrangian subspaces ¢1 and ¢ intersect transversely. Thus, we have N(r) =
dim Ker(Q,_.) and N(r,r~ (%)) = 0. The previous Proposition shows that the span
of eigenvectors with slowly decaying eigenvalues is non-trivial. In fact, it shows the

existence of (at least) a two dimensional family parameterized by the elements of
HY(T? R) = Ker(Q,_,)- O

Suppose we are given an element (a, ¢) on Y (r) such that z,. + (a, ¢) is a solution
of the monopole equations on Y (r). Then (a, ¢) satisfies
er ((Z, ¢) + er (G/, ¢) + E(.Tr) =0 )
where X is the error term defined by

S, = (*FA —o(y,9) —u) |
Dat
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as by equation (2.1), and N is the non-linear term
a(o, )
a-¢ .

Though we do not treat the more general case in this paper, we mention that

Nayl(a,¢) = (

one can consider the same argument with an additional perturbation term P(A, ).
In this case, an additional term P(A,%) enters the expression for the error term
Y(x,), and an additional non-linear part NP4 4 of the perturbation

NPay = P((A,9) + (a,9)) — DPa y(a, )

is added to the expression of N4 . This case will be discussed elsewhere.

Choose A = A(r) > 0 such that A(r) is not an eigenvalue of H, =
H s y1y#0(ar, 0y, for all approximate solutions z, = (A", ") #2(a”,,0) in U(ase,T).
Consider the projection maps II(A(r), z,) onto the span of the eigenvectors of Hy,
with eigenvalues smaller than A(r).

The condition that, for a given approximate solution z,., the element ., + (a, ¢)
is an actual solution of monopole equations can be written as a system of two
equations:

I(A(r), 2, )(N (@, ¢) + X(xr)) = 0 (4.7)

Hy, (a,9) + (1 =TI(A(r), z,))(N(a, ¢) + X(zr)) = 0. (4.8)

If the equation (4.8) admits a unique solution (a, ¢), then the condition that x, +
(o, @) is a solution of the monopole equations on Y (r) can be rephrased as the
condition that (4.7) is satisfied, with (a, ¢) the unique solution of (4.8).

The second equation (4.8) can be written as the fixed point problem

(a,¢) = —H;'(1 = II(\(r), 2))(N(a, ¢) + E(z)) - (4.9)
The following result proves existence and uniqueness of the solution to (4.9).

Lemma 4.9. There exists a positive constant C' > 0, such that, if a given approz-

imate solution x, satisfies ||S(zy)| r2(v () < Ce(r)?, for some small and positive

e(r) satisfying e(r) < )‘2%), then the map

To(a,¢) == —H ' (1 = TI(A(r), 2,)) (N (a, ¢) + X(z7))

maps the ball B,y = {(a, ¢)| ||(a,¢)||%%(y(r)) < €(r)} to itself and is a contraction
on Be(r)'

Proof. Let C' > 0 be a constant such that the quadratic term satisfies the estimate

IN(a,¢) = N (@ o)llz2 < C(ll(a. d)llz + 1@ d)ll2)ll(a, 6) = (@, )|l
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independent of r > rg. This follows from the Sobolev multiplication theorem in
dimension 3.
On the image of (1 — II(A(r),z,)), the operator H ' is bounded with norm
bounded by A(r) . We have an estimate for (a, ¢) € B,
1

177 (a, &)l 2 (v )y < )

[N (a, ) + X(@)l L2 (v (r))

Ce(r)?  1Z(@) L2y (ry)

O
2Ce(r)?
< NG| < €(r),

which implies that 7, maps the ball By to itself.
Let (a1, ¢1), (a2, ¢2) € Be(ry, we have

1 7; (a1, 1) — Tr(az, ¢2)l L2(y ()

< ﬁHN(al,gbl) — N(az, é)ll.

< (a1, 1) + (a2 82) 22 (ar, 1) — (a2, 69) 2
=30

< 200 01,60) — ansliz

A(r)

Thus, from €(r) <

5o as chosen, we obtain that 7, is a contraction on B(,). O

Proposition 4.10. For sufficiently large r > ro, and for all approzimate solutions
Zp in U(aso, 1), there exists a unique solution (a, @) of (4.8), such that equation
(4.7) s trivially satisfied.

Proof. For all approximate solutions x, in U(a,r), we have an estimate on the
error term

1Z(@e) | L2y ey < Ce™,

for 7 > 7o, which follows from the exponential decay estimate proved in Propo-
sition 3.8. Thus, we can apply Lemma 4.9, with A(r) = O(r~+9) and €(r) =
O(e=%7/2). By Corollary 4.1 we know that, for A(r) = O(r~(1+9), the projection
II(A\(r),z,) = 0, hence the solution (a,®) of (4.8), provided by Lemma 4.9 also
satisfies trivially equation (4.7). m|

Thus, the resulting element (A’,¢")#,(a’,,0) = z, + (a, ¢) is a true monopole
solution on Y'(r), close to the approximate solution z,. The gluing map for Y3 (r)
can be obtained analogously.
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In order to complete the proof of the gluing theorem (Theorem 1.3), we still
need to address the problem of global injectivity and surjectivity of the gluing map.
Namely, it is necessary to rule out the existence, for each r > 0, of a pair of
monopoles z,;, i = 1,2, on Y (r) which split, as r — oo, into the same pair xy =
[A’,¢'] and (k) = [al,,0].

In fact, it could happen, for instance, that x, ; converges, as r — oo to the pair
(zv,2,(K)) at an exponential rate e~ while 2y converges to the same geometric
limits at a much slower rate, say 1/r. Since the gluing procedure only produces
monopoles that split at an exponential rate, the x, o would not be in the range of
the gluing map. In other words, the range of the gluing map is an open set in My,
and we need to show it does in fact cover everything (cf. [23, Sec. 4] for a more
detailed account of these issues).

In the case of four-dimensional Seiberg—Witten monopoles, this issue was dis-
cussed in [23, Theorem 4.9] as well as in [32, Theorem 4.5.15]. The arguments extend
easily to the present case. Thus, we can state the following result.

Proposition 4.11. Let Z = V Up2 v(K) be Y (r) or Yi(r). For sufficiently large
r >0, the gluing map # z,r : Mv,z Xy(12,2) X(V(K), Z) — Mz, is one to one and
onto.

A proof of global surjectivity of the gluing map for three-dimensional Seiberg—
Witten monopoles was also given in [9, Proposition 3.2.2], and in the Yang—Mills
case in [12, Sec. 7.3].

In the case of Yy, we have to define the gluing maps using different asymptotic
framings (cf. (3.1)) on T? C Yp, as there are a Z-family of asymptotic framings
corresponding to

HY(T?,Z)/(Im (i}) 4 Im (i3)) ,

where i : HY(V,Z) — HYT? Z) and i} : H'(v(K),Z) — H*(T?Z) are the
maps induled by the inclusion of the boundary 7% in V and v(k) inside Y;. These
correspond to a Z-family of Spin© structures on Yy (7). Hence, we have the following
map for Yp:

#vo,r My X2y XEE),Yo) — ) My, (9),
s€Spinc(Yo)

which is an orientation preserving diffeomorphism. Here x(v(K), Yp) is a Z-covering
space of x(v(K), Yy) with mapping to x (72, Yp) given by the Z-family of asymptotic
framings on T2 C Yp.

This completes the proof of the gluing theorem (Theorem 1.3).

4.3. Metric

Concerning the metric after surgery, on v(K) inside Y; we consider the metric g1
as in the following Lemma 4.10, which is due to Liviu Nicolaescu [33].
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Let ¢ = du? + dv? with fT2 du A dv = 472, where the torus T2 is the boundary
of the tubular neighbourhood of the knot v(K) in Y. We introduce a choice of a
metric on v(K) inside Y7, for which we can still derive the result that the moduli
space of monopoles on v(K) inside Y7 consists of the circle of reducibles.

Lemma 4.10 (Nicolaescu). Let A be an element in SL(2,7Z). Suppose we are
given € > 0 sufficiently small. Consider the flat metric on T? given by go = A*g.
There exists a constant ¢ and a smooth path g(s) (s € R) of flat metrics on T? with
the following properties:

5%90, forall s <e and g(s) = g1 for alls > 1—¢;
(i) g1 = g(1) is a metric of the form g1 = kidu® + kodv? with positive constants

(iii) The scalar curvature of the metric § := g(s) + ds® on T? x R is non-negative;
(iv) The metric g1 can be extended to a metric inside the solid torus v(K) with
positive scalar curvature.

Proof. Choose a unit vector d,, with respect to the metric % go, and complete it to
an oriented orthonormal frame. Let {®1, 2} C Q1(T?) be the dual coframe. This
is related to {du,dv} by

p1 =du+apdv o =kdv,

for some positive constant k£ > 0.
The path ¢(s) is defined by requiring that the coframe

v1(s) =du+a(s)dv  pa(s) =kdv

be orthonormal with respect to g(s), where a(s) is a smooth function satisfying
a(s) =0 for all s > 1 — e and a(s) = ag for all s < e. The only conditions that need
to be verified are (iii) and (iv).

We have an orthonormal coframe {pg, 1, p2} on X = T? x R, with respect to
the metric g, with 9 = ds, and a corresponding orthonormal frame {eg, e1,e2}.
The Levi—-Civita connection is of the form

0 =z vy
=] -z 0 =z r,y,2 € QN(X).
-y —2z 0

The Cartan structural equation gives dp = I' A ¢, with ¢ = (o, @1, p2). By
the expression of ¢;, we have

a
dpg = dps =0, dp = ZPo A2, ,
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hence we obtain
TANp1+yNp2 =0,
a
E(po/\g@g:—x/\gz)o—kz/\g@g,

—yANpog—2Np1 =0.

These equations imply

0 @2 ¢

I'= a 0
DY ®2 ®o
—p1 —po O

Thus, we can compute the scalar curvature of § = g(s) + ds? on T? x R which is
3(a/k)? by direct calculation.
Claim (iv) then follows by noticing that any diagonal metric of the form

g1 = k‘lduQ + k‘gdU2

realizes the torus T2 metrically as the product of two circles of different radii. Each
can bound a hemisphere, endowed with a positive scalar curvature metric, thus
extending g1 to a metric on a solid torus, with positive scalar curvature. O

4.4. Lines in x(T?)

In this subsection we justify why it is sufficient to consider the gluing map in
Theorem 1.3 away from the singular point © € x(T?).

Lemma 4.11. The intersection points DM N x(V(K)), with x(v(K)) C x(T?)
the circle of reducibles for v(K) in either Y, Y1, or Yy, are contained in x(T?)\Us,
for some neighborhood Ug of the singular point ©. Thus, the gluing of Theorem 1.3
happens away from the reducible point.

Proof. To study the intersection points d, M3, N x(v(K)) in each of gluing maps
for Y, Y1, or Yy, we need some explicit descriptions of the images of x(v(K)) in
x(T?) with respect to the boundary value map (3.6).

The torus T2 inside Y inherits from the trivial Spin structure of ¥ the non-
trivial Spin structure in which both circles (longitude and meridian) bound, that
is, the one determined by the element (1,1) in H*(T?,Z>).

We choose coordinates (u,v) on H*(T?,R) defined by the property that, under
the projection to x(72) the corresponding (u,v) satisfy

w(A)=14y(4) v(A)=1+z(A), (4.10)
where we have

z(A) = (®(A),m), y(A) = (2(A),0),
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where @ is defined as in (3.5) and m and ¢ are the meridian and longitude. In this
coordinate system, the singular point © is given by the point (1,1).
The embedding 9., (x(V)) C x(T?,V) satisfies

Y(Oso(A)) = /Z<aoo<A>—@> L /Z<¢*V<A\av>—@>ezz+1. (4.11)

= omi ~ omi

This follows [39, Lemma 1.3], by identifying the asymptotic framing with a relative
Euler structure. Thus, the reducible circle x (V) = M:¢? is given in coordinates by
{u=0}.

Let (£y(k), Mu(xy) and (fy,my) denote the pairs of longitude and right-hand
meridian on Jv(K) and 9V, respectively. For a 3-manifold Y;, obtained from Y by
Dehn surgery along K with the framing given by nm, k) + £, (x) € H1(0v(K),Z),
using the asymptotic framing (cf. (3.1)) ¢, (k) given by the relative Euler structure
on v(K), we have

1
By L) (A —0)e2Z+1
27 /mum Py (Alov(r)) — ©) € 22 +
1 o
o (@) (Alawr)) — ©) € 2241,

nmy —Ly

where ¢ : 0V — Ov(K) is the orientation reversing identification that glues m, (k)
to nmy — fy. Since the elements L*gbz(K)(A\ay(K)) are the asymptotic values of
x(¥(K)) in the gluing model for Y;, we obtain that the reducible circle x(v(K),Ys,)
is given by

nz(0Y(A)) — y(0Y.(A)) € 2Z + 1.

Thus, for the unperturbed Seiberg—Witten equations on v(K) C Y, with the
metric of non-negative scalar curvature, strictly positive away from the boundary,
the reducible circle x(v(K),Y) in the gluing model MY,y X\ (12 vy x(v(K),Y) is
given by

Ly = {U = 0} - Xo(TQ,Y) .

Similarly, in the case of Y7, choose a metric with a long cylinder [—r,7] x T2,
which agrees with the original metric on Y when restricted to the knot comple-
ment V, and such that the induced metric in the torus neighbourhood v(K) is as
described in Lemma 4.10, then the reducible circle x(v(K),Y7) in the gluing model
MYy, Xx(2.v1) X(V(K), Y1) is given by

Lyl = {’U —Uu= 1} C Xo(TQ,Yl) .

In the case of Yj, the reducible circles x(v(K), Yy) with respect to the Z-family
of asymptotic framings on T2 C Yj in the gluing model My .y, Xy (12,v5) X(V(K), Y0)
is mapped to a circle {u = 0} C x(7?). Note that

X(T*v(K)) = x(T? V) = x(T?Yy) 2R x S',
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so that x(v(K),Yy) consist of a Z-family of circles given by {u = 2k, k € Z} where
w is the coordinate of R in R x S'. The gluing map on the fiber product

My, Xx(12,v,) {u = 2k}

will correspond to the moduli space My, (s;) where sy, is the Spin® structure with
ci(detsy) = 2k € H?(Yp,Z). For the trivial Spin® structure sg, there will be
a circle of reducible monopoles in My, (sp) resulting from gluing the reducibles
X(V,Y)#{u = 0}. We need to introduce a small perturbation inside v(K) such
that x(v(K),Yy) = {u = n} where n is small number in R for the trivial Spin®
structure sg.

Clearly, in all the cases, x(v(K)) does not go through the singular points
{7=1(©)}, hence there is no need to consider the gluing map at the singular point
O. Note that, after perturbing the metric inside a compact set on the manifold V'
with an infinite cylindrical end, we can make the open ends in My not limit to any
intersection points of x(V) = M4 = {u = 0} with any circle x(v(K)) for either
Y, Y1 or Yp. O

Thus, with our choice of metric as in the previous subsection, and with the
choice of perturbation as in Theorem 3.10, we see that the gluing result stated in
Theorem 1.3 holds for the manifolds Y, Y7, and Y. This completes the proof of
Theorem 1.3.

Remark 4.14. Note that gluing the reducible monopoles on V' and v(K) with
matching boundary condition just gives the extension of the flat connections to
the whole manifold (after a possible gauge transformation). We call this the trivial
gluing. The unique reducible point fy in My is obtained by the trivial gluing of
the unique intersection point between the lines Ly = {v = 0} and {u = 0} =
71 (x(V)) € x(T?,Y). The unique reducible point fy, in My, is obtained by the
trivial gluing of the unique intersection point between the lines Ly = {v —u = 1}
and {u = 0} = 71 (x(V)) € \(T*, Yp).

5. The Geometric Triangle and Proof of Theorem 1.1

In the previous section, we showed that the moduli spaces for irreducible monopoles
on Y,Y; and Y} are given by the gluing maps on the following fiber products:

M5 (1) = Miy Xxazy) {v =0},
;1(7") = M*V,Y1 Xx(T2,v1) {U —u= 1}7

(5.1)
M;O(r)(sk) = My, Xx(12,v,) {u = 2k}, for k #£0,

M;O(T‘) (50) = Mﬂ{/,YO XX(T2’YO) {u = ,'7} I

where (u,v) is the coordinate system on x(7?) and its covering spaces, n > 0 is
a small parameter, and r > 0 is a sufficiently large number. We can study these
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Fig. 1. The geometric triangles.
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moduli spaces on the common character variety x(72,Yp) which can be identified
as a cylinder R! x S*. Specifically we take it to be the domain (see Fig. 1)

{(w,v)lu € R,v € [=1,1]} /{(u, =1) ~ (u, 1)}

in which the lines corresponding to Ly, Ly, and Ly, (sx)(k € Z) are drawn.

In this section, we introduce a suitable perturbation of the curvature equation,
supported in the solid torus D? x S', that simulates the effect of surgery such that
the reducible line corresponding to v(K) C Y is given by the curve v = f/(u) as
shown in Fig. 1.

For a generic perturbation we can assume the curves doo(M;;) stay away from
the intersection points {Ly N Ly,, Ly N Ly,, Ly, N Ly, }, hence oo (M75) is away
from small neighbourhood U of those intersection points. Then we can choose a
function f : R — R such that the curve v = f’(u) is arbitrarily close to Ly, and
Ly, away from the region U. This curve is illustrated in Fig. 1. The closeness can
be measured by a small parameter €, such that as e — 0, v = f’(u) approaches Ly,
and Ly, away from the region U. We suppress the dependence of v = f’(u) on e.

Fix a U(1)-connection Ag representing (0, 0) on x(7'?). For any U (1)-connection
A, define Ty to be

T.(A) ——i/{} (A=A, (» € D?).

Choose a compactly supported 2-form p representing the generator of H? ,(D? x

cpt
S1), such that we have fDQX{pt} p = 1 for any point on S*. Under the isomorphism
HZ,,(v(K)) = H(v(K)), given by Poincaré duality, this form corresponds to the

generator [1] = PD,k)(l). The class of p in H*(D? x S') is trivial, and we can
write p = dv, where v is a 1-form satisfying fslx{pt} v=1,ie v=PDp(l).

Now perturb the Chern-Simons-Dirac functional on v(K) C Y (r) by adding
the term

| s

D2

Then the perturbed Seiberg—Witten equations can be written in the following way:
Fa=x0(, ) + f'(Ta)p
Pa(¥) =0

(5.2)
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Denote by My, the moduli space of (5.2) on Y (r) with generic perturbation from
Py. With respect to the chosen metric on v(K), with sufficiently large positive
scalar curvature on the support of u, the only solutions of the perturbed monopole
equations on v(K) C Y (r) are reducibles (A, 0), that satisty

Fa= f(Ta)u. (5.3)

With these preliminary results in place, we can prove the main theorem
(Theorem 1.1) of this paper.

Proof of Theorem 1.1. This now follows from the previous discussions and the
gluing map (cf. Theorem 1.3). From Theorem 1.3 and the surgery perturbation
(5.2) on v(K) C Y(r), we have

My =My Xy {v = f'(w)}

Since we are gluing away from the lattice of 7=1(©), the limiting points of
the open ends of Mj, and the neighbourhood U of the intersections between the
character lines, we obtain that solutions of the equations (5.2) can be identified
with

My, = MY Xy (r2,y) {either v —u =1, or u=2k,0#k € Z or u=n},

when the curve v = f’(u) is sufficiently close to the line {v —u = 1} on x(72,Y1)
and the lines

{u=2k,0+#Fk e Z}, and {u=n}
on x(T?,Yp) (see Fig. 1). This shows that

My, = My, U My, (si)

Sk

as claimed in Theorem 1.1.

6. Relative Grading

In this section we show that the grading of the Floer complex C, (Y, u), defined
with respect to the unique reducible point 6y, induces compatible gradings on the
Floer complexes C, (Y1) and C.(Yp, s;). The main tools we need in this Section are
splitting formulae for the spectral flow, as in [5, 10, 30]. We shall first set up the
necessary notation.

As in Sec. 5, we will use x(72,Yp) as the common character variety in the
gluing maps of (5.1) and identify x(72,Yy) as the quotient space of R%. On the
space x(T?,Y,) whose tangent space at any point is H(T2,R), we introduce the
symplectic structure: (a,b) — [, aAb, for a,b € H'(T? R). Consider the following
Lagrangian submanifolds of x (72, Yp)

by, = 7 (00 (Mu(r) 1) = {(u,0) € R?Jo —u =1},
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under the identification determined by the covering map
™ X (T2, Yo) — x(T% v(K)).

We can identify this Lagrangian submanifold with a constant path of Lagrangian
subspaces in H'(T?,R), given by the tangent spaces along fy,, which we denote
Ly, (t). Similarly, we can consider the lines

by, (k) = {(2k,v)|v € R},
for any fixed 0 # k € Z, and
Uy, (0) = {(n,v)lv € R},

then we have
Ukezeyo(k) = aoo(Mu(K),Yo) .

Each Lagrangian submanifold fy, (k) in x(T2,Yy) determines a path fy, (k) of
Lagrangian subspaces in the tangent space H'(T? R).
Moreover, there is a smooth curve

by = 7 (Doc (Mogioyv)) = {(,0) € R0 = f(w)},

with 7 : x(T?,Yy) — x(T? v(K)). We can form smoothly varying Lagrangians of
H'(T? R), by taking the tangent space along the curve. We denote the resulting
Lagrangians by l e

Given any choice of two Lagrangians {4+ in the tangent space H'(T? R)
at the same point on x(72,Yy) we can define the operators that linearize the
monopole equations on the manifolds with boundary V(r) = V Uz2 T? x [0, 27]
and v(K)(r) = v(K) Ugpz T? x [0, 2r]. More precisely, for a sufficiently large r > 7o,
the gluing theorem gives a splitting (4, 1) = (4’,¢¥")#,(a,0), and we can consider
the operators (cf. Sec. 4.2) on the extended L? spaces

Hipoyyz, s L3Py @ ly) — L

Hiyyni DAP-@l ) — L2,

where Py are APS boundary conditions [1] on the extended L? forms and spinors.

Suppose we are given a path Z(T) of Lagrangians in H'(T?,R), which can be
written in the form E(T) = Ty (r¢, for some Lagrangian submanifold ¢ of x(T2,Yp)
with a regular parameterization a(7). Assume that, for 0 < 7 < 1 the arc a(r)
of the Lagrangian submanifold ¢ avoids the lattice of {w~1(©)} and the limiting
points of O (M5>) on the circle x(V'). Moreover, we assume that we have a and b in
{Nly, and that ¢ and {y, intersect transversely. Assume the arc of £y, between these
endpoints is parameterized over the same interval 0 < 7 < 1. Moreover, for small
enough € in the surgery perturbation p, there are distinct points a® and b€ in £N¢,,.
We can assume that, for e sufficiently small, also ¢ and /¢, intersect transversely,
and there are parameterizations of the arcs of Lagrangians ¢ and ¢,, with endpoints
a® and b°.
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We have the following result, which is the key lemma in the comparison of the
Maslov indices.

Lemma 6.1. With the hypothesis as above, we have
Maslov((7), fy, ) = Maslov(£(7), £,,(7)),

where the first Maslov index is computed with respect to the parameterizations with
endpoints a and b, and the second with respect to the parameterizations with end-
points a® and b, as specified above.

Proof. By applying the properties of the Maslov index (cf. [6, Sec. 1]), we can see
that the claim follows, upon showing that we have
Maslov(£,,(7), fy,) =0
which is obvious by the choice of £,,(7) and fy,. m|
As a consequence of this result, we obtain the following proposition relating the
relative gradings on My, , and My, respectively. Given a path {(A'(7),¢'(7))|T €

[0,1]}, and a corresponding path {(a(7),0)|r € [0, 1]}, we can consider the corre-
sponding paths of operators H(A/(T)’w/(.,_)), H(a(r),0)7 and H(A’(‘r),w’(‘r))#,,v(a(r),o)-

Proposition 6.2. Suppose we are given two irreducible critical points a = [Aq, V4]
and b = [Ap, Y] in M3, d, and the corresponding elements a° = [Ag, 5] and b =
[A, 5] in M5, ,. Then we have

degy,u(‘f) - dng,/,L(be) = dngI (a) — deg}q (b).

Proof. Under the pre-gluing map, we can assume that (A§,¢5) and (A, v5) are
connected by a path (A'(7),¢'(7))#-(a(7),0) (7 € [0,1]), where we have

(A%, ¥5) = (A(0),4'(0))#+(a(0),0),

(A, v5) = (A'(1),¢'(1))#+(a(1),0).
Then by definition,

1
degy. (A3, ¥a) — degy,, (A5, ¥5) = 5 5Fy () (H(ar (r),0 (7)) e (a(r),0))

we can compute this spectral flow with the splitting formula on Y'(r) from ([5,
Theorem C]). We obtain

ESF(H(A’(T),w'(T)),Z(T)) + Maslov (@(T),EM) + ESF(H(G‘(T)’O)’[“) .

With the analogous splitting formula on Y7 (r), by applying the Capell-Lee—Miller
decomposition of the spectral flow ([5, Theorem C]), we obtain

dngI (Atu ¢a) - deg}q (Abv wb)
= €SF(H 41(ryr(r)).ii(r)) + Maslov(£(7), 01) + eSF(H 1 ) 7,) -
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In both cases, we can assume that we consider the same boundary value problem
(the same choice of Lagrangians) for the operator on the knot complement V. We
choose !7” or £, for the operator on the tubular neighbourhood of the knot v(K). The
previous Lemma shows that the quantities eSF(H ) () 7,) and ESF(H(G(T),O),E“)
coincide, and that the two Maslov indices are also the same. O

Similarly, we can now compare the relative grading of two solutions in My, (sy)
with the relative grading of the corresponding solutions in My .

Again, suppose we are given a path 2(7') of Lagrangians in the tangent space
HY(T?2,R), of the form {(7) = Ty (r)l, for some Lagrangian submanifold £ of x (T2, V')
with a regular parameterization a(7). Assume that, for 0 < 7 < 1 the arc a(7) of
the Lagrangian submanifold ¢ avoids the lattice of {w~*(0)} and the limiting points
00 (M) on the circle x (V). Moreover, we assume that we have a and b in £N £y, (k)
and that ¢ and £y, (k) intersect transversely. Assume the arc of ly, (k) between these
endpoints is parameterized over the same interval 0 < 7 < 1. Moreover, for small
enough € in the surgery perturbation 1, there are points a® and b€ in £N¢,,. We can
assume that, for e sufficiently small, also ¢ and /¢,, intersect transversely, and there
are parameterizations of the arcs of Lagrangians ¢ and ¢, with endpoints a® and b°.

With these hypothesis we have the following lemma, whose proof is analogous
to the proof of Lemma 6.1.

Lemma 6.3. With the hypothesis as above, we have
Maslov(£(r), by, (k)) = Maslov(£(r), £, (1)),

where the first Maslov index is computed with respect to the parameterizations with
endpoints ag and by, and the second with respect to the parameterizations with
endpoints af and b, as specified above.

We have the following proposition relating the relative gradings on My, and
My, s, (for k € Z) respectively.

Proposition 6.4. Suppose we are given a = [Aq, V] and b = [Ap,¥p] representing
two elements in My, s, , and let a® = [A5, 5] and b° = [Af, ;] be the corresponding
elements in My, ,. We have

dngo,Ek (Aa’ 17Z]a) - dngQ,Ek (Ab7 wb) = dng,y,(Atel’ 17Z](61) - dng,y,(Aleﬂ wg) mOd Qk :

Proof. With the notation as in the Lemma 6.3, we have

(Aavwa) = (A’(O),zp’(O))#(a(O), O) ;

and

(Ap, o) = (A'(1),4'(1))#(a(1),0).
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We can calculate the relative grading using the splitting formula on Yy (r)
dngmgk (Aav wa) - dng(),Ek (Aba ¢b)

= (eSF)(H  41(r) o (y).iir)) + Maslov(£(7), £o(7)) + €SF(H g1 0) 7o)

We can then compare directly these terms with the corresponding terms in the
splitting formula for the spectral flow of the operators on Y(r), as in the case
of Corollary 6.2. The result of Lemma 6.3 guarantees that we obtain the same
result. O

Notice that the results of Lemma 6.3 and Corollary 6.4 imply that the grad-
ing degy,, defines a choice of an integer lift of the Zgx-valued relative grading of
C.«(Yo, s1) given by

dngo,sk (Aa’ %) - dngo,sk (Ab7 '(/Jb) = dng,lLL(ACL? %) - dng,u(Abv '(/Jb) )

under the identification My, s, — My,,. We will discuss the properties of the
integer lift C, (Yo, sx) of Ci(Y0,s1) elsewhere.
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