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Renormalization and Motivic Galois Theory

Alain Connes and Matilde Marcolli

1 Introduction

In this paper we show that the divergences of quantum field theory are a highly struc-

tured phenomenon. More precisely, they provide data that define an action of a specific

“motivic Galois group” U∗ on the set of physical theories.

In particular, this exhibits the renormalization group as the action of a one-

parameter subgroup Ga ⊂ U∗ of the above Galois group.

The work of Connes and Kreimer [9, 10] provided a conceptual understanding

of perturbative renormalization in terms of the Birkhoff decomposition of loops in a

prounipotent Lie group G determined by the physical theory, through the Hopf algebra

of Feynman graphs [9, 17].

This suggests the possibility of formulating the theory of renormalization in the

context of the Riemann-Hilbert correspondence. The latter is a broad term encompass-

ing, in various forms and levels of generalization, equivalences between geometric prob-

lems associated to differential systems with singularities and representation-theoretic

data associated to the monodromy.

In this paper we construct the Riemann-Hilbert correspondence associated to

perturbative renormalization, in the form of a classification of flat equisingular bundles

in terms of representations of the “motivic Galois group” U∗.

More specifically, we start by considering the scattering formula

γ−(z) = lim
t→∞ e−t(β/z+Z0)etZ0 (1.1)

proved in [10], which expresses the counterterms through the residues of graphs.
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We reexpress this formula in terms of the time-ordered exponential of physi-

cists (also known as expansional in mathematical terminology). The expression in ex-

pansional form can be recognized as solution of a differential system. This identifies a

class of connections naturally associated to the differential of the regularized quantum

field theory viewed as a function of the complexified dimension. The physics input that

the counterterms are independent of the additional choice of a unit of mass translates,

in geometric terms, into the notion of equisingularity for these connections.

Thus, the geometric problem consists of the classification of “equisingular” G-

valued flat connections on the total space B of a principal Gm-bundle over an infinitesi-

mal punctured disk ∆∗. An equisingular connection is a Gm-invariant G-valued connec-

tion, singular on the fiber over zero, and satisfying the following property: the equiva-

lence class of the singularity of the pullback of the connection by a section of the princi-

pal Gm-bundle only depends on the value of the section at the origin.

This classification problem stems directly from the divergences of the physical

theory at the dimension D where one would like to do physics.1 The base ∆∗ is the space

of complexified dimensions around D. The fibers of the principal Gm-bundle B describe

the arbitrariness in the normalization of integration in complexified dimension z ∈ ∆∗, in

the commonly used regularization procedure known as Dim-Reg (dimensional regular-

ization). The Gm-action corresponds to the rescaling h̄ ∂/∂h̄. The group G is the

prounipotent Lie group whose Hopf algebra is the Hopf algebra of Feynman graphs

of [9, 17].

On the other side of our Riemann-Hilbert correspondence, the representation-

theoretic setting equivalent to the classification of equisingular flat connections is pro-

vided by representations U∗ → G∗, where U∗ is a universal group, unambiguously de-

fined independently of the physical theory. The group G∗ is the semidirect product of G

by the action of the grading θt, as in [10]. We give an explicit description of U∗ as the

semidirect product by its grading of the graded prounipotent Lie group U whose Lie al-

gebra is the free graded Lie algebra

F(1, 2, 3, . . .)• (1.2)

generated by elements e−n of degree n, n > 0.

Thus, there are three different levels at which Hopf algebra structures enter the

theory of perturbative renormalization. First, there is Kreimer’s Hopf algebra of rooted

1 We may assume D = 4 (no strings attached).
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trees [17], which is adapted to the specific physical theory by decorations of the rooted

trees. There is then the Connes-Kreimer Hopf algebra of Feynman graphs, which is de-

pendent on the physical theory by construction, but which does not require decorations.

There is then the algebra associated to the group U∗, which is universal with respect to

the set of physical theories.

We then construct a specific universal singular frame on principal U-bundles

over B. When using in this frame the dimensional regularization technique of quantum

field theory and the minimal subtraction (MS) scheme, all divergences disappear and

one obtains a finite theory, which only depends upon the choice of a local trivialization

for the principal Gm-bundle B.

The coefficients of the universal singular frame, written out in the expansional

form, are the same as those appearing in the local index formula of Connes and Moscov-

ici [12]. In particular, they are rational numbers. This means that we can view equisin-

gular flat connections on finite-dimensional vector bundles as endowed with arithmetic

structure. We show that they can be organized into a Tannakian category with a natural

fiber functor to the category of vector spaces, over any field of characteristic zero. The

Tannakian category obtained this way is equivalent to the category of finite-dimensional

representations of the affine group scheme U∗, which is uniquely determined by this

property.

Closely related group schemes appear in motivic Galois theory and U∗ is, for in-

stance, abstractly (but noncanonically) isomorphic to the motivic Galois group GMT
(O)

(see [13, 15]) of the scheme S4 = Spec(O) of 4-cyclotomic integers, O = Z[i][1/2].

The natural appearance of the “motivic Galois group” U∗ in the context of renor-

malization confirms a suggestion made by Cartier in [4], that in the Connes-Kreimer the-

ory of perturbative renormalization one should find a hidden “cosmic Galois group”

closely related in structure to the Grothendieck-Teichmüller group. The question of rela-

tions between the work of Connes-Kreimer,motivic Galois theory, and deformation quan-

tization was further emphasized by Kontsevich in [16]. At the level of the Hopf algebra of

rooted trees, relations between renormalization and motivic Galois theory were also in-

vestigated by Goncharov in [14].

The “motivic Galois group” U acts on the set of dimensionless coupling constants

of physical theories, through the map of the corresponding group G to formal diffeomor-

phisms constructed in [10].

This also realizes the hope formulated in [6] of relating concretely the renormal-

ization group to a Galois group. Here, we are dealing with the Galois group dictated by

renormalization and the renormalization group appears as a canonical one-parameter

subgroup Ga ⊂ U.
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These facts altogether indicate that the divergences of quantum field theory, far

from just being an unwanted nuisance, are a clear sign of the presence of totally unex-

pected symmetries of geometric origin. This shows, in particular, that one should under-

stand how the universal singular frame “renormalizes” the geometry of space-time using

the Dim-Reg MS scheme and the universal counterterms.

2 Expansional form of the counterterms

The following discussion will be quite general. We let G be a complex graded prounipo-

tent Lie group, g = Lie G its Lie algebra, and θt = etY the one-parameter group of auto-

morphisms implementing the grading Y. We assume that the grading Y is integral and

strictly positive.

We let G∗ be the semidirect product

G∗ = G �θ R (2.1)

of G by the action of the grading θt, hence the Lie algebra of G∗ has an additional gener-

ator Z0, such that

[
Z0, X

]
= Y(X) ∀X ∈ Lie G. (2.2)

We let H be the commutative Hopf algebra of coordinates on G. For any unital al-

gebra A over C, we let G(A) be the group of points of G over A, that is, of homomorphisms

H −→ A, (2.3)

with the product coming from the coproduct of H.

We identify the elements of the Lie algebra g = Lie G with linear forms L on H

such that

L(XY) = L(X)ε(Y) + ε(X)L(Y), ∀X, Y ∈ H, (2.4)

where ε is the augmentation of H, playing the role of the unit in the dual algebra. More

generally, for any unital algebra A over C, one defines g(A) as the Lie algebra of linear

maps H → A, fulfilling the above derivation rule.



Renormalization and Motivic Galois Theory 4077

In [10] a complete characterization is given of those G-valued loops γµ(z) satis-

fying the properties

γetµ(z) = θtz

(
γµ(z)

) ∀t ∈ R,

∂

∂µ
γ−

µ(z) = 0.
(2.5)

Here, γ−
µ is the negative part of the Birkhoff decomposition

γµ(z) = γ−
µ(z)−1γ+

µ(z), z ∈ ∂∆, (2.6)

where γ+
µ and γ−

µ extend to holomorphic maps on ∆ and P1(C) � {0}, respectively.

In this Birkhoff decomposition, γ+
µ provides the renormalized values at D, and

γ−
µ provides the counterterms for the renormalization procedure of quantum field theory

(cf. [10]). The properties (2.5) originate from physical considerations, namely, from the

fact that the counterterms are independent of the choice of the mass scale parameter µ

(cf. [5, (7.1.4a)–(7.1.4c), page 170]).

We can regard the γµ as elements of G(K), where we let K be the field C({z}) of

convergent Laurent series in z.

Given a g = Lie G-valued smooth function α(t), where t ∈ [a, b] ⊂ R is a real pa-

rameter, one defines the expansional (cf. [1]), or time-ordered exponential, by the equal-

ity

Te
∫b

a
α(t)dt = 1 +

∞∑
1

∫
a≤s1≤···≤sn≤b

α
(
s1

) · · ·α(
sn

)∏
dsj, (2.7)

where the product comes from the coproduct in H.

This defines an element of G(C), which is the value A(b) at b of the unique solu-

tion A(t) with A(a) = 1 at t = a of the differential equation

dA(t) = A(t)α(t)dt. (2.8)

The basic property of the expansional is the identity

Te
∫c

a
α(t)dt = Te

∫b
a

α(t)dtTe
∫c

b
α(t)dt. (2.9)

With this notation, we can rewrite the scattering formula (1.1) as follows.
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Theorem 2.1. Let γµ(z) be a family of G-valued loops fulfilling (2.5). Then there exist

uniquely β ∈ g and a loop γreg(z) regular at z = 0 such that

γµ(z) = Te−(1/z)
∫

−z log µ∞ θ−t(β)dtθz log µ

(
γreg(z)

)
. (2.10)

Conversely, given any β and any regular loop γreg(z), the expression (2.10) gives a solu-

tion to equations (2.5). �

The Birkhoff decomposition of the loop γµ(z) of (2.10) is given by

γ+
µ(z) = Te−(1/z)

∫−z log µ
0 θ−t(β)dtθz log µ

(
γreg(z)

)
,

γ−
µ(z) = Te−(1/z)

∫∞
0

θ−t(β)dt.
(2.11)

3 Local equivalence of meromorphic connections

We consider the local behavior, on an infinitesimal punctured disk ∆∗ centered at z = 0,

of solutions of G-differential systems.

As above, we work with convergent Laurent series. Namely, we let K be the field

C({z}) of convergent Laurent series in z and let O ⊂ K be the subring of series without a

pole at 0. The field K is a differential field and we let Ω1 be the 1-forms on K with

d : K −→ Ω1 (3.1)

the differential, df = (df/dz)dz.

A connection on the trivial principal G-bundle P = ∆∗ × G is specified by the

restriction of the connection form to ∆∗ × 1, that is, by a g-valued 1-form ω on ∆∗. We let

Ω1(g) denote g-valued 1-forms on ∆∗, so that every element of Ω1(g) is of the form Adz

with A ∈ g(K).

The operator

D : G(K) −→ Ω1(g), Df = f−1df, (3.2)

satisfies

D(fh) = Dh + h−1Dfh. (3.3)

We consider differential equations of the form

Df = ω, (3.4)

where ω ∈ Ω1(g) specifies the connection on the trivial principal G-bundle.
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Definition 3.1. Two connections ω and ω ′ are equivalent if and only if

ω ′ = Dh + h−1ωh, (3.5)

for some h ∈ G(O).

This simply identifies connections that differ by a change of local frame, given by

a G-valued map regular in ∆.

By construction, the group G is a projective limit of linear algebraic groups Gi

whose Hopf algebras are finitely generated graded Hopf subalgebras Hi ⊂ H. Given ω ∈
Ω1(g), its projections pi(ω) ∈ Ω1(gi) have a positive radius of convergence ρi > 0. Thus,

for a choice of a base point z0 �= 0 with |z0| < ρi, we obtain the monodromy in the form

M = Te
∫1

0
c∗(ω), (3.6)

where c(t) is a simple closed path of winding number one in the punctured disk of radius

ρi, with endpoints c(0) = z0 = c(1).

When passing to the projective limit, one has to take care of the change of base

point, but the triviality of the monodromy, M = 1, is a well-defined condition. It ensures

the existence of solutions f ∈ G(K) for equation (3.4).

A solution f of (3.4) defines a G-valued loop. By our assumptions on G, any f ∈
G(K) has a unique Birkhoff decomposition of the form

f =
(
f−

)−1
f+, (3.7)

with

f+ ∈ G(O), f− ∈ G(Q), (3.8)

where O ⊂ K is the subalgebra of regular functions and Q = z−1C([z−1]). Since Q is not

unital, one needs to be more precise in defining G(Q). Let Q̃ = C([z−1]) and let ε1 be its

augmentation. Then G(Q) is the subgroup of G(Q̃) of homomorphisms φ : H �→ Q̃ such

that ε1 ◦ φ = ε, where ε is the augmentation of H.

Proposition 3.2. Two connections ω1 and ω2 with trivial monodromy are equivalent if

and only if solutions fj of Df = ωj have the same negative part in the Birkhoff decompo-

sition,

f−
1 = f−

2 . (3.9)
�
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4 Classification of equisingular flat connections

We now modify the geometric setting of the previous section by introducing a principal

Gm-bundle

Gm −→ B −→ ∆ (4.1)

over the infinitesimal disk ∆. We let

b �−→ w(b) ∀w ∈ C∗, (4.2)

denote the action of the multiplicative group Gm = C∗. We let π : B → ∆ be the projection,

with

V = π−1
(
{0}

) ⊂ B (4.3)

the fiber over 0 ∈ ∆ and y0 ∈ V a base point. We let B∗ ⊂ B denote the complement of V.

We consider again a group G as above, with grading Y. We can then view the triv-

ial principal G-bundle P = B × G as equivariant with respect to Gm, using the action

u(b, g) =
(
u(b), uY(g)

) ∀u ∈ C∗, (4.4)

where uY makes sense, since the grading Y is integer-valued.

Definition 4.1. Let P∗ = B∗ × G be the restriction to B∗ of the bundle P. A connection ω

on P∗ is equisingular if it is Gm-invariant and its restrictions to sections of the prin-

cipal bundle B that agree at 0 ∈ ∆ are all equivalent in the sense of Definition 3.1 (cf.

Figure 4.1).

We consider again the operator Df = f−1df as in (3.2) satisfying (3.3). We have

the following notion of equivalence for G-differential systems on B.

Definition 4.2. Two connections ω and ω ′ on P∗ are equivalent if and only if

ω ′ = Dh + h−1ωh, (4.5)

for a G-valued Gm-invariant map h regular in B.

The main step towards the formulation of perturbative renormalization as a Rie-

mann-Hilbert correspondence is given by the following correspondence between flat eq-

uisingular G-connections and elements in the Lie algebra g.
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Gm = C∗

0

V

y0

σ1

σ2

0∆

Figure 4.1

We begin by choosing a noncanonical regular section

σ : ∆ −→ B, with σ(0) = y0. (4.6)

We will show later that the correspondence established in Theorem 4.3 is in fact indepen-

dent of the choice of σ. To lighten notations we use σ as the local frame that trivializes

the bundle B, which we identify with ∆ × C∗.

Theorem 4.3. Let ω be a flat equisingular G-connection. There exists a unique element

β ∈ g of the Lie algebra of G, such that ω is equivalent to the flat equisingular connection

Dγ associated to the section

γ(z, v) = Te−(1/z)
∫v

0
uY (β)(du/u) ∈ G, (4.7)

where the integral is performed on the straight path u = tv, t ∈ [0, 1]. �

Proof. As above, we express a connection on P∗ in terms of g-valued 1-forms on B∗, and

we use the trivialization σ to write it as

ω = Adz + B
dv

v
, (4.8)

where both A(z, v) and B(z, v) are g-valued functions and dv/v is the fundamental 1-form

of the principal bundle B.

Let ω = Adz + B(dv/v) be an invariant connection. One has

ω(z, uv) = uY
(
ω(z, v)

)
, (4.9)
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which shows that ω is determined by its restriction to the section v = 1. One then has

ω(z, u) = uY(a)dz + uY(b)
du

u
(4.10)

for suitable elements a, b ∈ g(K).

The flatness of the connection means that we have

db

dz
− Y(a) + [a, b] = 0. (4.11)

The positivity of the integral grading Y shows that the connection ω extends to

a flat connection on the product ∆∗ × C. Moreover, its restriction to ∆∗ × {0} is equal to

0. This suffices to show that the connection has trivial monodromy with respect to both

generators of π1(B∗) = Z2.

One can then explicitly write down a solution of the differential system

Dγ = ω (4.12)

in the form

γ(z, v) = Te
∫v

0
uY (b(z))(du/u), (4.13)

where integration is performed on the straight path u = tv, t ∈ [0, 1] (cf. Figure 4.1).

This gives a translation invariant loop γ,

γ(z, u) = uYγ(z) (4.14)

fulfilling

γ(z)−1dγ(z) = adz, γ(z)−1Yγ(z) = b. (4.15)

By hypothesis, ω is equisingular, hence the restrictions ωs to the lines

∆∗
s =

{(
z, esz

)
; z ∈ ∆∗} (4.16)

are mutually equivalent. By Proposition 3.2, using the fact that the restriction of γ(z, u) =

uYγ(z) to ∆∗
s is given by γs(z) = θszγ(z), we obtain that the negative parts of the Birkhoff

decomposition of the loops γs(z) are independent of the parameter s.
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Thus, by the results of Section 2, there exist an element β ∈ g and a regular loop

γreg(z), such that

γ(z, 1) = Te−(1/z)
∫0∞ θ−t(β)dtγreg(z). (4.17)

Thus, up to an equivalence given by the regular loop uY(γreg(z)), we can write the

solution in the form

γ(z, u) = uY
(
Te−(1/z)

∫0∞ θ−t(β)dt
)
, (4.18)

which only depends upon β ∈ g. Since uY is an automorphism, one can in fact rewrite

(4.18) as

γ(z, v) = Te−(1/z)
∫v

0
uY (β)(du/u), (4.19)

where the integral is performed on the straight path u = tv, t ∈ [0, 1].

We then need to understand in what way the class of the solution (4.18) depends

upon β ∈ g.

An equivalence between two equisingular flat connections generates a relation

between solutions of the form

γ2(z, u) = γ1(z, u)h(z, u) (4.20)

with h regular. Thus, the negative parts of the Birkhoff decomposition of both

γj(z, 1) = Te−(1/z)
∫0∞ θ−t(βj)dt (4.21)

have to be the same, and this gives β1 = β2.

Finally, we need to show that, for any β ∈ g, the connection ω = Dγ with γ given

by (4.7) is equisingular. The equivariance follows from the invariance of the section γ.

Let then v(z) ∈ C∗ be a regular function with v(0) = 1 and consider the section v(z)σ(z)

instead of σ(z). The restriction of ω = Dγ to this new section is now given by Dγv, where

γv(z) = Te−(1/z)
∫v(z)

0 uY (β)(du/u) ∈ G. (4.22)

We claim that the Birkhoff decomposition of γv is given by γv(z) = γ−
v (z)−1γ+

v (z)

with

γ−
v (z)−1 = Te−(1/z)

∫1
0

uY (β)(du/u), γ+
v (z) = Te−(1/z)

∫v(z)
1 uY (β)(du/u). (4.23)
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Indeed, the first term in (4.23) is a regular function of z−1 and gives a polynomial in z−1

when paired with any element of H. The second term is a regular function of z, using the

Taylor expansion of v(z) at z = 1. �

By a similar argument, one gets the independence on the choice of the section, as

follows.

Theorem 4.4. The above correspondence between flat equisingular G-connections and

elements β ∈ g of the Lie algebra of G is independent of the choice of the local regular

section σ : ∆ → B, with σ(0) = y0.

Given two choices σ2 = ασ1 of local sections, the regular values γreg(y0)j of solu-

tions of the differential system above, in the corresponding singular frames, are related

by

γreg
(
y0

)
2

= e−sβγreg
(
y0

)
1
, (4.24)

where

s =

(
dα(z)

dz

)
z=0

. (4.25)
�

It is this second statement that controls the ambiguity inherent to the renormal-

ization group action in the physics setting, where there is no preferred choice of local

regular section σ. In that context the principal bundle B over an infinitesimal disk of

complexified dimensions around D admits as fiber over z ∈ ∆ the set of all possible nor-

malizations for the integration in complexified dimension D − z. Moreover, the choice of

the base point in the fiber V over D corresponds to the choice of the Planck constant,

while the choice of the section σ (up to order one) corresponds to the choice of a “unit of

mass.”

5 The universal singular frame

We will now reformulate the results of Section 4 as a Riemann-Hilbert correspondence.

At the representation-theoretic level, we want to encode the data classifying equivalence

classes of equisingular flat connections (Theorem 4.3) by a homomorphism

U∗ −→ G∗ (5.1)

from some universal group U∗ to G∗.
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Viewed in this perspective, the group U∗ can be thought of as an analog of the

Ramis exponential torus in the wild fundamental group that gives the local Riemann-

Hilbert correspondence in the context of differential Galois theory (cf. [19, 20]). In fact,

here the equisingular flat connections have trivial monodromy and one does not see the

Stokes phenomenon, as we are only dealing with perturbative renormalization. Thus, the

group U∗ resembles most the remaining part of the wild fundamental group, given by the

exponential torus, which appears in the formal local theory (cf. [19, 20] and [21, Sec-

tion 3]). We will analyze more closely the relation to the wild fundamental group in [11].

In (5.1) we need to get both Z0 and β in the range at the Lie algebra level. Thus,

working with Lie algebras, it is natural to consider first the free Lie algebra generated

by Z0 and β. It is important, though, to keep track of the properties one needs so that the

formulae above make sense, such as positivity and integrality of the grading.

By these properties, we can write β as an infinite formal sum

β =

∞∑
1

βn, (5.2)

where, for each n, βn is homogeneous of degree n for the grading,

Y
(
βn

)
= nβn. (5.3)

Thus, assigning β and the action of the grading on it is the same as giving a col-

lection of homogeneous elements βn fulfilling no restriction besides Y(βn) = nβn. In

particular, there is no condition on their Lie brackets. Thus, these data are the same as

giving a homomorphism from the following affine group scheme U to G.

At the Lie algebra level, U comes from the free graded Lie algebra

F(1, 2, 3, . . .)• (5.4)

generated by elements e−n of degree n, n > 0. At the Hopf algebra level, we therefore take

the graded dual of the enveloping algebra U(F), so that

Hu = U
(
F(1, 2, 3, . . .)•

)∨
. (5.5)

It is well known that Hu, as an algebra, is isomorphic to the linear space of non-

commutative polynomials in variables fn, n ∈ N>0, with the shuffle product.

We have obtained this way a prounipotent affine group scheme U which is graded

in positive degree.

We can now reformulate the main theorem of Section 4 as follows.
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Theorem 5.1. Let G be a positively graded prounipotent Lie group. There exists a canon-

ical bijection between equivalence classes of flat equisingular G-connections and graded

representations

ρ : U −→ G (5.6)

in G of the group scheme U defined above. �

We can consider the semidirect product U∗ of U by the grading as an affine group

scheme with a natural homomorphism U∗ → Gm to the multiplicative group. The com-

patibility with the grading means that ρ extends to a homomorphism

ρ∗ : U∗ −→ G∗. (5.7)

Theorem 5.1 shows that the group U∗ plays, in the formal theory, a role analo-

gous to that of the Ramis exponential torus of differential Galois theory. The conceptual

reason for considering the group U∗ rather than U will become clear in the next section.

The equality

e =

∞∑
1

e−n (5.8)

defines an element of the Lie algebra of U. Since U is, by construction, a prounipotent

affine group scheme, we can lift e to a morphism of affine group schemes

rg : Ga −→ U (5.9)

from the additive group Ga to U.

The morphism (5.9) represents the renormalization group in our context. The cor-

responding ambiguity is generated, as explained above in Theorem 4.4, by the absence

of a canonical trivialization for the Gm-bundle corresponding to integration in complex-

ified dimensions around D.

The formulae considered in the previous sections still make sense in the univer-

sal case where G∗ = U∗, hence we can define the universal singular frame by the equality

γ(z, v) = Te−(1/z)
∫v

0
uY (e)(du/u) ∈ U. (5.10)

This is easily computed in terms of iterated integrals and one obtains the follow-

ing expression.
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Proposition 5.2. The universal singular frame is given by

γ(z, v) =
∑
n≥0

∑
kj>0

e
(

− k1

)
e
(

− k2

) · · · e(
− kn

)
k1

(
k1 + k2

) · · · (k1 + k2 + · · · + kn

)v
∑

kjz−n. (5.11)
�

It is interesting to notice that exactly the same expression occurs in the local

index formula of [12]. The renormalization group idea is also used in that context, in the

case of higher poles in the dimension spectrum.

Adopting this universal singular frame in the dimensional regularization tech-

nique and the minimal subtraction scheme has the effect of removing all divergences.

One obtains a finite theory, which depends only upon the choice of local trivialization of

the principal Gm-bundle B,whose base ∆ is the space of complexified dimensions around

D and whose fibers correspond to normalizations of the integral in complex dimensions,

as used by physicists in the Dim-Reg scheme.

6 The classifying affine group scheme as a motivic Galois group

In this section we construct a category of equivalence classes of equisingular flat vector

bundles. This allows us to reformulate the Riemann-Hilbert correspondence in terms of

finite-dimensional linear representations of U∗. The relation to the formulation given in

the previous section is given by passing to the finite-dimensional representations of the

group G∗. Since G∗ is an affine group scheme, there are enough such representations, and

they are specified (cf. [13]) by assigning the following data:

(i) a graded vector space E = ⊕n∈ZEn,

(ii) a graded representation π of G in E.

Notice that a graded representation of G in E can be equivalently described as

a graded representation of g in E. Moreover, since the Lie algebra g is positively graded,

both representations are compatible with the weight filtration given by

W−n(E) = ⊕m≥nEm. (6.1)

At the group level, the corresponding representation in the associated graded

GrW
n = W−n(E)/W−n−1(E) (6.2)

is the identity.

We now proceed to construct a Tannakian category of equivalence classes of eq-

uisingular flat vector bundles, independent of the group G.
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Definition 6.1. Let (E,W) be a filtered vector bundle with a given trivialization of the as-

sociated graded GrW(E).

(1) A W-connection on E is a connection ∇ on E, which is compatible with the

filtration (i.e., restricts to all Wk(E)) and induces the trivial connection on the associated

graded GrW(E).

(2) Two W-connections on E are W-equivalent if and only if there exists an auto-

morphism of E preserving the filtration, inducing the identity on GrW(E), and conjugat-

ing the connections.

We now define the category E of equisingular flat bundles.

Let B be the principal Gm-bundle considered in Section 4. The objects of E are the

equivalence classes of pairs

Θ = (E,∇), (6.3)

where

(i) E is a Z-graded finite-dimensional vector space,

(ii) ∇ is an equisingular flat W-connection on B∗, defined on the Gm-equivariant

filtered vector bundle (Ẽ,W) induced by E with its weight filtration (6.1).

By construction, Ẽ is the trivial bundle B×E endowed with the action of Gm given

by the grading. The trivialization of the associated graded GrW(Ẽ) is simply given by the

identification with the trivial bundle with fiber E. The equisingularity of ∇ here means

that it is Gm-invariant and that all restrictions to sections σ of B with σ(0) = y0 are W-

equivalent.

We refer to such pairs Θ = (E,∇) as flat equisingular bundles. We only retain the

datum of the W-equivalence class of the connection ∇.

Given two flat equisingular bundles Θ, Θ ′, we define the morphisms

T ∈ Hom(Θ,Θ ′) (6.4)

in the category E as linear maps T : E → E ′, compatible with the grading, fulfilling the

condition that the following W-connections ∇j, j = 1, 2, on Ẽ ′ ⊕ Ẽ are W-equivalent:

∇1 =

[
∇ ′ T∇ − ∇ ′T

0 ∇

]
∼ ∇2 =

[
∇ ′ 0

0 ∇

]
. (6.5)

In (6.5),∇1 is obtained by conjugating ∇2 by the unipotent matrix

[
1 T

0 1

]
. (6.6)
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This shows that condition (6.5) is well defined, independently of the choice of represen-

tatives for the connections ∇ and ∇ ′.

For Θ = (E,∇), we set ω(Θ) = E and we view ω as a functor from the category

of equisingular flat bundles to the category of vector spaces. We then have the following

result.

Theorem 6.2. Let E be the category of equisingular flat bundles defined above.

(1) E is a Tannakian category.

(2) The functor ω is a fiber functor.

(3) E is equivalent to the category of finite-dimensional representations of U∗. �

In all the above we worked over C, with convergent Laurent series. However,

much of it can be rephrased with formal Laurent series. Since the universal singular

frame is given in rational terms by Proposition 5.2, the result of Theorem 6.2 holds over

any field of characteristic zero and in particular over Q.

For each integer n ∈ Z, we then define an object Q(n) in the category E of equisin-

gular flat bundles as the trivial bundle given by a one-dimensional Q-vector space placed

in degree n, endowed with the trivial connection on the associated bundle over B.

For any flat equisingular bundle Θ, let

ωn(Θ) = Hom
(
Q(n), GrW

−n(Θ)
)

(6.7)

and notice that ω = ⊕ωn.

The group U∗ can be regarded as a motivic Galois group. One has, for instance,

the following identification (see [13, 15]).

Proposition 6.3. There is a (noncanonical) isomorphism

U∗ ∼ GMT
(O) (6.8)

of the affine group scheme U∗ with the motivic Galois group GMT
(O) of the scheme S4 of

4-cyclotomic integers. �

It is important here to stress the fact (cf. [13, Section 2.4]) that there is so far no

“canonical” choice of a free basis in the Lie algebra of the above motivic Galois group

so that the above isomorphism still requires making a large number of noncanonical

choices. In particular, it is premature to assert that the above category of equisingular

flat bundles is directly related to the category of 4-cyclotomic Tate motives. The isomor-

phism (6.8) does not determine the scheme S4 uniquely. In fact, a similar isomorphism

holds with S3 the scheme of 3-cyclotomic integers.
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On the other hand, when considering the category MT in relation to physics, in-

verting the prime 2 is relevant to the definition of geometry in terms of K-homology,

which is at the center stage in noncommutative geometry. We recall, in that respect,

that it is only after inverting the prime 2 that (in sufficiently high dimension) a mani-

fold structure on a simply connected homotopy type is determined by the K-homology

fundamental class.

Moreover, passing from Q to a field with a complex place, such as the above cyclo-

tomic fields k, allows for the existence of nontrivial regulators for all algebraic K-theory

groups K2n−1(k). It is also noteworthy that algebraic K-theory and regulators have al-

ready appeared in the context of quantum field theory and noncommutative geometry

in [7]. The appearance of multiple polylogarithms in the coefficients of divergences in

quantum field theory, discovered by Broadhurst and Kreimer (see [2, 3]), as well as recent

considerations of Kreimer on analogies between residues of quantum fields and varia-

tions of mixed Hodge-Tate structures associated to polylogarithms (cf. [18]), suggest the

existence, for the above category of equisingular flat bundles, of suitable Hodge-Tate re-

alizations given by a specific choice of quantum field theory.
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