
Renormalization and Computation:
Dyson–Schwinger equations and Information

Algebras

Matilde Marcolli

Ma148: Geometry of Information
Caltech, Fall 2021

Matilde Marcolli Renormalization and Computation



This lecture based on:

Colleen Delaney, Matilde Marcolli, Dyson-Schwinger equations
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Soc., Providence, RI, 2015.
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Perturbative Quantum Field Theory
• Action functional in D dimensions

S(φ) =

∫
L (φ)dDx = S0(φ) + Sint(φ)

• Lagrangian density

L (φ) =
1
2

(∂φ)2 − m2

2
φ2 −Lint(φ)

• Perturbative expansion: Feynman rules and Feynman diagrams

Seff (φ) = S0(φ) +
∑

Γ

Γ(φ)

#Aut(Γ)
(1PI graphs)

• Generating functional Z [J] of Green functions (source field J)

δnZ
δJ(x1) · · · δJ(xn)

[0] = inZ [0]〈φ(x1) · · ·φ(xn)〉
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Algebraic renormalization in perturbative QFT

A. Connes, D. Kreimer, Renormalization in quantum field theory
and the Riemann-Hilbert problem, I and II, hep-th/9912092,
hep-th/0003188

A. Connes, M. Marcolli, Renormalization, the Riemann-Hilbert
correspondence, and motivic Galois theory, hep-th/0411114

K. Ebrahimi-Fard, L. Guo, D. Kreimer, Integrable
Renormalization II: the general case, hep-th/0403118
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Two step procedure:

• Regularization: replace divergent integral U(Γ) by function with
poles
• Renormalization: pole subtraction with consistency over subgraphs
(Hopf algebra structure)

• Kreimer, Connes–Kreimer, Connes–M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of
Rota–Baxter algebras
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Connes–Kreimer Hopf algebra H = H (T ) (depends on theory)

• Free commutative algebra in generators Γ 1PI Feynman graphs

• Grading: loop number (or internal lines)

deg(Γ1 · · · Γn) =
∑

i

deg(Γi), deg(1) = 0

• Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V (Γ)

γ ⊗ Γ/γ

• Antipode: inductively

S(X) = −X −
∑

S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′

Extended to gauge theories (van Suijlekom): Ward identities as Hopf
ideals
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Rota–Baxter algebra of weight λ = −1

R commutative unital algebra
T : R → R linear operator with

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy)

• Example: T = projection onto polar part of Laurent series

• T determines splitting R+ = (1− T )R, R− = unitization of TR;
both R± are algebras
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Feynman rule

• φ : H → R commutative algebra homomorphism

from CK Hopf algebra H to Rota–Baxter algebra R weight −1

φ ∈ HomAlg(H ,R)

• Note: φ does not know that H Hopf and R Rota-Baxter, only
commutative algebras
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• Birkhoff factorization ∃φ± ∈ HomAlg(H ,R±)

φ = (φ− ◦ S) ? φ+

where φ1 ? φ2(X) = 〈φ1 ⊗ φ2,∆(X)〉
• Connes-Kreimer inductive formula for Birkhoff factorization:

φ−(X) = −T (φ(X) +
∑

φ−(X ′)φ(X ′′))

φ+(X) = (1− T )(φ(X) +
∑

φ−(X ′)φ(X ′′))

where ∆(X) = 1⊗ X + X ⊗ 1 +
∑

X ′ ⊗ X ′′

• Recovers what known in physics as BPHZ renormalization
procedure in physics

• Bogolyubov-Parshchuk preparation

φ̃(x) = φ(x) +
∑

φ−(x ′)φ(x ′′)
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Hopf algebra of rooted trees
• Rooted tree τ : data (Fτ ,Vτ , vτ , δτ , jτ )

Fτ set of half-edges (flags)

Vτ set of vertices

distinguished vτ ∈ Vτ (the root)

boundary map ∂τ : Fτ → Vτ
involution jτ : Fτ → Fτ , j2τ = 1 gluing half-edges to edges

Eτ internal edges, Eext
τ external edges (fixed by involution)

Orientation: root vertex as output, all edges oriented along unique
path to root
Decorations: φV : Vτ → DV labels of vertices, φF : Fτ → DF labels
of flags (matched by involution)
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admissible cuts
• admissible cuts C of τ modify involution jτ cutting a subset of
internal edges into two flags fi , f ′i , so that every oriented path in τ
from leaf to root contains at most one cut edge

• New graph is a forest

C(τ) = ρC(τ)q πC(τ)

rooted tree ρC(τ); forest πC(τ) = qiπC,i(τ), each tree πC,i(τ) with
single output (new roots)
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Hopf algebras
•H nc noncommutative Hopf algebra of planar rooted trees: free
algebra generated by planar rooted trees, coproduct

∆(τ) = τ ⊗ 1 + 1⊗ τ +
∑

C

πC(τ)⊗ ρC(τ)

grading by number of vertices, antipode

S(x) = −x −
∑

S(x ′)x ′′, for ∆(x) = x ⊗ 1 + 1⊗ x +
∑

x ′ ⊗ x ′′

x ′, x ′′ lower order terms

•H commutative Hopf algebra of (planar) rooted trees: free
commutative (polynomial) algebra generated by rooted trees, same
form of coproduct, grading and antipode

• in Connes–Kreimer setting can equivalently work with Hopf algebra
of rooted trees decorated by Feynman graphs or with Hopf algebra of
Feynman graphs (coproduct: subgraphs and quotient graphs)
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Dyson–Schwinger equations in QFT

• Equations of motion for Green functions (Euler–Lagrange
equations)
• Infinite system of coupled differential equations
• obtained as formal Taylor series expansion at J = 0 of DS equation
in the generating function Z [J]

δS
δφ(x)

[
−i

δ

δJ

]
Z [J] + J(x)Z [J] = 0

• in the Hopf algebraic approach to QFT, can lift the DS equations to
the combinatorial level
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Combinatorial Dyson–Schwinger equations

C. Bergbauer and D. Kreimer, Hopf algebras in renormalization
theory: locality and Dyson-Schwinger equations from
Hochschild cohomology, hep-th/0506190

K. Yeats, Rearranging Dyson-Schwinger Equations, AMS 2011.

L. Foissy, Systems of Dyson–Schwinger equations,
arXiv:0909.0358
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Dyson–Schwinger equations and Hopf subalgebras
• If grafting operator satisfies cocycle condition, then solutions of
Dyson–Schwinger equations form a Hopf subalgebra
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Renormalization and Computation (Manin)
proposal for a “renormalization of the halting problem"

• Idea: treat noncomputable functions like infinities in QFT

• Renormalization = extraction of finite part from divergent Feynman
integrals; extraction of “computable part" from noncomputables

• First step: build a Hopf algebra (flow charts, partial recursive
functions) and a Feynman rule that detects the presence of
noncomputability (infinities)

• Second step: BPHZ type subtraction procedure with values in a
min-plus or max-plus algebra (computing time, memory size)

• Third step: meaning of the “renormalized part" and of the
“divergences part" of the Birkhoff factorization in terms of theory of
computation
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Primitive recursive functions
• generated by basic functions

Successor s : N→ N, s(x) = x + 1;

Constant cn : Nn → N, cn(x) = 1 (for n ≥ 0);

Projection πn
i : Nn → N, πn

i (x) = xi (for n ≥ 1);

• with elementary operations

Composition

Bracketing

Recursion
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Elementary operations:

Composition c(m,m,p): for f : Nm → Nn, g : Nn → Np,

g ◦ f : Nm → Np, D(g ◦ f ) = f−1(D(g));

Bracketing b(k ,m,ni ): for fi : Nm → Nni , i = 1, . . . , k ,

f = (f1, . . . , fk ) : Nm → Nn1+···+nk , D(f ) = D(f1)∩· · ·∩D(fk );

Recursion rn: for f : Nn → N and g : Nn+2 → N,

h(x1, . . . , xn, 1) := f (x1, . . . , xn),

h(x1, . . . , xn, k +1) := g(x1, . . . , xn, k , h(x1, . . . , xn, k)), k ≥ 1,

where recursively (x1, . . . , xn, 1) ∈ D(h) iff (x1, . . . , xn) ∈ D(f )
and (x1, . . . , xn, k + 1) ∈ D(h) iff
(x1, . . . , xn, k , h(x1, . . . , xn, k) ∈ D(g).
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Manin’s Hopf algebra of flow charts
• planar labelled rooted trees (bracketing and recursion are ordered:
need planar)
• label set of vertices DV = {c(m,n,p), b(k ,m,ni ), rn} (composition,
bracketing, recursion)
• label set of flags DF primitive recursive functions
• admissible labelings:

φV (v) = c(m,n,p): v valence 3; labels h1 = φF (f1), h2 = φF (f2)
incoming flags with domains and ranges h1 : Nm → Nn and
h2 : Nn → Np; outgoing flag composition h2 ◦ h1 = c(m,n,p)(h1, h2).

φV (v) = rn: v valence 3; labels h1 = φF (f1), h2 = φF (f2) incoming
flags with domains and ranges h1 : Nn → N and h2 : Nn+2 → N,
outgoing flag recursion h = rn(h1, h2).

φV (v) = b(k,m,ni ): v must have valence k + 1; labels hi = φF (fi )
incoming flags with domain Nm; outgoing flag bracketing
f = (f1, . . . , fk ) = b(k,m,ni )(f1, . . . , fk ).

• Coproduct, grading, antipode from Hopf algebra of rooted trees
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Variants on the Hopf algebra of flow charts

• noncommutative Hopf algebra H nc
flow,P

• Hopf algebra with only vertex labels H nc
flow,V

• Use only binary operations (valence 3 vertices): express bracketing
as a composition of binary operations

b(k ,m,ni ) = b(2,m,n1,n2+···+nk ) ◦ · · · ◦ b(2,m,nk−1,nk )

• Extend composition and recursion to k -ary operations

k -ary compositions c(k,m,ni )(hi ) = hk ◦ · · · ◦ h1 of functions
hi : Nni−1 → Nni , for i = 1, . . . , k , with n0 = m

(k + 1)-ary recursions with k initial conditions:

h(x1, . . . , xn, 1) = h1(x1, . . . , xn), . . .
h(x1, . . . , xn, k) = hk (x1, . . . , xn),
h(x1, . . . , xn, k + `) =
hk+1(x1, . . . , xn, h1(x1, . . . , xn), . . . , hk (x1, . . . , xn), k + `− 1),
for ` ≥ 1
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Insertion and Hochschild 1-cocycles

• T =forest: grafting operator B+
δ (T ) = sum of planar trees with new

root vertex added with incoming flags equal number of trees in T and
a single output flag and decoration δ ∈ {b, c, r}

• cocycle condition:

∆B+
δ = (id ⊗ B+

δ )∆ + B+
δ ⊗ 1

equivalent to ∆̃B+
δ = (id ⊗ B+

δ )∆̃ + id ⊗ B+
δ (1) with

∆̃(x) :=
∑

x ′ ⊗ x ′′ (non-primitive part) and B+
δ (1) = vδ (single

vertex, label δ): first term admissible cuts root vertex attached to
ρC(T ), second term admissible cut separating root vertex.

• cocycle condition requires same type of label (b, c, or r) for all
vertices of arbitrary valence: use version H nc

flow,V ′ with k -ary
operations

Matilde Marcolli Renormalization and Computation



Systems of Dyson–Schwinger equations (Foissy)

• non-constant formal power series in three variables X = (Xδ)

Fδ(X) =
∑

k1,k2,k3

a(δ)
k1,k2,k3

X k1
b X k2

c X k3
r

• associated system of Dyson–Schwinger equations

Xδ = B+
δ (Fδ(X))

• unique solution Xδ =
∑

τ xτ τ (sum over planar rooted trees root
decoration δ)

xτ = (
3∏

k=1

(
∑mk

l=1 pδ,l)!∏mk
l=1 pδ,l !

)a(δ)∑3
k=1 p1,k ,

∑3
k=1 p2,k ,

∑3
k=1 p3,k

xp1,1
τ1,1 · · · x

p3,m3
τ3,m3

when
τ = B+(τ

p1,1
1,1 · · · τ

p1,m1
1,m1
· · · τ p3,1

3,1 · · · τ
p3,m3
3,m3

)
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Dyson–Schwinger equations and Hopf subalgebras
(Bergbauer–Kreimer)

• Dyson–Schwinger equations in a Hopf algebra of the form

X = 1 +
∞∑

n=1

cn B+
δ (X n+1)

• associative algebra A (subalgebra of H ) generated by
components xn of unique solution of DS equation

• using cocycle condition for B+
δ get

∆(xn) =
n∑

k=0

Πn
k ⊗ xk , where Πn

k =
∑

j1+···+jk+1=n−k

xj1 · · · xjk+1

⇒ Hopf subalgebra

• generalized by Foissy for broader class of DS equations in Hopf
algebras, including systems
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Variant: Hopf ideals

• DS equation X = 1 +
∑∞

n=1 cn B+
δ (X n+1)

• ideal I generated by the components xn (with n ≥ 1) of solution

• cocycle condition for B+
δ ⇒ I Hopf ideal

elements of I finite sums
∑M

m=1 hmxkm with hm ∈H and xk

components of unique solution of DS equation

Hopf ideal condition: ∆(I ) ⊂ I ⊗H ⊕H ⊗I

coproduct ∆(xk ): primitive part 1⊗ xk + xk ⊗ 1 in H ⊗I ⊕I ⊗H ;
other terms in I ⊗I , so coproducts ∆(hmxkm ) in H ⊗I ⊕I ⊗H .

⇒ quotient Hopf algebra HI = H /I

Note: commutative Hopf algebra; if noncommutative use two-sided ideals
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Yanofsky’s Galois theory of algorithms

• Yanofsky proposed equivalence relations on flowcharts =
“implementing the same algorithm"

• algorithm as intermediate level between the flow chart (= labelled
planar rooted tree) and the primitive recursive functions

• obtain “Galois correspondence"

• resulting automorphism groups are products of symmetric groups

• but there are problems:
Example: (Joachim Kock )
fix function f : infinitely many programs computing it; “Galois group" is
symmetry group of that set; subgroup S3 (or C3) permuting (cyclically) three
of the programs fixing others: same orbits but different groups
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Proposal for a different form of Galois theory of algorithms

• suggestion: take the Hopf algebra structure into account in defining
relations (= relations should be Hopf ideals)

• instead of the kind of groups described by Yanofsky, find a
sub-group scheme GI ⊂ Gflow corresponding to the quotient
HI = H /I , with Gflow group scheme dual to Hopf algebra H of
flow charts

• in particular get a GI from a Dyson–Schwinger equation (system)

• the groups appearing in this way have a structure more similar to
the “Galois groups" playing a role in QFT
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From Hopf algebras to operads

• operad of flow charts Oflow,V ′

O(n) = K-vector space spanned by labelled planar rooted trees
with n incoming flags

operad composition operations

◦O : O(n)⊗ O(m1)⊗ · · · ⊗ O(mn)→ O(m1 + · · ·+ mn)

on generators τ ⊗ τ1 ⊗ · · · ⊗ τn by grafting output flag of τi to
the i-th input flag of τ
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Dyson–Schwinger equations in operads

• formal series P(t) = 1 +
∑∞

k=1 ak tk

• collection β = (βn) with βn ∈ O(n)

• Dyson–Schwinger equation:

X = β(P(X))

with X =
∑

k xk a formal sum of xk ∈ O(k)

• self-similarity with respect to X 7→ β(P(X))

• right-hand-side of equation: β(P(X))1 = 1 + β1 ◦ x1, with 1 identity
in O(1), and for n ≥ 2

β(P(X))n =
n∑

k=1

∑
j1+···+jk =n

ak βk ◦ (xj1 ⊗ · · · ⊗ xjk )

with xj1 ⊗ · · · ⊗ xjk ∈ O(j1)⊗ · · · ⊗ O(jk ), composition
βk ◦O (xj1 ⊗ · · · ⊗ xjk ) ∈ O(n), with j1 + · · ·+ jk = n
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Inductive construction of solutions

• O = Oflow,V ′ operad of flow charts

• assume a1β1 6= 1 ∈ O(1)

• then operadic Dyson–Schwinger equation X = β(P(X)) has
unique solution X ∈

∏
n≥1 O(n) given inductively by

(1− a1β1) ◦ xn+1 =
n+1∑
k=2

∑
j1+···jk =n+1

ak βk ◦ (xj1 ⊗ · · · ⊗ xjk )

• Oβ,P(n) = K-linear span of all compositions xk ◦ (xj1 ⊗ · · · ⊗ xjk )
for k = 1, . . . , n and j1 + · · ·+ jk = n, with xk coordinates of solution
X ⇒ Oβ,P(n) is a sub-operad

• choosing a1 6= 1 and βk single vertex k incoming flags, label δ
gives operadic version of DS equation with B+

δ , but more general DS
equations in operadic setting (without cocycle condition)
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Operads and Properads

• Manin: extend Hopf algebra of flow charts to graphs (not trees)
with acyclic orientations

• replace operad with properad: compositions grafting outputs and
inputs of acyclic graphs

• properad (Valette): operations with varying numbers of inputs and
outputs labelled by connected acyclic graphs; (operads: trees
varying number of inputs and single output; props: allow
disconnected graphs)

• composition operations: m inputs, n outputs

P(m, n)⊗P(j1, k1)⊗ · · · ⊗P(j`, k`)→P(j1 + · · ·+ j`, n)

for k1 + · · ·+ k` = m
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•Pflow,V ′ properad of flow charts

•P(m, n) = K-vector space spanned by planar connected directed
(acyclic) graphs with m incoming flags and n outgoing flags

• vertices decorated by operations including b, c, r (m inputs, one
output) and macros with m inputs and n outputs
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Dyson–Schwinger equations in properads

• formal power series P(t) = 1 +
∑

k ak tk

• collection β = (βm,n) with βm,n ∈P(m, n)

• DS equation X = β(P(X)) (self-similarity)

• in components

β(P(X))m,n =
m∑

k=1

ak

∑
j1+...jk =m
i1+···ik =`

β`,n ◦ (xj1,i1 ⊗ · · · ⊗ xjk ,ik )

Matilde Marcolli Renormalization and Computation



Construction of solutions in properads

• transformations Λn = Λn(a, β)

Λn(a, β) : ⊕n
k=1P(n, k)→ ⊕n

k=1P(n, k), with Λn(a, β)ij = ajβj,i

• assume I − Λn(a, β) invertible for all n (not always satisfied)

• then unique solution to DS equation X = β(P(X))

• inductive construction: x1,1 = Λ−1
1 and for m < n

xm,n =
m∑

k=1

akβk,n ◦

 k∑
`=1

∑
j1+···+j`=m
i1+···+i`=k

xj1,i1 ⊗ · · · ⊗ xj`,i`


remaning components m ≥ n determined by

Yn(x) = (I − Λn)−1 ΛnV (n)(x)

with Yn(x)t = (xn,1, . . . , xn,n) and V (n)(x)t = (V (n)(x)j)j=1,...,n

V (n)(x)j =
n∑

k=2

∑
r1+···+rk =n
s1+···+sk =j

xr1,s1 ⊗ · · · ⊗ xrk ,sk
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Partial recursive functions and the Hopf algebra

• enlarge from primitive recursive to partial recursive: same
elementary operations c, b, r of composition, bracketing and
recursion but additional µ operation

• µ operation: input function f : Nn+1 → N, output

h : Nn → N, h(x1, . . . , xn) = min{xn+1 | f (x1, . . . , xn+1) = 1},

with domain D(h) those (x1, . . . , xn) such that ∃xn+1 ≥ 1

f (x1, . . . , xn+1) = 1, with (x1, . . . , xn, k) ∈ D(f ), ∀k ≤ xn+1

• Church’s thesis: get all semi-computable functions, for which ∃
program computing f (x) for x ∈ D(f ) and computed zero or never
stops for x /∈ D(f )

• Hopf algebra: additional vertex decoration by µ operations,
extended to arbitrary valence by combining with bracketing; edge
decorations by partial recursive functions
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Feynman rule for computation (Manin)

•B algebra of functions Φ : Nk →M (D) from Nk , for some k , to
algebra M (D) of analytic functions in unit disk
D = {z ∈ C : |z| < 1}.
• Rota–Baxter operator T on B componentwise projection onto
polar part at z = 1

• For any tree τ that computes f set

Φτ (k , z) = Φ(k , f , z) :=
∑
n≥0

zn

(1 + nf̄ (k))2

f̄ : Nm → Z≥0 computes f (x) at x ∈ D(f ) and 0 at x /∈ D(f ).

• Φτ (k , z) pole at z = 1 iff k /∈ D(f )

• this Φ is algebraic Feynman rule: commutative algebra
homomorphism from enlarged Hopf algebra of flow charts to
Rota–Baxter algebra B
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apply BPHZ
• negative part of Birkhoff factorization becomes

Φ−(k , fτ , z) = −T (Φ(k , fτ , z) +
∑

C

Φ−(k , fπC(τ), z)Φ(k , fρC(τ), z))

• Note: f = fτ label of outgoing flag of τ : then fρC(τ) = fτ

Φ−(k , fτ , z) = −T

(
Φ(k , fτ , z)(1 + Φ−(k ,

∑
C

fπC(τ), z))

)

•What is happening here? Like in QFT, looking not only at
“divergences" of program τ but also of all subprograms πC(τ) and
ρC(τ) determined by admissible cuts (the problem of subdivergences
in renormalization)
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Why subdivergences in computation?

• Φ−(k , fτ , z) detects not only if τ has infinities but if any subroutine
does

• Note: Φ(k , fτ , z) only depends on f = fτ not on τ , but Φ−(k , fτ , z)
really depends on τ

• Unlike QFT there are programs without divergences that do have
subdivergences

• Example: (Joachim Kock)

identity function computed as composite of successor function followed by
partial predecessor function µ(|y + 1− x |) (undefined at 0, and x − 1 for
x > 0), τ with a c node and a µ node
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Renormalized part What does it measure?

Φ+(k , fτ , z) = (1−T )(Φ(k , fτ , z)+
∑

C

Φ−(k , fπC(τ), z)Φ(k , fρC(τ), z))

• Main question: is there a new fren, now primitive recursive, such
that Φ+(k , fτ , z) = Φ(k , fren, z)?

• in general not true simply as stated, but in QFT there is an
equivalence relation on Feynman rules and renormalized values, a
kind of gauge transformation by germs of holomorphic functions
(Connes–Marcolli): correct statement of question is up to such an
equivalence?

• Useful viewpoint: every partial recursive function can be computed
by a Hopf-primitive program: Kleene normal form as µ of a total
function
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Min-Plus Algebra (same setting used for Tropical Semirings)

min-plus (or tropical) semiring T = R ∪ {∞}

• operations ⊕ and �

x ⊕ y = min{x , y} with identity ∞

x � y = x + y with identity 0

• operations ⊕ and � satisfy:

associativity

commutativity

left/right identity

distributivity of product � over sum ⊕

Note: can work equivalently with (R ∪ {∞},min,+) or with
(R+,max, ∗) isomorphic under − log map
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Thermodynamic semirings Tβ,S = (R ∪ {∞},⊕β,S,�)

• deformation of the tropical addition ⊕β,S

x ⊕β,S y = min
p
{px + (1− p)y − 1

β
S(p)}

β thermodynamic inverse temperature parameter
S(p) = S(p, 1− p) binary information measure, p ∈ [0, 1]

• for β →∞ (zero temperature) recovers unperturbed idempotent
addition ⊕

• multiplication � = + is undeformed
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von Neumann entropy and the tropical trace

• convex set of density matrices

M (N) = {ρ ∈ MN×N(C) | ρ∗ = ρ, ρ ≥ 0, Tr(ρ) = 1}

• von Neumann entropy

N (ρ) = −Tr(ρ log ρ), for ρ ∈M (N)

Shannon entropy in diagonal case

• matrices MN×N(T) over T = (R ∪ {∞},⊕,�)

(A⊕B)ij = min{Aij ,Bij} and (A�B)ij = ⊕k Aik�Bkj = min
k
{Aik +Bkj}

• tropical trace Tr⊕(A) = mini{Aii}

• also consider

T̃r
⊕

(A) := min
U∈U(N)

min
i
{(UAU∗)ii} ≤ Tr⊕(A)
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Entropical trace: thermodynamic deformation of tropical trace

Tr⊕β,S(A) := min
ρ∈M (N)

{Tr(ρA)− β−1S(ρ)}

Tr in the right-hand-side is the ordinary trace

• in particular S(ρ) = N (ρ) von Neumann entropy, but also other
entropy functionals (e.g. quantum versions of Rényi and Tsallis)

• Note: Tr(ρA) = 〈A〉 expectation value of observable A

• zero temperature limit

lim
β→∞

Tr⊕β,S(A) = T̃r
⊕

(A)
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Kullback–Leibler divergence and von Neumann entropical trace

• relative entropy (Kullback–Leibler divergence)

S(ρ||σ) = Tr(ρ(log ρ− log σ))

• von Neumann deformation and relative entropy
(for A = A∗, A ≥ 0)

Tr(ρA)− β−1N (ρ) =
1
β

S(ρ||σβ,A)− 1
β

log ZA(β)

σβ,A =
e−βA

ZA(β)
with ZA(β) = Tr(e−βA)

• von Neumann entropical trace (for A = A∗, A ≥ 0)

Tr⊕β,N (A) = − log ZA(β)

β

with ZA(β) = Tr(e−βA): rhs above is Helmholtz free energy
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• if for A = A∗, A ≥ 0 is direct sum of two matrices A1 and A2

Tr⊕β,N (A) = Tr⊕β,N (A1)� Tr⊕β,N (A2)

= −β−1
(

log Tr(e−βA1) + log Tr(e−βA2)
)

Relative entropies
The quantum relative entropy: for ρ, σ ∈M (N)

S(ρ||σ) = Tr(ρ(log ρ− log σ))

The Belavkin–Staszewski relative entropy: for ρ, σ ∈M (N)

SBS(ρ||σ) = Tr(ρ log(ρ1/2σ−1ρ1/2))

The Umegaki deformed relative entropy: for ρ, σ ∈M (N)

Sα(ρ||σ) =
4

1− α2 Tr((I − σ(α+1)/2ρ(α−1)/2)ρ)

• given a fixed density matrix σ set Sσ(ρ) = S(ρ||σ), so that

Tr⊕β,Sσ(A) = min
ρ∈M (N)

{Tr(ρA)− β−1S(ρ||σ)}
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deformation of states on C∗-algebras
• states M = {ϕ : A → C linear |ϕ(1) = 1 andϕ(a∗a) ≥ 0}
• relative entropy of states: in case of Gibbs states ϕ(a) = τ(aξ),
ψ(a) = τ(aη)

S(ϕ||ψ) = τ(ξ(log ξ − log η))

in general more complicated

• thermodynamic deformation of a state ψ ∈M

ψβ,S(a) = min
ϕ∈M
{ϕ(a) + β−1S(ϕ||ψ)}
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Example:

• noncommutative torus: C∗-algebra generated by two unitaries U,V
with VU = e2πiθUV

• canonical trace, τ(UnV m) = 0 for (n,m) 6= (0, 0) and τ(1) = 1

• Gibbs states ϕ(a) = τ(aξ) positive elements ξ ∈ Aθ

• thermodynamic deformation of canonical trace

τβ,S(a) = min
ϕ∈Mτ

{ϕ(a) + β−1S(ϕ||τ)}

• KMS state ϕβ,a(b) = τ(be−βa)
τ(eβa)

of time evolution σt(b) = eitabe−ita

τβ,S(a) = min
ϕ∈Mτ

{β−1S(ϕ||ϕβ,a)−β−1 log τ(e−βa)} = −β−1 log τ(e−βa)

Helmholtz free energy

• limβ→∞ τβ,S(a) a notion of “tropicalization" of the von Neumann
trace τ of the NC torus
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Symbolic dynamics and Dynamical and Topological Entropy

locally compact Hausdorff space X , with a dynamical system
σ : X → X (continuous function)

X shift space of sequences w = w0w1 . . .wiwi+1 . . . in a finite
alphabet wi ∈ A, with #A = n

X topologically Cantor set with topology generated by cylinder
sets

C (a0, . . . , aN) = {w ∈ X |wi = ai , 0 ≤ i ≤ N}

one-sided shift σ : X → X , defined by σ(w)i = wi+1
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Bernoulli measure µP on X shift-invariant, defined by probability
P = (p1, . . . , pn) on alphabet A

assigns measure µP(C (a0, . . . , aN)) = pa0 · · · paN to cylinder
sets

Markov measure µP,ρ on X shift-invariant measure defined by a
pair (P, ρ) of probability P = (p1, . . . , pn) on A and stochastic
matrix ρ satisfying Pρ = P

assigns measure µP,ρ(C (a0, . . . , aN)) = pa0ρa0a1 · · · ρaN−1aN

Markov measure µP,ρ is supported on a subshift of finite type
XA ⊂ X , given by shift-invariant
XA = {w ∈ X |Awi wi+1 = 1, ∀i ≥ 0} with matrix Aij entries 0 or
1 when ρij = 0 or ρij 6= 0
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for µ a σ-invariant probability measure on X , entropy S(µ, σ) is
µ-almost everywhere value of local entropy

hµ,σ(x) = lim
δ→0

lim
n→∞

−1
n

logµ(Bσ(x , n, δ)),

where Bσ(x , n, δ) = {y ∈ X | d(σj(x), σj(y)) < δ, ∀0 ≤ j ≤ n}
are the Bowen balls

for Bernoulli measure µ = µP , dynamical entropy agrees with
Shannon entropy of P,

S(µP , σ) = −
N∑

i=1

pi log pi

for Markov measure dynamical entropy

S(µP,ρ, σ) = −
N∑

i=1

pi

N∑
j=1

ρij log ρij
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analogous to thermodynamic deformations of trace, deformation
of integration of functions f ∈ C(X ,R)∫ (β,S)

X
f (x)dx := inf

µ
{
∫

X
f (x)dµ(x)− β−1S(µ, σ)}

infimum is taken over a specific class of σ-invariant measures
Bernoulli measures
Markov measures
σ-invariant ergodic measures

topological entropy of shift σ is

h(X , σ) = sup
µ
{S(µ, σ)},

with supremum over all σ-invariant ergodic measures
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Semirings of functions

• min-plus semirings S = C(X ,T) with pointwise ⊕, �

• thermodynamic deformations Sβ,S = C(X ,Tβ,S)
with pointwise ⊕β,S , �

Logarithmically related pairs (R,S)

• R commutative ring (algebra); S min-plus semiring; with formal
logarithm bijective map L : Dom(L ) ⊂ R → S

L (ab) = L (a) + L (b) = L (a)�L (b)

• thermodynamic deformation (Shannon entropy)

f1 ⊕β,S f2 = −β−1 log(E(−βf1) + E(−βf2))

with E : S→ Dom(L ) ⊂ R inverse of L
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Examples

• R = C(X ,R) and Dom(L ) ⊂ R given by C(X ,R∗+) with
L (a) = −β−1 log(a)

f1 ⊕β,S f2 = −β−1 log(e−βf1 + e−βf2)

is Sβ,S = C(X ,Tβ,S) with S = Sh

• R = Q[[t]] ring of formal power series, Dom(L ) ⊂ R power
series α(t) =

∑
k≥0 ak tk with a0 = 1, with formal log

L (1 + α) = α− 1
2
α2 +

1
3
α3 + · · · =

∞∑
k=1

(−1)k+1

k
αk

α1 ⊕β,S α2 = β−1L (E(−βα1) + E(−βα2))

formal exponential E(γ) =
∑

k≥0 γ
k/k!
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min-plus valued characters (algebraic Feynman rules)

•H commutative Hopf algebra; S be a min-plus semiring

• ψ : H → S satisfying ψ(1) = 0 and

ψ(xy) = ψ(x) + ψ(y), ∀x , y ∈H

• main idea: “arithmetic of orders of magnitude" ε→ 0
- leading term in εα + εβ is εmin{α,β}

- leading term of εαεβ is εα+β

• model characters and Birkhoff factorization on “order of magnitude"
version of usual ones
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convolution of min-plus characters

(ψ1?ψ2)(x) = min{ψ1(x(1))+ψ2(x(2))} =
⊕

(ψ1(x(1))�ψ2(x(2)))

minimum over all pairs (x(1), x(2)) in coproduct
∆(x) =

∑
x(1) ⊗ x(2) in Hopf algebra H

Birkhoff factorization of a min-plus character ψ

ψ+ = ψ− ? ψ

? convolution product, ψ± satisfying ψ±(xy) = ψ±(x) + ψ±(y)

Note: does not require antipode, works also for H bialgebra
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Rota–Baxter semirings

• S be a min-plus semiring, map T : S→ S is ⊕-additive if
monotone, T (a) ≤ T (b) for a ≤ b (pointwise)

• Rota–Baxter semiring (S,⊕,�) weight λ > 0:
exists ⊕-additive map T : S→ S with

T (f1)� T (f2) = T (T (f1)� f2)⊕ T (f1 � T (f2))⊕ T (f1 � f2)� log λ

• Rota–Baxter semiring (S,⊕,�) weight λ < 0:
exists ⊕-additive map T : S→ S with

T (f1)�T (f2)⊕T (f1� f2)� log(−λ) = T (T (f1)� f2)⊕T (f1�T (f2))
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Birkhoff factorization in min-plus semirings (weight +1)

• Bogolyubov-Parashchuk preparation

ψ̃(x) = min{ψ(x), ψ−(x ′) + ψ(x ′′)} = ψ(x)⊕
⊕

ψ−(x ′)� ψ(x ′′)

(x ′, x ′′) ranges over non-primitive part of coproduct
∆(x) = x ⊗ 1 + 1⊗ x +

∑
x ′ ⊗ x ′′

• ψ− defined inductively on lower degree x ′ in Hopf algebra

ψ−(x) := T (ψ̃(x)) = T (min{ψ(x), ψ−(x ′) + ψ(x ′′)})

= T
(
ψ(x)⊕

⊕
ψ−(x ′)� ψ(x ′′)

)
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• by ⊕-linearity of T same as

ψ−(x) = min{T (ψ(x)),T (ψ−(x ′) + ψ(x ′′))}

= T (ψ(x))⊕
⊕

T (ψ−(x ′)� ψ(x ′′))

• then ψ+ by convolution

ψ+(x) := (ψ− ? ψ)(x) = min{ψ−(x), ψ(x), ψ−(x ′) + ψ(x ′′)}

= min{ψ−(x), ψ̃(x)} = ψ−(x)⊕ ψ̃(x)

• key step: associativity and commutativity of ⊕ and ⊕-additivity of
T , plus Rota-Baxter identity weight +1 gives

ψ−(xy) = ψ−(x) + ψ−(y)

hence ψ+ also as convolution
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to check that ψ± satisfy ψ±(xy) = ψ±(x) + ψ±(y)

have ψ−(xy) = T min{ψ(x) + ψ(y), ψ−((xy)′) + ψ((xy)′′)}
decompose the terms (xy)′ and (xy)′′ in terms of x , y , x ′ and
x ′′, y ′ and y ′′

ψ−(xy) = T min



ψ(x) + ψ(y),
ψ−(x) + ψ(y),
ψ−(y) + ψ(x),
ψ−(y ′) + ψ(xy ′′),
ψ−(x ′) + ψ(x ′′y),
ψ−(xy ′) + ψ(y ′′),
ψ−(x ′y) + ψ(x ′′),
ψ−(x ′y ′) + ψ(x ′′y ′′)


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by associativity and commutativity of ⊕ and ⊕-additivity of T
can group these terms together into

ψ−(xy) = min{α(x , y , x ′, y ′), β(x , y , x ′, y ′)}

α(x , y , x ′, y ′) = T min


ψ−(x) + ψ(y),
ψ(x) + ψ−(y),
ψ−(xy ′) + ψ(y ′′),
ψ−(x ′y) + ψ(x ′′)


β(x , y , x ′, y ′) = T min


ψ(x) + ψ(y),
ψ−(y ′) + ψ(xy ′′),
ψ−(x ′) + ψ(x ′′y),
ψ−(x ′y ′) + ψ(x ′′y ′′)


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assume inductively that

ψ−(uv) = ψ−(u) + ψ−(v),

for all terms u and v in H of degrees
deg(u) + deg(v) < deg(xy)

use the fact that T is ⊕-additive

rewrite α(x , y , x ′, y ′) as

α(x , y , x ′, y ′) = T min{ψ−(x) + ψ̃(y), ψ̃(x) + ψ−(y)}

= min{T (T (ψ̃(x)) + ψ̃(y)),T (ψ̃(x) + T (ψ̃(y)))}

write the term β(x , y , x ′, y ′) as

β(x , y , x ′, y ′) = T min{ψ̃(x) + ψ̃(y)} = min{T (ψ̃(x) + ψ̃(y))}.
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have then

ψ−(xy) = min


T (ψ̃(x) + ψ̃(y)),

T (T (ψ̃(x)) + ψ̃(y)),

T (ψ̃(x) + T (ψ̃(y)))


= T (ψ̃(x)� ψ̃(y))⊕ T (T (ψ̃(x))� ψ̃(y))

⊕ T (ψ̃(x)� T (ψ̃(y))).

the operator T satisfies the Rota–Baxter identity with λ = 1,

T (f1)�T (f2) = T (T (f1)� f2)⊕T (f1�T (f2))⊕T (f1� f2)� log λ

so can rewrite the above as

ψ−(xy) = T (ψ̃(x))� T (ψ̃(y))

= T (ψ̃(x)) + T (ψ̃(y)) = ψ−(x) + ψ−(y)

the fact that ψ+(xy) = ψ+(x) + ψ+(y) then follows from
ψ+ = ψ− ? ψ
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Birkhoff factorization in min-plus semirings (weight −1)

• ψ : H → S min-plus character, and T : S→ S Rota-Baxter weight
−1: there is a Birkhoff factorization ψ+ = ψ− ? ψ; if T satisfies
T (f1 + f2) ≥ T (f1) + T (f2), then ψ− and ψ+ are also min-plus
characters: ψ±(xy) = ψ±(x) + ψ±(y)

• as before

ψ−(x) := T (ψ̃(x)) and ψ+(x) := (ψ−?ψ)(x) = min{ψ−(x), ψ̃(x)}

• Rota–Baxter identity of weight −1 gives

ψ−(xy) = min{T (ψ̃(x) + ψ̃(y)),T (ψ̃(x)) + T (ψ̃(y)))}

if T (f1 + f2) ≥ T (f1) + T (f2) then

ψ−(xy) = T (ψ̃(x)) + T (ψ̃(y))) = ψ−(x) + ψ−(y)
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Thermodynamic Rota–Baxter structures

• Sβ,S thermodynamic Rota–Baxter semiring weight λ > 0: there is
⊕β,S-additive map T : Sβ,S → Sβ,S

T (f1)�T (f2) = T (T (f1)� f2)⊕β,S T (f1�T (f2))⊕β,S T (f1� f2)� log λ

• Sβ,S thermodynamic Rota–Baxter semiring weight λ < 0: there is
⊕β,S-additive map T : Sβ,S → Sβ,S

T (f1)�T (f2)⊕β,ST (f1�f2)�log(−λ) = T (T (f1)�f2)⊕β,ST (f1�T (f2))

like previous case but with ⊕ replaced with deformed ⊕β,S
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• (R,S) logarithmically related pair: T : S→ S determines
T : R → R with T (e−βf ) := e−βT (f ), for a = e−βf in
Dom(log) ⊂ R

T Rota-Baxter weight λβ on R ⇔ T Rota-Baxter weight λ on Sβ,S

with S = Sh and λβ = λ−β , for λ > 0, or λβ = −|λ|−β for λ < 0

T (e−βf1)T (e−βf2) = T (T (e−βf1)e−βf2) + T (e−βf1T (e−βf2))

+λβ T (e−βf1e−βf2)

• T is R-linear iff T is ⊕β,S-linear
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Birkhoff factorization in thermodynamic Rota–Baxter semirings
(weight +1)

• T : Sβ,S → Sβ,S Rota–Baxter of weight λ = +1

• Bogolyubov–Parashchuk preparation of ψ : H → Sβ,S

ψ̃β,S(x) = ψ(x)⊕β,S
⊕
β,S

ψ−(x ′) + ψ(x ′′)

= −β−1 log
(

e−βψ(x) +
∑

e−β(ψ−(x ′)+ψ(x ′′))
)

• φβ(x) := e−βψ(x) in R: Bogolyubov–Parashchuk preparation

φ̃β(x) = e−βψ̃(x)

φ̃β(x) := φβ(x) +
∑

T (φ̃β(x ′))φβ(x ′′)

with T (e−βf ) := e−βT (f ) and T (−e−βf ) := −T (e−βf )
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• Birkhoff factorization ψβ,+ = ψβ,− ?β ψ

ψβ,−(x) = T (ψ̃β(x)) = −β−1 log
(

e−βT (ψ(x)) +
∑

e−βT (ψ−(x ′)+ψ(x ′′))
)

ψβ,+(x) = −β−1 log
(

e−βψβ,−(x) + e−βψ̃β(x)
)

satisfying ψβ,±(xy) = ψβ,±(x) + ψβ,±(y)

• in limit β →∞ thermodynamic Birkhoff factorization converges to
min-plus Birkhoff factorization
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Entropical von Neumann trace and Rota–Baxter identity

• (R,T ) ordinary Rota–Baxter algebra weight λ; same weight on
matrices Mn(R) by T (A) = (T (aij)), for A = (aij)

• for (Mn(R),Mn(S)) logarithmically related, with T Rota–Baxter
weight +1 on R ⇒ T : Mn(S)→ Mn(S) with T (e−βA) = e−βT (A)

satisfying

Tr⊕β,N (T (A)� T (B)) = Tr⊕β,N (T (T (A)� B))

⊕β,STr⊕β,N (T (A� T (B)))

⊕β,STr⊕β,N (T (A)� T (B))

where � = direct sum of matrices, N = von Neumann entropy
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Example: partial sums

R-algebra R of R-valued sequences
a = (a1, a2, a3, · · · ) = (an)∞n=1, with coordinate-wise addition
and multiplication

T : R → R be the linear operator that maps the sequence
(a1, a2, a3, · · · , an, · · · ) to (0, a1, a1 + a2, · · · ,

∑n−1
k=1 ak , · · · )

T is a Rota–Baxter operator of weight +1
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this Rota–Baxter algebra (R,T ) of weight +1 determines a
Rota–Baxter structure of weight +1 on the thermodynamic
semi-rings Sβ,S of functions f : N→ T = R ∪ {∞}, with the
pointwise operations ⊕β,S and �

(Tf )(n) =
⊕
β,S k=1,...,n−1

f (k)

for n ≥ 2 and (Tf )(1) =∞
here D ⊂ R be the subset of sequences with values in R+,
which we can write as an = e−βcn , when an > 0 and zero
otherwise

have (T a)1 = 0 and (T a)n =
∑n−1

k=1 ak for n ≥ 2

set (Tc)n = −β−1 log(T a)n, so that

(Tc)n =

 ∞ n = 1

−β−1 log
(∑n−1

k=1 e−βck

)
n ≥ 2.
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Example: q-integral

R = R[[t]] be the ring of formal power series with real
coefficients

for q not a root of unity, T linear operator

(T α)(t) =
∞∑

k=1

α(qnt)

T is a Rota–Baxter operator of weight +1

T maps a single power tn to qntn/(1− qn), hence it restricts to
a Rota–Baxter operator of weight +1 on the subring of
polynomials R[t]
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S thermodynamic semiring of formal power series
Sβ,S = R[[t]] ∪ {∞} with operations

(γ1 ⊕β,S γ2)(t) = −β−1 log(e−βγ1(t) + e−βγ2(t))

(γ1 � γ2)(t) = γ1(t) + γ2(t)

the Rota–Baxter algebra (R,T ) of weight +1 induces a
Rota–Baxter structure of weight +1 on Sβ,S

(Tγ)(t) =
⊕
β,S

∞

k=1

γ(qk t)

here D ⊂ R formal series with a0 = 1, namely D = 1 + tR[[t]]
for α ∈ D and γ(t) = logα(t) define T by the relation
T (e−βγ(t)) = e−β(Tγ)(t)

this gives e−β(Tγ(t)) =
∑∞

k=1 e−βγ(qk t)

(Tγ)(t) = −β−1 log

( ∞∑
k=1

e−βγ(qk t)

)
=
⊕
β,S

∞

k=1

γ(qk t)
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Example: Witt rings

commutative ring R, Witt ring W (R) = 1 + tR[[t]]: addition is
product of formal power series, multiplication determined by

(1− at)−1 ? (1− bt)−1 = (1− abt)−1 a, b ∈ R

injective ring homomorphism g : W (R)→ RN, ghost
coordinates coefficients of

t
1
α

dα
dt

=
∑
r≥1

αr t r for α = exp(
∑
r≥1

αr t r/r)

component-wise addition and multiplication on RN

writing elements of the Witt ring W (R) in exponential form

exp

∑
r≥1

αr
t r

r


the ghost coordinates are the coefficients of

t
1
α

dα
dt

=
∑
r≥1

αr t r
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• linear operator T : RN → RN is Rota–Baxter weight λ iff
TW : W (R)→ W (R) defined by g(TW (α)) = T (g(α)) satisfies
Rota–Baxter on W (R)

TW (α1) ?TW (α2) = TW (α1 ?TW (α2)) +W TW (TW (α1) ? α2)

+W λ TW (α1 ? α2)

Rota–Baxter identity for TW (with +W the sum in W (R))

TW (α1) ?TW (α2) = TW (α1 ?TW (α2)) +W TW (TW (α1) ? α2)

+Wλ ?TW (α1 ? α2))

taking ghost components

g(TW (α1)?TW (α2))) = g(TW (α1?TW (α2)))+g(TW (TW (α1)?α2))

+λ g(TW (α1 ? α2))

gives the Rota–Baxter identity for T

T (g(α1))T (g(α2)) = T (g(α1)T (g(α2))) + T (T (g(α1))g(α2))

+λT (g(α1)g(α2))

injectivity of ghost map: can run the implication backward
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W (R) also has a convolution product (with same +W addition)

α~ γ := exp

∑
n≥1

(
∑

r+`=n

αrγ`)
tn

n


for α = exp(

∑
r≥1 αr t r/r) and γ = exp(

∑
r≥1 γr t r/r)

α~ γ is defined so that the ghost
g(α~ γ) =

∑
n≥1

∑
r+`=n αrγ` tn is the product as power

series g(α) • g(γ) of the ghosts g(α) =
∑

r≥1 αr t r and
g(γ) =

∑
r≥1 γr t t
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• linear operator T : R[[t]]→ R[[t]] is Rota–Baxter weight λ iff
TW : W (R)→ W (R) defined by g(TW (α)) = T (g(α)) satisfies
Rota–Baxter on W (R) with convolution product

TW (α1)~TW (α2) = TW (α1 ~TW (α2)) +W TW (TW (α1)~ α2)

+W λ TW (α1 ~ α2)
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• Example: R = RN Rota–Baxter weight +1

T : (a1, a2, . . . , an, . . .) 7→ (0, a1, a1 + a2, . . . ,

n−1∑
k=1

ak , . . .)

resulting Rota–Baxter TW weight +1 on Witt ring W (R)

TW (α) = α~ I

convolution product with multiplicative unit I = (1− t)−1
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Example: R = R[[t]] with the Rota–Baxter operator Tq of weight +1
given by the q-integral (where q ∈ R is not a root of unity)

operator TW ,q on W (R) defined by g(TW ,q(α)) = Tq(g(α)) is
a Rota–Baxter operator of weight one with respect to the
convolution product
explicitly given by

TW (α)(t) =
∏
k≥1

α(qk t)

TW ,q(exp(
∑
r≥1

αr
t r

r
)) = exp(

∑
r≥1

∑
k≥1

αr
qkr t r

r
)) =

∏
k≥1

exp(
∑
r≥1

αr
(qk t)r

r
)

product
∏

k α(qk t) (product as power series) is addition in Witt
ring W (R)
so TW has same form as q-integral T replacing sum in R[[t]]
with sum in W (R) so for same reason TW ,q satisfies RB

TW ,q(α1)~TW ,q(α2) = TW ,q(α1~TW ,q(α2))+W TW ,q(TW ,q(α1)~α2)

+W TW ,q(α1 ~ α2)
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Example: Zeta functions of algebraic varieties over finite fields

• Hasse–Weil zeta functions of varieties over Fq

Z (X , t) = exp

∑
r≥1

#X(Fqr )
t r

r


elements in Witt ring:

Z (X tY , t) = Z (X , t)Z (Y , t) and Z (X×Y , t) = Z (X , t)?Z (Y , t)

Rota–Baxter operator weight +1

TW (Z (X , t)) = Z (X , t)~ Z (Spec(Fq), t)
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K0(V )Fq Grothendieck ring of varieties over Fq generated by
isomorphism classes [X ] with inclusion-exclusion relationz
[X ] = [Y ] + [X r Y ] for closed Y ⊂ X and product
[X × Y ] = [X ] [Y ]

the zeta function Z (X , t) = Z ([X ], t) factors as a ring
homomorphism from the Grothendieck ring to the Witt ring
Lefschetz motive: class of the affine line L = [A1]; Tate motive
formal inverse L−1

Rota–Baxter operator TW ,q or TW ,q−1

TW ,q(Z (X , t)) =
∏
k≥1

Z ([X ]Lk , t), TW ,q−1 (Z (X , t)) =
∏
k≥1

Z ([X ]L−k , t)

with L Lefschetz motive and L−1 Tate motive
operators T̃W ,q±1 := −W id −W TW ,q±1 are also Rota–Baxter
operators of weight +1

T̃W ,q±1(Z (X , t)) =
∏
k≥0

Z ([X ]L±k , t)−1
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min-plus characters from inclusion–exclusion functions on graphs

real valued functions τ on a set of graphs with
inclusion-exclusion
for Γ = Γ1 ∪ Γ2 with intersection γ = Γ1 ∩ Γ2

τ(Γ) = τ(Γ1) + τ(Γ2)− τ(γ)

typical examples a “cost function" to the sets of vertices and
edges
FE = {fe : e ∈ E(Γ)} and FV = {fv : v ∈ V (Γ)} setting

τ(Γ) =
∑

v∈V(Γ)

fv +
∑

e∈E(Γ)

fe

gives function satisfying inclusion-exclusion
on disjoint union Γ = Γ1 t Γ2 have τ(Γ) = τ(Γ1) + τ(Γ2),
hence morphism τ : H → T, with H (Hopf) algebra of graphs
and T tropical semiring
examples from Random Markov Fields
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Computation examples

• inclusion–exclusion “cost functions": Γ = Γ1 ∪ Γ2, γ = Γ1 ∩ Γ2

ψ(Γ) = ψ(Γ1) + ψ(Γ2)− ψ(γ)

determine ψ : H → T character ψ(xy) = ψ(x) + ψ(y)

• class of machines ψn(Γ) step-counting function of n-th machine:
when it outputs on computation Γ (Hopf algebra of flow charts)

• Rota–Baxter operator weight +1 of partial sums:
Bogolyubov–Parashchuck preparation

ψ̃n(Γ) = min{ψn(Γ), ψn(Γ/γ) +
n−1∑
k=1

ψ̃k (γ)}

• a graph Γ with ψn(Γ) =∞ (n-th machine does not halt) can have
ψ̃n(Γ) <∞ if both
- source of infinity was localized in γ r ∂γ, so ψn(Γ/γ) <∞
- ψk (γ) <∞ for all previous machines

“renormalization of computational infinities" in Manin’s sense
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Application to QFT

expansion of perturbative QFT into Feynman diagrams

each a graph with an integral on momentum variables

reformulated in Schwinger–Feynman parameters: integral of an
algebraic differential form on a cycle in the complement of an
algebraic hypersurface defined over Z (period integrals)

divergence issues from intersections of cycle and hypersurface

question on the arithmetic nature of the hypersurfaces (graph
hypersurfaces) and the resulting periods

original conjecture: mixed Tate motives and periods mutliple
zeta values (conjecture proved false)
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the mixed Tate condition closely related to polynomial
countability condition

Question: are classes in the Grothendieck ring of the graph
hypersurfaces polynomials in the Lefschetz motive L with
Z-coefficients?
Question: is the counting of points over a finite field Fq a
polynomial function of q with Z-coefficients?

answer to both is no but are there interesting families of graphs
for which it holds? can one extract from a graph the subgraphs
and quotient graphs for which it holds?
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Feynman rules for IΓ(k1, . . . , k`, p1, . . . , pN):
- Internal lines⇒ propagator = quadratic form qi

1
q1 · · · qn

, qi(ki) = k2
i + m2

- Vertices: conservation (valences = monomials in L )∑
ei∈E(Γ):s(ei )=v

ki = 0

- Integration over ki , internal edges

U(Γ) =

∫
δ(
∑n

i=1 εv,iki +
∑N

j=1 εv,jpj )

q1 · · · qn
dDk1 · · · dDkn

n = #Eint (Γ), N = #Eext (Γ)

εe,v =

 +1 t(e) = v
−1 s(e) = v

0 otherwise,
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Parametric Feynman integrals
• Schwinger parameters q−k1

1 · · · q−kn
n =

1
Γ(k1) · · · Γ(kn)

∫ ∞
0
· · ·
∫ ∞

0
e−(s1q1+···+snqn) sk1−1

1 · · · skn−1
n ds1 · · · dsn.

• Feynman trick

1
q1 · · · qn

= (n − 1)!

∫
δ(1−

∑n
i=1 ti )

(t1q1 + · · ·+ tnqn)n dt1 · · · dtn

then change of variables ki = ui +
∑`

k=1 ηik xk

ηik =

{
±1 edge ± ei ∈ loop `k

0 otherwise

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

ωn

ΨΓ(t)D/2VΓ(t, p)n−D`/2

σn = {t ∈ Rn
+|
∑

i ti = 1}, vol form ωn
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Graph polynomials

ΨΓ(t) = det MΓ(t) =
∑

T

∏
e/∈T

te with (MΓ)kr (t) =
n∑

i=0

tiηikηir

Massless case m = 0:

VΓ(t, p) =
PΓ(t, p)

ΨΓ(t)
and PΓ(p, t) =

∑
C⊂Γ

sC

∏
e∈C

te

cut-sets C (complement of spanning tree plus one edge)
sC = (

∑
v∈V(Γ1) Pv )2 with Pv =

∑
e∈Eext (Γ),t(e)=v pe for

∑
e∈Eext (Γ) pe = 0

with deg ΨΓ = b1(Γ) = deg PΓ − 1

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

stable range −n + D`/2 ≥ 0; log divergent n = D`/2:∫
σn

ωn

ΨΓ(t)D/2
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Graph hypersurfaces
Residue of U(Γ) (up to divergent Gamma factor)∫

σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

Graph hypersurfaces X̂Γ = {t ∈ An |ΨΓ(t) = 0}

XΓ = {t ∈ Pn−1 |ΨΓ(t) = 0} deg = b1(Γ)

• Relative cohomology: (range −n + D`/2 ≥ 0)

Hn−1(Pn−1 r XΓ,Σn r (Σn ∩ XΓ)) with Σn = {
∏

i

ti = 0} ⊃ ∂σn

• Periods:
∫
σ ω integrals of algebraic differential forms ω on a cycle σ

defined by algebraic equations in an algebraic variety
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Graph hypersurfaces
Residue of U(Γ) (up to divergent Gamma factor)∫

σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

Graph hypersurfaces X̂Γ = {t ∈ An |ΨΓ(t) = 0}

XΓ = {t ∈ Pn−1 |ΨΓ(t) = 0} deg = b1(Γ)

• Relative cohomology: (range −n + D`/2 ≥ 0)

Hn−1(Pn−1 r XΓ,Σn r (Σn ∩ XΓ)) with Σn = {
∏

i

ti = 0} ⊃ ∂σn

• Periods:
∫
σ ω integrals of algebraic differential forms ω on a cycle σ

defined by algebraic equations in an algebraic variety
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Feynman integrals and periods
Parametric Feynman integral: algebraic differential form on cycle in
algebraic variety
But... divergent: where XΓ ∩ σn 6= ∅, inside divisor Σn ⊃ σn of
coordinate hyperplanes

Blowups of coordinate linear spaces defined by edges of 1PI
subgraphs (toric variety P(Γ))

Iterated blowup P(Γ) separates strict transform of XΓ from
non-negative real points

Deform integration chain: monodromy problem; lift to P(Γ)

Subtraction of divergences: Poincaré residuces and limiting
mixed Hodge structure

• S. Bloch, E. Esnault, D. Kreimer, On motives associated to graph
polynomials, arXiv:math/0510011.
• S. Bloch, D. Kreimer, Mixed Hodge Structures and Renormalization
in Physics, arXiv:0804.4399.
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Motives and the Grothendieck ring of varieties
• Difficult to determine explicitly the motive of XΓ (singular variety!) in
the triangulated category of mixed motives

• Simpler invariant (universal Euler characteristic for motives): class
[XΓ] in the Grothendieck ring of varieties K0(V )

generators [X ] isomorphism classes

[X ] = [X r Y ] + [Y ] for Y ⊂ X closed

[X ] · [Y ] = [X × Y ]

Tate motives: Z[L,L−1] ⊂ K0(M )
(K0 group of category of pure motives: virtual motives)
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Universal Euler characteristics:
Any additive invariant of varieties: χ(X) = χ(Y ) if X ∼= Y

χ(X) = χ(Y ) + χ(X r Y ), Y ⊂ X

χ(X × Y ) = χ(X)χ(Y )

values in a commutative ring R is same thing as a ring
homomorphism

χ : K0(V )→ R

Examples:
• Topological Euler characteristic
• Couting points over finite fields
• Gillet–Soulé motivic χmot(X):

χmot : K0(V )[L−1]→ K0(M ), χmot(X) = [(X , id , 0)]

for X smooth projective; complex χmot (X) = W ·(X)

Matilde Marcolli Renormalization and Computation



Graph hypersurfaces and polynomial countability

graph hypersurfaces XΓ

classes in the Grothendieck ring [XΓ] ∈ K0(V )

Conjecture (Kontsevich 1997): Graph hypersurfaces have
classes [XΓ] ∈ Z[L] with L = [A1] (Tate motives)

Conjecture was first verified for all graphs up to 12 edges:
• J. Stembridge, Counting points on varieties over finite fields
related to a conjecture of Kontsevich, 1998
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But ... Conjecture is false!
P. Belkale, P. Brosnan, Matroids, motives, and a conjecture of
Kontsevich, arXiv:math/0012198
Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533
Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.
Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056

Belkale–Brosnan: general argument shows “motives of graph
hypersurfaces can be arbitrarily complicated"
Doryn, Brown–Schnetz, Brown–Doryn: explicit
counterexamples (14 edges)
a dichotomy

After localization (Belkale-Brosnan): the graph hypersurfaces XΓ

generate the Grothendieck ring localized at Ln − L, n > 1
Stable birational equivalence: the graph hypersurfaces span Z
inside Z[SB] = K0(V )|L=0

P. Aluffi, M.M. Graph hypersurfaces and a dichotomy in the
Grothendieck ring, arXiv:1005.4470
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Polynomial countability

• in perturbative quantum field theory: graph hypersurfaces

XΓ = {ΨΓ = 0} ⊂ A#EΓ

ΨΓ(t) =
∑

T

∏
e/∈E(T )

te

sum over spanning trees

• X variety over Z, reductions Xp over Fp

counting function N(X , q) := #Xp(Fq)

Polynomially countable X if counting function polynomial PX (q)

Matilde Marcolli Renormalization and Computation



• Question: when are graph hypersurfaces XΓ polynomially
countable? or equivalently complements YΓ = A#EΓ r XΓ

• max-plus character ψ : H → Tmax with N(YΓ, q) ∼ qψ(Γ) leading
order if YΓ polynomially countable or ψ(Γ) := −∞ if not

• when YΓ not polynomially countable

ψ̃(Γ) = max{ψ(Γ), ψ̃(γ) + ψ(Γ/γ)}

= max{ψ(Γ),
N∑

j=1

ψ(γj) + ψ(γj−1/γj)}

identifies chains of subgraphs and quotient graphs whose
hypersurfaces are polynomially countable
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