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This lecture based on:

@ Colleen Delaney, Matilde Marcolli, Dyson-Schwinger equations
in the theory of computation, in “Feynman amplitudes, periods
and motives", pp.79-107, Contemp. Math., 648, Amer. Math.
Soc., Providence, RI, 2015.

@ M. Marcolli, N. Tedeschi, Entropy algebras and Birkhoff
factorization, J. Geom. Phys. 97 (2015) 243-265

@ Yuri Manin, Renormalization and computation, | and |l,
arXiv:0904.4921 and arXiv:0908.3430
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Perturbative Quantum Field Theory
e Action functional in D dimensions

S(6) = / L(6)d% = So() + Sm(0)

e Lagrangian density

1 5, M,
L) = 5(0(15) - ?¢ — Zim(9)
e Perturbative expansion: Feynman rules and Feynman diagrams

Sur(6) = Su(6) + X eles (1P graphs)
r

e Generating functional Z[J] of Green functions (source field J)

iz
dJ(x1) - -+ 0J(xn)
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Algebraic renormalization in perturbative QFT

@ A. Connes, D. Kreimer, Renormalization in quantum field theory
and the Riemann-Hilbert problem, | and I, hep-th/9912092,
hep-th/0003188

@ A. Connes, M. Marcolli, Renormalization, the Riemann-Hilbert
correspondence, and motivic Galois theory, hep-th/0411114

@ K. Ebrahimi-Fard, L. Guo, D. Kreimer, Integrable
Renormalization II: the general case, hep-th/0403118
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Two step procedure:

e Regularization: replace divergent integral U(I") by function with
poles

e Renormalization: pole subtraction with consistency over subgraphs
(Hopf algebra structure)

e Kreimer, Connes—Kreimer, Connes—M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

e Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of
Rota—Baxter algebras
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Connes—Kreimer Hopf algebra 7 = .7(.7) (depends on theory)
e Free commutative algebra in generators I' 1Pl Feynman graphs
e Grading: loop number (or internal lines)

deg(l Zdeg , deg(1)=0

e Coproduct:

AN =Te1+1al+ Y y&l/y
vev(I)

e Antipode: inductively
S(X)=-X-) _ S(X)X"

for AX) =X@1+1X+> X @ X'

Extended to gauge theories (van Suijlekom): Ward identities as Hopf
ideals
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Rota—Baxter algebra of weight A\ = —1

Z% commutative unital algebra
T : % — X linear operator with

T(X)T(y) = T(xT(y)) + T(T(x)y) + AT(xy)

e Example: T = projection onto polar part of Laurent series
e T determines splitting Z+ = (1 — T)%, %— = unitization of T%;
both % are algebras
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Feynman rule

e ¢ : I — % commutative algebra homomorphism
from CK Hopf algebra .7 to Rota—Baxter algebra % weight —1

¢ € HomAlg(ff,%)

e Note: ¢ does not know that .7 Hopf and % Rota-Baxter, only
commutative algebras
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e Birkhoff factorization 3¢+ € Homay (A, %+)
6 =(6_08)xd;
where ¢1 x ¢2(X) = (d1 @ ¢, A(X))

e Connes-Kreimer inductive formula for Birkhoff factorization:
G- (X) = =T(¢(X) + > _ o (X)p(X"))

0+(X) = (1= T)(6(X) + Y _ o-(X)o(X"))
where A(X) =1 X+ X1+ > X @ X’

e Recovers what known in physics as BPHZ renormalization
procedure in physics

e Bogolyubov-Parshchuk preparation

)+ > o (xX)p(x")
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Hopf algebra of rooted trees
e Rooted tree 7: data (F-, V-, v;, 0+, jr)

F set of half-edges (flags)

V., set of vertices

distinguished v; € V., (the root)

boundary map 0, : F, — V-

involution j, : F, — F,, 2 = 1 gluing half-edges to edges

E. internal edges, ES external edges (fixed by involution)

Orientation: root vertex as output, all edges oriented along unique
path to root

Decorations: ¢y : V. — Dy labels of vertices, ¢r : F, — ZF labels
of flags (matched by involution)
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admissible cuts
e admissible cuts C of 7 modify involution j- cutting a subset of

internal edges into two flags f, f/, so that every oriented path in 7

from leaf to root contains at most one cut edge
e New graph is a forest
C(1) = pc(7) U me(r)

rooted tree pc(7); forest m¢(7) = Ljmc i(7), each tree m¢ ;(7) with
single output (new roots)

Matilde Marcolli Renormalization and Computation



Hopf algebras
e 7" noncommutative Hopf algebra of planar rooted trees: free
algebra generated by planar rooted trees, coproduct

A(r)=r@1+1@7+ Y mc(r) ® po(T)
c

grading by number of vertices, antipode
S(x) = —X—ZS )X, forA(x):x®1+1®x+Zx’®x”

' x" lower order terms

e ¢ commutative Hopf algebra of (planar) rooted trees: free
commutative (polynomial) algebra generated by rooted trees, same
form of coproduct, grading and antipode

e in Connes—Kreimer setting can equivalently work with Hopf algebra
of rooted trees decorated by Feynman graphs or with Hopf algebra of
Feynman graphs (coproduct: subgraphs and quotient graphs)
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Dyson—Schwinger equations in QFT

e Equations of motion for Green functions (Euler-Lagrange
equations)

e Infinite system of coupled differential equations

e obtained as formal Taylor series expansion at J = 0 of DS equation
in the generating function Z[J]

5 [ .6 B
e [_I] Z[J] + J(x)Z[J] = 0

)
e in the Hopf algebraic approach to QFT, can lift the DS equations to
the combinatorial level
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Combinatorial Dyson—Schwinger equations

@ C. Bergbauer and D. Kreimer, Hopf algebras in renormalization
theory: locality and Dyson-Schwinger equations from
Hochschild cohomology, hep-th/0506190

@ K. Yeats, Rearranging Dyson-Schwinger Equations, AMS 2011.

@ L. Foissy, Systems of Dyson—Schwinger equations,
arXiv:0909.0358
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Dyson—Schwinger equations and Hopf subalgebras
o If grafting operator satisfies cocycle condition, then solutions of
Dyson—Schwinger equations form a Hopf subalgebra
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Renormalization and Computation (Manin)
proposal for a “renormalization of the halting problem"

e |dea: treat noncomputable functions like infinities in QFT

e Renormalization = extraction of finite part from divergent Feynman
integrals; extraction of “computable part" from noncomputables

e First step: build a Hopf algebra (flow charts, partial recursive
functions) and a Feynman rule that detects the presence of
noncomputability (infinities)

e Second step: BPHZ type subtraction procedure with values in a
min-plus or max-plus algebra (computing time, memory size)

e Third step: meaning of the “renormalized part" and of the
“divergences part" of the Birkhoff factorization in terms of theory of
computation
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Primitive recursive functions
e generated by basic functions

@ Successor s: N — N, s(x) = x + 1;

@ Constant ¢": N" — N, ¢"(x) = 1 (for n > 0);

@ Projection 7] : N” — N, 71/'(x) = x; (for n > 1);
e with elementary operations

@ Composition

@ Bracketing

@ Recursion
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Elementary operations:

@ Composition ¢y mp): for f: N — N7, g : N7 — NP,
gof:N" NP, P(gof)=1"2(9));
@ Bracketing b(x m,q: for fi : N™ — N, j=1,... K,
f=(f,...,f) : NT = N F0% () = 9(f)N---ND(f);
@ Recursion t,: for f : N” = Nand g : N™2 & N,
h(x1, ...y Xn, 1) := f(X1, ..., Xn),

h(x1, ..., X0, k+1) == g(x1,..., Xn, k, h(x1, ..., X0, K)), k> 1,

where recursively (X1, ..., xn,1) € Z(h) iff (x1,...,xn) € 2(f)
and (x1,...,Xn, k+1) € 2(h) iff
(X1, ..y Xn, Ky h(Xq, ..., Xn, k) € 2(9).
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Manin’s Hopf algebra of flow charts

e planar labelled rooted trees (bracketing and recursion are ordered:
need planar)

e label set of vertices Zv = {¢(m n.p), b(k,m,n)» tn} (cOMposition,
bracketing, recursion)

e label set of flags ZF primitive recursive functions

e admissible labelings:

o (bv( ) = C(m np) v valence 3; labels h1 ¢F(f1), hg = (]SF(fg)
incoming flags with domains and ranges h; : N” — N" and
ha : N™ — NP; outgoing flag composition hz o hy = ¢(m,n,p)(h1, h2).

@ ¢y(v) = v, vvalence 3; labels hy = ¢e(fi), ho = ¢£(f) incoming
flags with domains and ranges h; : N — N and h, : N2 4 N,
outgoing flag recursion h = t,(hy, ho).

@ ¢y(v) = b(k,mn): v must have valence k + 1; labels h; = ¢¢(f;)
incoming flags with domain N™; outgoing flag bracketing
f= (f1 goeeey fk) = b(k,m,n,-)(fh ey fk)

e Coproduct, grading, antipode from Hopf algebra of rooted trees
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Variants on the Hopf algebra of flow charts

e noncommutative Hopf algebra Z#4T 5

e Hopf algebra with only vertex labels 777 v

e Use only binary operations (valence 3 vertlces): express bracketing
as a composition of binary operations

b(k,m,nf) = b(2,m,n1,anr~--+nk) -0 b(Z,m,nk_hnk)

e Extend composition and recursion to k-ary operations
@ k-ary compositions c(k,my,,,)(h,-) = hg o --- o hy of functions
hi - N—+ — N fori=1,... k,withny=m
@ (k + 1)-ary recursions with k initial conditions:
h(xt, ..., Xn, 1) = b1 (X1, ..., Xn), - -
h(X17"' ;ka) = hk(xh"'vxn)v
h(x1,...  Xnp k+£) =

B (Xt ooy Xy mi(Xay ooy Xn)y ooy (X, o Xn), K+ 40— 1),
for £ > 1
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Insertion and Hochschild 1-cocycles

e T =forest: grafting operator B;r(T) = sum of planar trees with new
root vertex added with incoming flags equal number of trees in T and
a single output flag and decoration 6 € {b, ¢, t}

e cocycle condition:
ABY = (id® B )A + Bf @1

equivalent to ABY = (id ® Bf)A + id ® By (1) with

A(x) := 3 x' @ x" (non-primitive part) and By (1) = vs (single
vertex, label d): first term admissible cuts root vertex attached to
pc(T), second term admissible cut separating root vertex.

e cocycle condition requires same type of Iabel (b, c, or v) for all
vertices of arbitrary valence: use version g0 ., with k-ary
operations
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Systems of Dyson—Schwinger equations (Foissy)
e non-constant formal power series in three variables X = (Xs)

(9) Ki yrko yka
= D Ak s X XX
K1,k2,k3

e associated system of Dyson—-Schwinger equations
Xs = By (Fs(X))

e unique solution X5 = > _ x; 7 (sum over planar rooted trees root
decoration 4)

3
X ( (ZI 1 p5l) 6) XP1 1 Xps ,mg
T 71,1 T3, msg
ke H, 1 Ps,! Zk1p1k72k1p2k’2k1p3
when
_ pt/ P11 P1,my P31 P3,mg
T=B8 (7'11 Timy T3 "‘Ts,ma)
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Dyson—Schwinger equations and Hopf subalgebras
(Bergbauer—Kreimer)

e Dyson—Schwinger equations in a Hopf algebra of the form

oo
X=1+> cBf(x"")

n=1
e associative algebra .« (subalgebra of .7#°) generated by

components x, of unique solution of DS equation
e using cocycle condition for B; get

n
A(xp) = Z N7 @ xx, where M} = Z X X
k=0 A+ Fjk1=n—k
= Hopf subalgebra

e generalized by Foissy for broader class of DS equations in Hopf
algebras, including systems
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Variant: Hopf ideals

e DS equation X = 1+ 37, ¢, Bf (X")

e ideal .# generated by the components x, (with n > 1) of solution
e cocycle condition for Bf” = .# Hopf ideal

elements of .# finite sums 2%21 hmXk,, with hy, € 7 and xi
components of unique solution of DS equation

Hopf ideal condition: A(#) C S @ H# & H R &

coproduct A(x): primitive part 1 @ xx + x4 @ 1IN A Q@ I & I Q H;
other terms in .# ® .#, so coproducts A(hmX,) in 7 Q@ 9 & I Q@ A .

= quotient Hopf algebra 7€y = 7| .9

Note: commutative Hopf algebra; if noncommutative use two-sided ideals
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Yanofsky’s Galois theory of algorithms

e Yanofsky proposed equivalence relations on flowcharts =
“implementing the same algorithm"

e algorithm as intermediate level between the flow chart (= labelled
planar rooted tree) and the primitive recursive functions

e obtain “Galois correspondence”

e resulting automorphism groups are products of symmetric groups

e but there are problems:

Example: (Joachim Kock )

fix function f: infinitely many programs computing it; “Galois group" is
symmetry group of that set; subgroup S; (or Cs) permuting (cyclically) three
of the programs fixing others: same orbits but different groups
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Proposal for a different form of Galois theory of algorithms

e suggestion: take the Hopf algebra structure into account in defining
relations (= relations should be Hopf ideals)

e instead of the kind of groups described by Yanofsky, find a
sub-group scheme G » C Ggow corresponding to the quotient

Hy = |7, with Gaow group scheme dual to Hopf algebra 77 of
flow charts

e in particular get a G » from a Dyson—Schwinger equation (system)
e the groups appearing in this way have a structure more similar to
the “Galois groups" playing a role in QFT
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From Hopf algebras to operads

e operad of flow charts Ofoy, v

e 0(n) = K-vector space spanned by labelled planar rooted trees
with nincoming flags

@ operad composition operations
op : ﬁ(n)@ﬁ(m1)®®ﬁ(mn)_>ﬁ(m1 ++mn)

on generators T ® 71 ® - - - ® T by grafting output flag of 7; to
the i-th input flag of 7
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Dyson—Schwinger equations in operads
e formal series P(t) = 1+ > o, axt
e collection 5 = () with 8, € O'(n)

e Dyson—Schwinger equation:

X = B(P(X))

with X =), xx a formal sum of xx € &'(k)
e self-similarity with respect to X — B(P(X))

e right-hand-side of equation: B(P(X))1 = 1+ /31 o x1, with 1 identity
in ¢(1),and forn > 2

BPXNa=>_ > a Bo(x,® ®x,)
k=1 ji4-+jx=n

with x;, @ --- ® X, € O(j1) ® - - - ® O(ji), composition
Broo (X, @+ @ x;) € O(n), with jy + -+ jk =n

Matilde Marcolli Renormalization and Computation



Inductive construction of solutions

o U = Ujow,y operad of flow charts
e assume a1 #1 € 0(1)

e then operadic Dyson-Schwinger equation X = 5(P(X)) has
unique solution X € [, &(n) given inductively by

n+1

(1*31&1 O Xpy1 = Z Z akﬁko(Xh@”'@X/'k)

k=2 j1+---jx=n+1

e U p(n) = K-linear span of all compositions x o (X, ® - - - ® X;,)
fork =1,...,nand j; 4+ - - - + jx = n, with xx coordinates of solution
X = 03,p(n) is a sub-operad

e choosing a; # 1 and fk single vertex k incoming flags, label §
gives operadic version of DS equation with B;", but more general DS
equations in operadic setting (without cocycle condition)
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Operads and Properads
e Manin: extend Hopf algebra of flow charts to graphs (not trees)
with acyclic orientations

e replace operad with properad: compositions grafting outputs and
inputs of acyclic graphs

e properad (Valette): operations with varying numbers of inputs and
outputs labelled by connected acyclic graphs; (operads: trees
varying number of inputs and single output; props: allow
disconnected graphs)

e composition operations: m inputs, n outputs
P(m,n) @ P(ji1, k) @@ Pje, ke) = P(jr + -+ e, n)

forky +---4+ke=m
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® Phow,y properad of flow charts

e Z(m, n) = K-vector space spanned by planar connected directed
(acyclic) graphs with m incoming flags and n outgoing flags

e vertices decorated by operations including b, ¢, ¢t (m inputs, one
output) and macros with m inputs and n outputs
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Dyson—Schwinger equations in properads

o formal power series P(t) = 1+ Y, axt*

e collection 5 = (Bm,n) With Bmn € Z(m, n)
e DS equation X = S(P(X)) (self-similarity)
e in components

m

B(P(X))mn = Z ak Z Ben o (i ® - & Xje i)

k=1 i+.dk=m
[
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Construction of solutions in properads
e transformations A, = A,(a, )

An(a, B) : @k=1 P (n, k) = Dk=1 P (n, k), with Ap(a, B); = aif;,

e assume | — Ap(a, ) invertible for all n  (not always satisfied)
e then unique solution to DS equation X = S(P(X))

e inductive construction: x; 1 = A(1 andform<n

m k
Xm,n = g akﬁk,n o § E X iy @+ @ Xy i,
k=1

=1 iyt tig=m
it tig=k

remaning components m > n determined by
Ya(x) = (1 = Ap) T AV (x)
with Yn(X)! = (X1, - - -, Xnn) and VD (x) = (V) (x),)j=1. .n

n
V(n)(X)/ = Z Z X5 @0 & Xy, sk

k=2 nr+-trg=n
Sq+- - dsg=j
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Partial recursive functions and the Hopf algebra

e enlarge from primitive recursive to partial recursive: same
elementary operations ¢, b, t of composition, bracketing and
recursion but additional i operation

e 11 operation: input function f : N1 — N, output
h:N"—= N, h(x,...,xp) = min{Xpp1 | F(X1,..., X0p1) = 1},
with domain Z(h) those (x1, ..., X,) such that Ixp;1 > 1

f(X1, ..., Xnp1) = 1, with (Xq,...,Xp, k) € D(f),Vk < Xpy1

e Church’s thesis: get all semi-computable functions, for which 3
program computing f(x) for x € 2(f) and computed zero or never
stops for x ¢ 2(f)

e Hopf algebra: additional vertex decoration by p operations,
extended to arbitrary valence by combining with bracketing; edge
decorations by partial recursive functions
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Feynman rule for computation (Manin)

e % algebra of functions ® : N¥ — _#(D) from N¥, for some k, to
algebra .# (D) of analytic functions in unit disk

D={zeC: |z| <1}

e Rota—Baxter operator T on % componentwise projection onto
polar partat z =1

e For any tree 7 that computes f set
d.(k, z ®(k,f,2)
(k. 2) = Z < (14 nf(k

f:N™ — 7 computes f(x) at x € 2(f) and 0 at x ¢ 2(f).
o & (k,z)pole at z=1iff k & Z(f)

e this ® is algebraic Feynman rule: commutative algebra
homomorphism from enlarged Hopf algebra of flow charts to
Rota—Baxter algebra %
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apply BPHZ
e negative part of Birkhoff factorization becomes

CD,(K, fTaZ) = k f.,-,Z +Z¢ LAS) 7rc(7')7 )CD(k, fpc(T)7z))
e Note: f = f; label of outgoing flag of 7: then f, ;) = f;

&_(k f,z)=—T <<D(k fro2)(1+d_( Zfﬂc )

e What is happening here? Like in QFT, looking not only at
“divergences" of program 7 but also of all subprograms m¢(7) and
pc(T) determined by admissible cuts (the problem of subdivergences
in renormalization)
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Why subdivergences in computation?

e d_(k, f;, z) detects not only if 7 has infinities but if any subroutine
does

e Note: ®(k, f;, z) only depends on f = f, not on 7, but ®_(k, f;, z)
really depends on T

e Unlike QFT there are programs without divergences that do have
subdivergences

e Example: (Joachim Kock)

identity function computed as composite of successor function followed by
partial predecessor function u(|y + 1 — x|) (undefined at 0, and x — 1 for
x > 0), 7 with a ¢ node and a 1 node
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Renormalized part What does it measure?

¢ (k fTaz) ( k fr,z +Z¢ 7rc(7')> )q)(kv fpc( ) ))

e Main question: is there a new f.,, now primitive recursive, such
that @ (k, f, 2) = P(K, fen, 2)?

e in general not true simply as stated, but in QFT there is an
equivalence relation on Feynman rules and renormalized values, a
kind of gauge transformation by germs of holomorphic functions
(Connes—Marcolli): correct statement of question is up to such an
equivalence?

e Useful viewpoint. every partial recursive function can be computed
by a Hopf-primitive program: Kleene normal form as p of a total
function
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Min-Plus Algebra (same setting used for Tropical Semirings)
min-plus (or tropical) semiring T = R U {oo}
e operations & and ©®
X @y =min{x,y} withidentity oo
X ©y=x+y withidentty 0O

e operations @© and © satisfy:

@ associativity

@ commutativity

@ left/right identity
@ distributivity of product ® over sum &

Note: can work equivalently with (R U {co}, min, +) or with
(R4, max, ) isomorphic under — log map

Matilde Marcolli Renormalization and Computation



Thermodynamic semirings Tgs = (RU {oo}, ®g,s,®)
e deformation of the tropical addition ©g s
) 1
XSy =min{px+(1-p)y = 55(p)}

B thermodynamic inverse temperature parameter
S(p) = S(p,1 — p) binary information measure, p € [0, 1]

e for 8 — oo (zero temperature) recovers unperturbed idempotent
addition &

e multiplication © = + is undeformed
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von Neumann entropy and the tropical trace

e convex set of density matrices
MM = {p € Myxn(C) | p* = p, p >0, Tr(p) = 1}
e von Neumann entropy
N (p) = —Tr(plogp), for pe.#M

Shannon entropy in diagonal case

e matrices My n(T) over T = (RU {oo}, ®,®)

(AGBB),']' = min{A,-j, B,-j} and (A@B),j = DkAKOBy = mkin{A,'k—i-Bkj}

e tropical trace Tr(A) = min;{A;}

e also consider

~ @ . .
A) = AUY) i} < Tro(A
Te(A) == min min{(UAU")i} < Tr"(4)
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Entropical trace: thermodynamic deformation of tropical trace

Trf o(A) == min {Tr(pA) - B7'S(p)}

Tr in the right-hand-side is the ordinary trace

e in particular S(p) = .4#"(p) von Neumann entropy, but also other
entropy functionals (e.g. quantum versions of Rényi and Tsallis)

e Note: Tr(pA) = (A) expectation value of observable A

e zero temperature limit

lim Trf g(A) = Tr” (A)

B—00 )
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Kullback—Leibler divergence and von Neumann entropical trace

e relative entropy (Kullback—Leibler divergence)

S(pllo) = Tr(p(log p — log 7))
e von Neumann deformation and relative entropy
(forA=A*,A>0)

1

5 log Za(3)

_ 1
Tr(pA) — 871 A (p) = 55(ellog.a)
e hA
OBA= 57
AT Za(B)
e von Neumann entropical trace (for A= A*, A> 0)

_log Za(B)
B

with Z4(3) = Tr(e~"): rhs above is Helmholtz free energy
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with  Za(8) = Tr(e™#4)

Trj ,(A) =



o if for A= A*, A > 0 is direct sum of two matrices A; and Ay
e (A) =Tef (A1) O T, (A)

=g (Iog Tr(e_BA1) + log Tr(e_’BAz)>

Relative entropies
@ The quantum relative entropy: for p, o € .#N)

S(pllo) = Tr(p(log p — log 7))
@ The Belavkin-Staszewski relative entropy: for p, o € .#N)
Ses(pl|o) = Tr(plog(p' 2o p'/?))
@ The Umegaki deformed relative entropy: for p, o € .#N)

4

Tr((l . O,(a+1)/2p(ozf1)/2)p)

e given a fixed density matrix o set S,(p) = S(p||o), so that

Tl (A) = min (Te(pA) — 37" S(pllo)}
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deformation of states on C*-algebras
e states # = {p: &/ — Clinear| (1) = 1and¢(a*a) > 0}

e relative entropy of states: in case of Gibbs states p(a) = 7(af),
¥(a) = (an)
S(el[v) = 7(&(log & — logn))

in general more complicated

¢ thermodynamic deformation of a state ¢ € .#

Vs.s(@) = min (@) + 5~ S(ol[v)}
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Example:

e noncommutative torus: C*-algebra generated by two unitaries U, V
with VU = ™ yv

e canonical trace, 7(U"V™) = 0 for (n, m) # (0,0) and 7(1) = 1
e Gibbs states ¢(a) = 7(a&) positive elements £ € o7

e thermodynamic deformation of canonical trace

mas(@) = _min {(a) + 57" S(¢l|7)}

e KMS state ¢ 4(b) = T(T‘Z‘Z;f;)

ms.5(a) = min {67 S(¢llws.a) =5 log (e ")} = —B~"log (e~

of time evolution o¢(b) = e@be~"2

Helmholtz free energy

e limg_,o 73,s(a) a notion of “tropicalization” of the von Neumann
trace 7 of the NC torus
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Symbolic dynamics and Dynamical and Topological Entropy

@ locally compact Hausdorff space X, with a dynamical system
o : X — X (continuous function)

@ X shift space of sequences w = wowy ... WjWj41 ... in afinite
alphabet w; € 2, with #2A = n

@ X topologically Cantor set with topology generated by cylinder
sets

Cg(ao,...,aN):{WEX’W,':a/,OSI'ﬁN}

@ one-sided shift o : X — X, defined by o(w); = wj;1
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@ Bernoulli measure pp on X shift-invariant, defined by probability
P = (p1,...,pn) on alphabet A

@ assigns measure pp(%(ao, - -.,an)) = Pa, - - - Pay to cylinder
sets

@ Markov measure pp , on X shift-invariant measure defined by a
pair (P, p) of probability P = (p1, ..., pn) on 2 and stochastic
matrix p satisfying Pp = P

@ assigns measure ip ,(€ (o, - - -, an)) = PayPaya: * * * Pan_+an

@ Markov measure p.p , is supported on a subshift of finite type
Xa C X, given by shift-invariant
Xa={w € X|Ayw,, =1, Vi > 0} with matrix A; entries 0 or
1 when p; =0orp; #0
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e for y a o-invariant probability measure on X, entropy S(u, o) is
p-almost everywhere value of local entropy

Pio(x) = lim lim — log u(B,(x, n,5)),

6—0 n—o0

where B, (x,n,8) = {y € X| d(o/(x),0/(y)) < 6, Y0 < j < n}
are the Bowen balls

@ for Bernoulli measure . = pp, dynamical entropy agrees with
Shannon entropy of P,

S(up, o Z pilog pi

@ for Markov measure dynamical entropy

N N
S(upp,0) =—=>_pi Y _ pilogpy
= j=
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@ analogous to thermodynamic deformations of trace, deformation
of integration of functions f € C(X,R)

(8,9)
[ a=inf( | f0dn(0 - 57 S(.0))
X HoJX

@ infimum is taken over a specific class of o-invariant measures

e Bernoulli measures
e Markov measures
@ co-invariant ergodic measures

@ topological entropy of shift o is
h(X,o) = sup{S(u,0)},
W

with supremum over all o-invariant ergodic measures
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Semirings of functions
e min-plus semirings S = C(X, T) with pointwise @©, ®

e thermodynamic deformations Sg s = C(X, Tj3,s)
with pointwise ©g s, ©

Logarithmically related pairs (£, S)

e % commutative ring (algebra); S min-plus semiring; with formal
logarithm bijective map . : Dom(.¢) C #Z — S

Z(ab) = Z(a) +.£(b) = Z(a) ® Z(b)

e thermodynamic deformation (Shannon entropy)

fi@psth=—B"log(E(—pBH) + E(—Bh))

with E : S — Dom(.¢) C Z inverse of .
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Examples
e # = C(X,R) and Dom(.Z) C Z given by C(X, R ) with
#(a) = —B"log(a)
fy @673 L= —5_1 |Og((5’_ﬂf1 + e‘ﬁfz)
is S/g,s = C(X7 T/gys) with S = Sh

o % = Q|[t]] ring of formal power series, Dom(.¥) C % power
series a(t) = Y5 akt* with ay = 1, with formal log

1 1 2 (—1)kH
(1 —— —a? L a1 = A
(1+a)=a 50 tga+ kz:; PR

a1 &g 0z = 37 L(E(=Ban) + E(—Bag))
formal exponential E(7) = Y50 7"/k!
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min-plus valued characters (algebraic Feynman rules)
e 7 commutative Hopf algebra; S be a min-plus semiring
e ) : ¢ — S satisfying ¢(1) = 0 and

P(xy) = (x) +9(y), Vx,y € A

e main idea: “arithmetic of orders of magnitude" ¢ — 0
- leading term in € + €7 is emin{e:A}
- leading term of e“¢? is e**5

e model characters and Birkhoff factorization on “order of magnitude"
version of usual ones
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convolution of min-plus characters
(%1 x12)(x) = min{eh (x1) + 02 (x®)} = P (1 (xV) @ ¢ (x®)))

minimum over all pairs (x(1), x(z)) in coproduct
A(x) =3 x() @ x(3) in Hopf algebra .7

Birkhoff factorization of a min-plus character
Yy =Y %9

* convolution product, 1+ satisfying 1+ (xy) = ¥+ (x) + ¥+(y)

Note: does not require antipode, works also for 7# bialgebra
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Rota—Baxter semirings

e S be a min-plus semiring, map T : S — S is @-additive if
monotone, T(a) < T(b) for a < b (pointwise)

e Rota—Baxter semiring (S, @, ®) weight A > 0:
exists G-additive map T : S — S with

TH)OT(R)=T(T(H)oh)®T(ho T(R)® T(h e fh)©logA

e Rota—Baxter semiring (S, @, ®) weight A < 0:
exists d-additive map T : S — S with

T(f1)@ T(fg) ©® T(f1 © f2) © |og(—)\) = T(T(f1)® f2) @b T(f1 © T(fg))
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Birkhoff factorization in min-plus semirings (weight +1)

e Bogolyubov-Parashchuk preparation

$(x) = min{e(x), - (x) + L (x")} = ¥(x) & P v (x x")

(x’, x"") ranges over non-primitive part of coproduct
AX)=x@1+1x+ > X @ x"

e ¢/_ defined inductively on lower degree x’ in Hopf algebra
Y- (x) = T(P(x)) = T(min{e:(x), - (x) + $(x")})
=T (v e @) ovx")
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e by @-linearity of T same as
Y- (x) = min{T(¥(x)), T(¥-(x') +(x"))}
x) & P T(W-(x) © p(x")
e then ¢, by convolution
Ui (x) = (= ¥)(x) = min{y_(x), ¥ (x), Y- (x) + ¥ (x")}
= min{y_(x), P (x)} = ¥ (x) ® (x)

e key step: associativity and commutativity of & and ¢-additivity of
T, plus Rota-Baxter identity weight 41 gives

Y- (xy) = - (x) +¥-(y)

hence 1 also as convolution
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@ to check that ¢ satisfy 1 (xy) = ¥+ (x) + ¥+ (y)

o have ¢ (xy) = T min{(x) + ¢(y), ¥ ((xy)') + ¥ ((xy)")}

@ decompose the terms (xy)’ and (xy)” in terms of x, y, x’ and
X”, y/ and y//

Y_(xy) = Tmin

@@@G?@@@
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@ by associativity and commutativity of & and &-additivity of T
can group these terms together into

Y_(xy) = min{a(x, y,x',y'), B(x,y, X', ¥')}
¢((;)+w§ ;
" vy = T min vx) +
by XYy =Tmin gy Gy + (7).
Y (X'y) +9(x")
W?Tp(() .
PN B 1) y’+wxy”
PRyt I =TIy () + u(xy),
Y- (X'y') +o(X"y")
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@ assume inductively that

P (uv) = ¢(u) +-(v),

for all terms v and v in 57 of degrees
deg(u) + deg(v) < deg(xy)
@ use the fact that T is ¢-additive

e rewrite a(x,y,x’,y’) as

ax,y.x'y") = Tmin{y(x) + (), d(x) +9-(¥)}
= min{T(T(d(x)) + (), TW(x) + T(&(¥)))}

@ write the term 3(x, y, x’,y’) as

Bx,y,x',y') = Tmin{d(x) +(y)} = min{T(J(x) +P(¥))}-
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@ have then

T(
() = min{ T(

@ the operator T satisfies the Rota—Baxter identity with A = 1,
T(H)OT(R)=T(T(H)OR)BT(hOT(L))DT(fOhk)Olog A

@ so can rewrite the above as

Y- (xy) = T(d(x)) © T(d(y))

= T((x) + T(¥(y)) = Y- (x) +¥-(y)
e the fact that ¢4 (xy) = ¥4+ (x) + 1+ (y) then follows from
Yy =Y %1
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Birkhoff factorization in min-plus semirings (weight —1)

e 1) : ¥ — S min-plus character, and T : S — S Rota-Baxter weight
—1: there is a Birkhoff factorization ¢ = ¢)_ x v; if T satisfies

T(fi + ) > T(f;) + T(f), then ¢y_ and ¢ are also min-plus
characters: b1 (xy) = 1+ (x) + ¢+(y)

e as before
b (x) == T(D(x)) and ¥ (x) == (¥-+)(x) = min{t_(x),(x)}
e Rota—Baxter identity of weight —1 gives

Y- (xy) = min{T(d(x) +P(¥)), T(D(x)) + T(&(¥)))}

if T(f1 + f2) > T(f1) + T(fg) then

Y- () = T(D(x) + T(H(1))) = - (x) +v-(y)
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Thermodynamic Rota—Baxter structures

e Sg s thermodynamic Rota—Baxter semiring weight A > 0: there is
®g,s-additive map T : Sg s — Sg;s

T(f)OT(h) = T(T(h)oh)®ssT(hOT(R))®s,sT(fOL)Olog A

e Sg s thermodynamic Rota—Baxter semiring weight A < O: there is
®p,s-additive map T : Sg s — Sg s

T(h)oT(R)DssT(hok)olog(—=A) = T(T(fi)ok)DssT(HOT(f))

like previous case but with & replaced with deformed @3 s
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e (Z%,S) logarithmically related pair: T : S — S determines
T R — Z with 7 (e P") .= e T for a= e #in
Dom(log) C #
7 Rota-Baxter weight A3 on # < T Rota-Baxter weight A on Sg s

with S =Shand \g = A%, for A > 0, 0r A\g = —|\| P for A <0

T(e P T (e PRy = (T (e M) PR) + T (e P" T (e F"))
+)5 T (e PhePk)

e .7 is R-linear iff T is @ s-linear
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Birkhoff factorization in thermodynamic Rota—Baxter semirings
(weight +1)

e T :Sg s — Sp,s Rota—Baxter of weight A = +1
¢ Bogolyubov—Parashchuk preparation of ¢ : 7 — Sg s

p,5(x) X) ®ga,s @ (U x")

= B "log (e—ﬁw(x) +3 e—ﬂ(w_<x')+w(x”))>

o pp(x) == ejﬂw(") in Z: Bogolyubov—Parashchuk preparation
p(x) = e~V

$p(x) = dp(x) + Y T(dp(x))ps(x")

with 7 (677" .= e PT() and 7 (—e~F") .= -7 (e~ P
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e Birkhoff factorization v + = 15 _ x5 ¢
bs-(x) = T(Ws(x)) = ~B " log (77T 4 37 e T +))

¥p,+(x) = —B " log (efﬂwe,fm n efmzﬂ(x))

satisfying ¥5 +(xy) = ¥3,4+(x) + ¥5,+(¥)

e in limit 5 — oo thermodynamic Birkhoff factorization converges to
min-plus Birkhoff factorization
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Entropical von Neumann trace and Rota—Baxter identity

e (#,.7) ordinary Rota—Baxter algebra weight \; same weight on
matrices Mn(Z) by .7 (A) = (7 (ay)), for A = (a;)

o for (M(%), Mn(S)) logarithmically related, with 7 Rota—Baxter
weight +10n Z = T : My(S) — My(S) with 7 (e=54) = e #T(A)
satisfying

Try ,(T(A)BT(B)) =Trig (T(T(A) B B))
GB@STr%BMV(T(A | 7(B)))
®p,sTry_,(T(A)B T(B))

where H = direct sum of matrices, .4~ = von Neumann entropy
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Example: partial sums

@ R-algebra #Z of R-valued sequences
a=(ay,a, as, ) = (an)7,, with coordinate-wise addition
and multiplication

0 7 : Z — Z be the linear operator that maps the sequence
(a."az’as’... 7arb...)to(o’aha.‘ _1_327... , Z;l ak’...)

@ 7 is a Rota—Baxter operator of weight +1
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@ this Rota—Baxter algebra (%, .7") of weight +1 determines a
Rota—Baxter structure of weight +1 on the thermodynamic
semi-rings Sg s of functions f : N — T = R U {oo}, with the
pointwise operations ©g s and ©

(T)(n) = B f(k)
B:S k=1,....n—1
forn>2and (Tf)(1) = o
@ here Z C Z be the subset of sequences with values in R,

which we can write as a, = e ?%, when a, > 0 and zero
otherwise

@ have (7a); =0and (Z7a), = ,'(’;1 ax forn>2
@ set (Tc), = —3 " log(.7 a),, so that

00 n=1

Tc), =
(7e)n —p~! Iog( Z;l e‘ﬂck) n>2.
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Example: g-integral
o # = R|[t]] be the ring of formal power series with real
coefficients
@ for g not a root of unity, .7 linear operator

o
(Za)(t) =) _a(q")
k=1
@ 7 is a Rota—Baxter operator of weight +1

@ .7 maps a single power t" to q"t" /(1 — q"), hence it restricts to
a Rota—Baxter operator of weight +1 on the subring of
polynomials R[{]
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@ S thermodynamic semiring of formal power series
Sg,s = R[[t]] U {oo} with operations

(71 ©p.572)(t) = =B " log(e 1) 4 g~ F2(0)

(71 ©@72)(1) = 71 (1) +2(1)
@ the Rota—Baxter algebra (%, .7") of weight 41 induces a
Rota—Baxter structure of weight +1 on Sg s

(TNO =" ")
B8 k=1

@ here 2 C # formal series with @y = 1, namely 2 = 1 + tR[[{]]

e for a € & and (t) = log a(t) define T by the relation
T (e P1()) = =AM

e this gives e A(T7(1) = $°0¢ e—B1(d"1)

(T9)(t) = —5" log (Z e‘ﬁv(qk’)> =@ ()

k=1 B,S k—1
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Example: Witt rings
e commutative ring R, Witt ring W(R) = 1 + tR[[t]]: addition is
product of formal power series, multiplication determined by
(1—at) 'x(1—=bt)"=(1—-abt)™" abeR

@ injective ring homomorphism g : W(R) — RY, ghost
coordinates coefficients of

1d
——Q—Za,tr for o =exp Zart/r

a dt r>1

@ component-wise addition and multiplication on RY
@ writing elements of the Witt ring W(R) in exponential form

tf
exp Za,7

r>1

the ghost coordinates are the coefficients of
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e linear operator .7 : RN — RN is Rota—Baxter weight )\ iff
Iw : W(R) — W(R) defined by g(Iw(«)) = 7 (g(«)) satisfies
Rota—Baxter on W(R)
yw(Ch) * yw(ag) = yw(om * yw(ag)) +w yw(yw(Oq) * 042)
+w A <7w(0z1 *az)
@ Rota—Baxter identity for .7y (with + the sum in W(R))
yw(om) * yw(ag) = yw(cn * yW(O[Q)) +w 9w(<7w(041 ) * Ozg)
+wA* e?W(Oq * Oég))
@ taking ghost components
9(Iw(ar)* Iw(az))) = g(Iw(ar* Iw(az))) +9(Tw(Tw(ar)*az))
+Ag(Iw(ar x az))
@ gives the Rota—Baxter identity for .7
7(g(ar)) T (g(az)) = 7 (g(ar) T (g(a2))) + T (T (glan))g(az))
+AT (9(v)g(az))
@ injectivity of ghost map: can run the implication backward
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@ W(R) also has a convolution product (with same + addition)

asnimep (Y et

n>1 r+f=n

for v = exp(D_,>q art’/r) and v = exp(3_,~ Vet /1)

@ o ® vy is defined so that the ghost
Ia®7) = D51 Drpr—nrye t"is the product as power
series g(«) e g(v) of the ghosts g(a) = >, o, t" and
9(7) = Zr21 7rtt
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e linear operator .7 : R[[t]] — R|[t]] is Rota—Baxter weight \ iff

Iw : W(R) — W(R) defined by g(Zw(«)) = 7 (g(«)) satisfies
Rota—Baxter on W/(R) with convolution product

cyw(Ch) ® 9W(a2) = 9w(041 ® 3W(a2)) +w 9w(yw(a1) ® Oég)

+w A Tw(ar ® ap)
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e Example: Z = R" Rota—Baxter weight +1
n—1
T (a1,a2,...,8n,...)— (0,a1, a4 +a2,...,Zak,...)
k=1

resulting Rota—Baxter .7y weight +1 on Witt ring W(R)
Iw(a) =a®l

convolution product with multiplicative unit T = (1 — ¢)~"

Matilde Marcolli Renormalization and Computation



Example: Z = R|[t]] with the Rota—Baxter operator .7, of weight +1
given by the g-integral (where g € R is not a root of unity)

@ operator Jy 4 on W(R) defined by g(Iw q(a)) = F5(g()) is
a Rota—Baxter operator of weight one with respect to the
convolution product

@ explicitly given by

Tw(a)(t) = [] a(d"D)

k>1

' K +\r
Twa(ew() a'tT)) =ep(d ) o 7)) = [Texe(> o (qrt) )

r>1 r>1 k>1 k>1 r>1

kr tr
r

e product [], a(g¥t) (product as power series) is addition in Witt
ring W(R)

@ so Jy has same form as g-integral .7 replacing sum in R([[t]]
with sum in W(R) so for same reason )y 4 satisfies RB

TIw.q(a1)®Tw g(a2) = Tw,q(1® Tw q(a2))+w Iw,q(Tw,q(c1)®az)
+wIw g ® )
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Example: Zeta functions of algebraic varieties over finite fields

e Hasse—Weil zeta functions of varieties over [F4

tr
Z(X,t)=exp | Y #X(Fq) ~
r>1
elements in Witt ring:
Z(Xuy,t)=2Z(X,t)Z(Y,t) and Z(XxY,t)=2Z(X,t)xZ(Y,t)

Rota—Baxter operator weight +1

Tw(Z(X,t)) = Z(X,t) ® Z(Spec(Fq), t)
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° Ko(”i/)Fq Grothendieck ring of varieties over IF; generated by
isomorphism classes [X] with inclusion-exclusion relationz
[X] = [Y] + [X ~\ Y] forclosed Y C X and product
X % Y] = [X][Y]

@ the zeta function Z(X, t) = Z([X], t) factors as a ring
homomorphism from the Grothendieck ring to the Witt ring

@ Lefschetz motive: class of the affine line I = [A']; Tate motive
formal inverse L~

@ Rota—Baxter operator Jw q Or Ty g1

Tw.q(Z =[] 2(XL% 1), T (2(X, 1) =[] Z(XIL7F, 1)

k>1 k>1

with L. Lefschetz motive and L~ Tate motive
@ operators Jyy g+1 1= —wid —w Ty 4+1 are also Rota-Baxter
operators of weight +1

Fw g (Z(X, 1) = [ [ 2(XIL*, 1)~

k>0
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min-plus characters from inclusion—exclusion functions on graphs
@ real valued functions 7 on a set of graphs with
inclusion-exclusion
o for I =Ty Ul withintersection y =11 N T2

(M) =7(M1) +7(T2) — 7(7)
@ typical examples a “cost function" to the sets of vertices and

edges
@ Fe={fo: ec E(lN}and Fy = {f, : v € V(I')} setting

M= > f+ > f
vev(r) ecE(T)
gives function satisfying inclusion-exclusion
@ ondisjoint union ' =Ty LU Tz have 7(IN) = 7(I'1) + 7(2),
hence morphism 7 : 5 — T, with ¢ (Hopf) algebra of graphs
and T tropical semiring

@ examples from Random Markov Fields
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Computation examples

e inclusion—exclusion “cost functions™: I =T Ulo, vy =T1NT>

Y(M) =9(M1) +9(T2) — ¥(v)
determine ¢ : # — T character ¥(xy) = ¥(x) + ¥ (y)

e class of machines 1,(I") step-counting function of n-th machine:
when it outputs on computation ' (Hopf algebra of flow charts)

e Rota—Baxter operator weight +1 of partial sums:
Bogolyubov—Parashchuck preparation

FalT) = min{un(D), 6aT /) + 3 G2}

e a graph I with ¥,(I") = oo (n-th machine does not halt) can have
¥n(T) < oo if both

- source of infinity was localized in vy ~\. 9, s0 ¥n(I'/7) < o0

- k() < oo for all previous machines

“renormalization of computational infinities" in Manin’s, sense
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Application to QFT

@ expansion of perturbative QFT into Feynman diagrams
@ each a graph with an integral on momentum variables

@ reformulated in Schwinger—Feynman parameters: integral of an
algebraic differential form on a cycle in the complement of an
algebraic hypersurface defined over Z (period integrals)

@ divergence issues from intersections of cycle and hypersurface

@ question on the arithmetic nature of the hypersurfaces (graph
hypersurfaces) and the resulting periods

@ original conjecture: mixed Tate motives and periods mutliple
zeta values (conjecture proved false)
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@ the mixed Tate condition closely related to polynomial
countability condition
o Question: are classes in the Grothendieck ring of the graph
hypersurfaces polynomials in the Lefschetz motive IL with
Z-coefficients?
e Question: is the counting of points over a finite field IF; a
polynomial function of g with Z-coefficients?
@ answer to both is no but are there interesting families of graphs
for which it holds? can one extract from a graph the subgraphs
and quotient graphs for which it holds?
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Feynman rules for Ir(ky, ..., ke, p1,- .., PN):
- Internal lines = propagator = quadratic form q;

_ (k) = k2 + m?
i Qn ailki) '
- Vertices: conservation (valences = monomials in .¥)
> k=0

ecE(T):s(e)=v

- Integration over k;, internal edges

/ STy ev.iki+ 3y €vm)

uir) =
© Gi--:0n

dPk; - - - dPk,
n= #Eint(r)x N = #Eext(r)
+1 tle)=v
cev =1 —1 s(e)=v
0 otherwise,
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Parametric Feynman integrals
e Schwinger parameters q; ' --.q; % =

1 9] 9]
*(31‘71+"'+5n(h) ki—1 Kn—1

e — e S ... 8 dsq .- - ds,.

(ki) - T(kn) /o /0 ! n ! n

e Feynman trick

S(1—=S" ¢
1 :(n—1)!/ (1 =2 1) dt, - - - dt,
qi--Qn (t1q1+"'+tn(7n)n

then change of variables k; = u; + > s _, 7ikXk

+1 edge + e € loop ¥
o=
K 0 otherwise

— [(n—Dt/2) Whn
ur) = (4r)to/2 /Un Wr(t)0/2Vi(t, p)n—Dt/2

op={te R[>t =1}, vol form w,
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Graph polynomials

\Ur(t) = det Mr(l') = Z H .  with Mr kr Z LinikNir

T e¢T

Massless case m = 0:

Pr(t,
Vr(t,p) = r(r tp) and Pr(p,t)=> sc|]t

v ( ) ccr ecC

cut-sets C (complement of spanning tree plus one edge)

sc = (Zvev(n) P,)? with P, = ZeeEexr(r),t( ¢)—v Pe for ZeeEeﬂ Pe=0
with deg W = by (") = deg Pr — 1

[(n—DC/2) [ Pr(t,p) ",
(47)¢D/2 ) Wi (t) o)/

u(r) =

stable range —n + D¢/2 > 0; log divergent n = D{/2:

/0 ‘UrEJ;D/Z
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Graph hypersurfaces
Residue of U(I") (up to divergent Gamma factor)

Pr(t, p)—n+DZ/2wn
o \Ur(t)—n-‘rD(K-H)/Z

Graph hypersurfaces Xr = {t € A" | U (t) = 0}
Xr = {tcP" " |WUr(t) =0} deg= by(IN
¢ Relative cohomology: (range —n+ D¢/2 > 0)

H™ (P N X, o (a0 X)) with X, = {J [t =0} 2 9o,
i

e Periods: fU w integrals of algebraic differential forms w on a cycle o
defined by algebraic equations in an algebraic variety
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Feynman integrals and periods

Parametric Feynman integral: algebraic differential form on cycle in
algebraic variety

But... divergent: where Xr N o, # (), inside divisor ¥, D o, of
coordinate hyperplanes

@ Blowups of coordinate linear spaces defined by edges of 1PI
subgraphs (toric variety P(I"))

@ lterated blowup P(I') separates strict transform of X from
non-negative real points

@ Deform integration chain: monodromy problem; lift to P(I")

@ Subtraction of divergences: Poincaré residuces and limiting
mixed Hodge structure

e S. Bloch, E. Esnault, D. Kreimer, On motives associated to graph
polynomials, arXiv:math/0510011.

e S. Bloch, D. Kreimer, Mixed Hodge Structures and Renormalization
in Physics, arXiv:0804.4399.
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Motives and the Grothendieck ring of varieties
o Difficult to determine explicitly the motive of X (singular variety!) in
the triangulated category of mixed motives

e Simpler invariant (universal Euler characteristic for motives): class
[Xr] in the Grothendieck ring of varieties Ko(7")

@ generators [X] isomorphism classes
o [X]=[X\Y]+[Y]forY C X closed
° [X]-[Y]=[XxY]

Tate motives: Z[L,L™"] C Ko(.#)
(Ko group of category of pure motives: virtual motives)
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Universal Euler characteristics:
Any additive invariant of varieties: x(X) = x(Y)if X =Y

WX) = x(Y) +x(X\Y), YCX

X(X X Y) = x(X)x(Y)

values in a commutative ring % is same thing as a ring
homomorphism

X:K(?V)— %

Examples:

e Topological Euler characteristic
e Couting points over finite fields
e Gillet-Soulé motivic x mot(X):

Xmot - KO(A//)[L—W = Ko(A), xmot(X) = [(X,id,0)]

for X smooth projective; complex xme:(X) = W' (X)
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Graph hypersurfaces and polynomial countability

@ graph hypersurfaces Xr
@ classes in the Grothendieck ring [Xr] € Ko(7)

@ Conjecture (Kontsevich 1997): Graph hypersurfaces have
classes [Xr] € Z[L] with £ = [A'] (Tate motives)

@ Conjecture was first verified for all graphs up to 12 edges:
e J. Stembridge, Counting points on varieties over finite fields
related to a conjecture of Kontsevich, 1998
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@ But ... Conjecture is false!
o P. Belkale, P. Brosnan, Matroids, motives, and a conjecture of
Kontsevich, arXivimath/0012198
o Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533
@ Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.
o Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056
@ Belkale—Brosnan: general argument shows “motives of graph
hypersurfaces can be arbitrarily complicated”
@ Doryn, Brown—Schnetz, Brown—Doryn: explicit
counterexamples (14 edges)
@ a dichotomy
o After localization (Belkale-Brosnan): the graph hypersurfaces Xr
generate the Grothendieck ring localized at L." — L, n > 1
o Stable birational equivalence: the graph hypersurfaces span Z
inside Z[SB] = Ko(?)|L=0
@ P. Aluffi, M.M. Graph hypersurfaces and a dichotomy in the
Grothendieck ring, arXiv:1005.4470
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Polynomial countability

e in perturbative quantum field theory: graph hypersurfaces

Xr = {\Ur = 0} C ATEr

=2 1 «

T e¢E(T)
sum over spanning trees

e X variety over Z, reductions X, over [F,
counting function  N(X, q) := #X,(FFq)

Polynomially countable X if counting function polynomial Px(q)

Matilde Marcolli Renormalization and Computation



e Question: when are graph hypersurfaces Xr polynomially
countable? or equivalently complements Yr = A#Er < Xr

e max-plus character 1 : J# — Tax With N(Yr, q) ~ g¥(7) leading
order if Yr polynomially countable or ¢)(I') := —oc if not

e when Yr not polynomially countable

(M) = max{¢(F), ¥(v) + ¢(T/7)}

N
= max{t(N), > () + v (j-1/%)}
j=1
identifies chains of subgraphs and quotient graphs whose
hypersurfaces are polynomially countable
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