Renormalization and Computation Dyson–Schwinger equations in the theory of computation

Matilde Marcolli

based on:

- Colleen Delaney, Matilde Marcolli, Dyson-Schwinger equations in the theory of computation, arXiv:1302.5040
- Yuri Manin, Renormalization and computation, I and II, arXiv:0904.4921 and arXiv:0908.3430

Perturbative Quantum Field Theory

Action functional in D dimensions

$$S(\phi) = \int \mathscr{L}(\phi) \mathsf{d}^D x = S_0(\phi) + S_{int}(\phi)$$

Lagrangian density

$$\mathscr{L}(\phi) = \frac{1}{2}(\partial\phi)^2 - \frac{m^2}{2}\phi^2 - \mathscr{L}_{int}(\phi)$$

Perturbative expansion: Feynman rules and Feynman diagrams

$$S_{\it eff}(\phi) = S_0(\phi) + \sum_{\Gamma} rac{\Gamma(\phi)}{\# {
m Aut}(\Gamma)}$$
 (1PI graphs)

• Generating functional Z[J] of Green functions (source field J)

$$\frac{\delta^n Z}{\delta J(x_1)\cdots\delta J(x_n)}[0] = i^n Z[0]\langle \phi(x_1)\cdots\phi(x_n)\rangle$$

Algebraic renormalization in perturbative QFT

- A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem, I and II, hep-th/9912092, hep-th/0003188
- A. Connes, M. Marcolli, *Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory*, hep-th/0411114
- K. Ebrahimi-Fard, L. Guo, D. Kreimer, *Integrable Renormalization II: the general case*, hep-th/0403118

Two step procedure:

- Regularization: replace divergent integral $U(\Gamma)$ by function with poles
- Renormalization: pole subtraction with consistency over subgraphs (Hopf algebra structure)
- Kreimer, Connes-Kreimer, Connes-M.: Hopf algebra of Feynman graphs and BPHZ renormalization method in terms of Birkhoff factorization and differential Galois theory
- Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of Rota–Baxter algebras

Connes–Kreimer Hopf algebra $\mathcal{H} = \mathcal{H}(\mathcal{T})$ (depends on theory)

- Free commutative algebra in generators Γ 1PI Feynman graphs
- Grading: loop number (or internal lines)

$$\deg(\Gamma_1\cdots\Gamma_n)=\sum_i\deg(\Gamma_i),\ \deg(1)=0$$

• Coproduct:

$$\Delta(\Gamma) = \Gamma \otimes \mathbf{1} + \mathbf{1} \otimes \Gamma + \sum_{\gamma \in \mathscr{V}(\Gamma)} \gamma \otimes \Gamma / \gamma$$

• Antipode: inductively

$$S(X) = -X - \sum S(X')X''$$

for
$$\Delta(X) = X \otimes 1 + 1 \otimes X + \sum X' \otimes X''$$

Rota–Baxter algebra of weight $\lambda = -1$

 \mathscr{R} commutative unital algebra

 $T: \mathscr{R} \to \mathscr{R}$ linear operator with

$$T(x)T(y) = T(xT(y)) + T(T(x)y) + \lambda T(xy)$$

- Example: T = projection onto polar part of Laurent series
- T determines splitting $\mathcal{R}_+ = (1 T)\mathcal{R}$, $\mathcal{R}_- =$ unitization of $T\mathcal{R}$; both \mathcal{R}_\pm are algebras

Feynman rule

 $\bullet \ \phi: \mathscr{H} \to \mathscr{R} \ commutative \ algebra \ homomorphism$ from CK Hopf algebra \mathscr{H} to Rota–Baxter algebra \mathscr{R} weight -1

$$\phi \in \operatorname{Hom}_{\operatorname{Alg}}(\mathscr{H},\mathscr{R})$$

 \bullet Note: ϕ does not know that ${\mathscr H}$ Hopf and ${\mathscr R}$ Rota-Baxter, only commutative algebras

• Birkhoff factorization $\exists \phi_{\pm} \in \operatorname{Hom}_{\operatorname{Alg}}(\mathscr{H}, \mathscr{R}_{\pm})$

$$\phi = (\phi_- \circ S) \star \phi_+$$

where $\phi_1 \star \phi_2(X) = \langle \phi_1 \otimes \phi_2, \Delta(X) \rangle$

• Connes-Kreimer inductive formula for Birkhoff factorization:

$$\phi_{-}(X) = -T(\phi(X) + \sum \phi_{-}(X')\phi(X''))$$

$$\phi_{+}(X) = (1 - T)(\phi(X) + \sum \phi_{-}(X')\phi(X''))$$

where
$$\Delta(X) = 1 \otimes X + X \otimes 1 + \sum X' \otimes X''$$

 Recovers what known in physics as BPHZ renormalization procedure in physics

Hopf algebra of rooted trees

- Rooted tree τ : data $(F_{\tau}, V_{\tau}, v_{\tau}, \delta_{\tau}, j_{\tau})$
 - F_{τ} set of half-edges (flags)
 - V_{τ} set of vertices
 - distinguished $v_{\tau} \in V_{\tau}$ (the root)
 - boundary map $\partial_{\tau}: F_{\tau} \to V_{\tau}$
 - involution $j_{\tau}: F_{\tau} \to F_{\tau}, j_{\tau}^2 = 1$ gluing half-edges to edges
 - E_{τ} internal edges, E_{τ}^{ext} external edges (fixed by involution)

Orientation: root vertex as output, all edges oriented along unique path to root

Decorations: $\phi_V: V_\tau \to \mathscr{D}_V$ labels of vertices, $\phi_F: F_\tau \to \mathscr{D}_F$ labels of flags (matched by involution)

admissible cuts

- admissible cuts C of τ modify involution j_{τ} cutting a subset of internal edges into two flags f_i , f'_i , so that every oriented path in τ from leaf to root contains at most one cut edge
- New graph is a forest

$$C(\tau) = \rho_C(\tau) \coprod \pi_C(\tau)$$

rooted tree $\rho_C(\tau)$; forest $\pi_C(\tau) = \coprod_i \pi_{C,i}(\tau)$, each tree $\pi_{C,i}(\tau)$ with single output (new roots)

Hopf algebras

 \bullet \mathscr{H}^{nc} noncommutative Hopf algebra of planar rooted trees: free algebra generated by planar rooted trees, coproduct

$$\Delta(\tau) = \tau \otimes 1 + 1 \otimes \tau + \sum_{C} \pi_{C}(\tau) \otimes \rho_{C}(\tau)$$

grading by number of vertices, antipode

$$S(x) = -x - \sum S(x')x'', \text{ for } \Delta(x) = x \otimes 1 + 1 \otimes x + \sum x' \otimes x''$$

x', x'' lower order terms

- \mathscr{H} commutative Hopf algebra of (planar) rooted trees: free commutative (polynomial) algebra generated by rooted trees, same form of coproduct, grading and antipode
- in Connes–Kreimer setting can equivalently work with Hopf algebra of rooted trees decorated by Feynman graphs or with Hopf algebra of Feynman graphs (coproduct: subgraphs and quotient graphs)

Dyson-Schwinger equations in QFT

- Equations of motion for Green functions (Euler–Lagrange equations)
- Infinite system of coupled differential equations
- ullet obtained as formal Taylor series expansion at J=0 of DS equation in the generating function Z[J]

$$\frac{\delta S}{\delta \phi(x)} \left[-i \frac{\delta}{\delta J} \right] Z[J] + J(x) Z[J] = 0$$

• in the Hopf algebraic approach to QFT, can lift the DS equations to the combinatorial level

Combinatorial Dyson-Schwinger equations

- C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology, hep-th/0506190
- K. Yeats, Rearranging Dyson-Schwinger Equations, AMS 2011.
- L. Foissy, Systems of Dyson–Schwinger equations, arXiv:0909.0358

Dyson-Schwinger equations and Hopf subalgebras

• If grafting operator satisfies *cocycle condition*, then solutions of Dyson–Schwinger equations form a *Hopf subalgebra*

Primitive recursive functions

- generated by basic functions
 - Successor $s: \mathbb{N} \to \mathbb{N}$, s(x) = x + 1;
 - Constant $c^n : \mathbb{N}^n \to \mathbb{N}$, $c^n(x) = 1$ (for $n \ge 0$);
 - Projection $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \, \pi_i^n(x) = x_i \text{ (for } n \ge 1);$
- with elementary operations
 - Composition
 - Bracketing
 - Recursion

Elementary operations:

• Composition $\mathfrak{c}_{(m,m,p)}$: for $f:\mathbb{N}^m\to\mathbb{N}^n,\,g:\mathbb{N}^n\to\mathbb{N}^p,$

$$g \circ f : \mathbb{N}^m \to \mathbb{N}^p$$
, $\mathscr{D}(g \circ f) = f^{-1}(\mathscr{D}(g))$;

• Bracketing $\mathfrak{b}_{(k,m,n_i)}$: for $f_i: \mathbb{N}^m \to \mathbb{N}^{n_i}$, $i = 1, \ldots, k$,

$$f = (f_1, \ldots, f_k) : \mathbb{N}^m \to \mathbb{N}^{n_1 + \cdots + n_k}, \quad \mathscr{D}(f) = \mathscr{D}(f_1) \cap \cdots \cap \mathscr{D}(f_k);$$

• Recursion \mathfrak{r}_n : for $f:\mathbb{N}^n\to\mathbb{N}$ and $g:\mathbb{N}^{n+2}\to\mathbb{N}$,

$$h(x_1,\ldots,x_n,1):=f(x_1,\ldots,x_n),$$

$$h(x_1,\ldots,x_n,k+1):=g(x_1,\ldots,x_n,k,h(x_1,\ldots,x_n,k)), \ k\geq 1,$$

where recursively $(x_1,\ldots,x_n,1)\in \mathcal{D}(h)$ iff $(x_1,\ldots,x_n)\in \mathcal{D}(f)$
and $(x_1,\ldots,x_n,k+1)\in \mathcal{D}(h)$ iff $(x_1,\ldots,x_n,k)\in \mathcal{D}(g)$.

Manin's Hopf algebra of flow charts

- planar labelled rooted trees (bracketing and recursion are ordered: need planar)
- label set of vertices $\mathscr{D}_V = \{\mathfrak{c}_{(m,n,p)},\mathfrak{b}_{(k,m,n_i)},\mathfrak{r}_n\}$ (composition, bracketing, recursion)
- label set of flags \mathcal{D}_F primitive recursive functions
- admissible labelings:
 - $\phi_V(v) = \mathfrak{c}_{(m,n,p)}$: v valence 3; labels $h_1 = \phi_F(f_1)$, $h_2 = \phi_F(f_2)$ incoming flags with domains and ranges $h_1 : \mathbb{N}^m \to \mathbb{N}^n$ and $h_2 : \mathbb{N}^n \to \mathbb{N}^p$; outgoing flag composition $h_2 \circ h_1 = \mathfrak{c}_{(m,n,p)}(h_1,h_2)$.
 - $\phi_V(v) = \mathfrak{r}_n$: v valence 3; labels $h_1 = \phi_F(f_1)$, $h_2 = \phi_F(f_2)$ incoming flags with domains and ranges $h_1 : \mathbb{N}^n \to \mathbb{N}$ and $h_2 : \mathbb{N}^{n+2} \to \mathbb{N}$, outgoing flag recursion $h = \mathfrak{r}_n(h_1, h_2)$.
 - $\phi_V(v) = \mathfrak{b}_{(k,m,n_i)}$: v must have valence k+1; labels $h_i = \phi_F(f_i)$ incoming flags with domain \mathbb{N}^m ; outgoing flag bracketing $f = (f_1, \ldots, f_k) = \mathfrak{b}_{(k,m,n_i)}(f_1, \ldots, f_k)$.
- Coproduct, grading, antipode from Hopf algebra of rooted trees

Variants on the Hopf algebra of flow charts

- ullet noncommutative Hopf algebra $\mathscr{H}^{\mathit{nc}}_{\mathrm{flow},\mathscr{P}}$
- ullet Hopf algebra with only vertex labels $\mathscr{H}^{\mathit{nc}}_{\mathrm{flow},\mathscr{V}}$
- Use only binary operations (valence 3 vertices): express bracketing as a composition of binary operations

$$\mathfrak{b}_{(k,m,n_i)}=\mathfrak{b}_{(2,m,n_1,n_2+\cdots+n_k)}\circ\cdots\circ\mathfrak{b}_{(2,m,n_{k-1},n_k)}$$

- Extend composition and recursion to *k*-ary operations
 - k-ary compositions $\mathfrak{c}_{(k,m,n_i)}(h_i) = h_k \circ \cdots \circ h_1$ of functions $h_i : \mathbb{N}^{n_{i-1}} \to \mathbb{N}^{n_i}$, for $i = 1, \dots, k$, with $n_0 = m$
 - (k + 1)-ary recursions with k initial conditions:

$$h(x_1, ..., x_n, 1) = h_1(x_1, ..., x_n), ...$$

 $h(x_1, ..., x_n, k) = h_k(x_1, ..., x_n),$
 $h(x_1, ..., x_n, k + \ell) =$
 $h_{k+1}(x_1, ..., x_n, h_1(x_1, ..., x_n), ..., h_k(x_1, ..., x_n), k + \ell - 1),$
for $\ell > 1$

Insertion and Hochschild 1-cocycles

- T =forest: grafting operator $B_{\delta}^+(T)=$ sum of planar trees with new root vertex added with incoming flags equal number of trees in T and a single output flag and decoration $\delta \in \{\mathfrak{b},\mathfrak{c},\mathfrak{r}\}$
- cocycle condition:

$$\Delta B_{\delta}^{+} = (\mathit{id} \otimes B_{\delta}^{+})\Delta + B_{\delta}^{+} \otimes 1$$

equivalent to $\tilde{\Delta}B_{\delta}^{+}=(id\otimes B_{\delta}^{+})\tilde{\Delta}+id\otimes B_{\delta}^{+}(1)$ with $\tilde{\Delta}(x):=\sum x'\otimes x''$ (non-primitive part) and $B_{\delta}^{+}(1)=v_{\delta}$ (single vertex, label δ): first term admissible cuts root vertex attached to $\rho_{C}(T)$, second term admissible cut separating root vertex.

• cocycle condition requires same type of label $(\mathfrak{b}, \mathfrak{c}, \operatorname{or} \mathfrak{r})$ for all vertices of arbitrary valence: use version $\mathscr{H}^{nc}_{\operatorname{flow},\mathscr{V}'}$ with k-ary operations

Systems of Dyson–Schwinger equations (Foissy)

ullet non-constant formal power series in three variables $X=(X_\delta)$

$$F_{\delta}(X) = \sum_{k_1, k_2, k_3} a_{k_1, k_2, k_3}^{(\delta)} X_{\mathfrak{b}}^{k_1} X_{\mathfrak{c}}^{k_2} X_{\mathfrak{r}}^{k_3}$$

associated system of Dyson–Schwinger equations

$$X_{\delta} = B_{\delta}^{+}(F_{\delta}(X))$$

• unique solution $X_{\delta} = \sum_{\tau} x_{\tau} \tau$ (sum over planar rooted trees root decoration δ)

$$x_{\tau} = \left(\prod_{k=1}^{3} \frac{\left(\sum_{l=1}^{m_{k}} p_{\delta,l}\right)!}{\prod_{l=1}^{m_{k}} p_{\delta,l}!}\right) a_{\sum_{k=1}^{3} p_{1,k}, \sum_{k=1}^{3} p_{2,k}, \sum_{k=1}^{3} p_{3,k}} x_{\tau_{1,1}}^{p_{1,1}} \cdots x_{\tau_{3,m_{3}}}^{p_{3,m_{3}}}$$

when

$$\tau = B^+(\tau_{1,1}^{p_{1,1}}\cdots\tau_{1,m_1}^{p_{1,m_1}}\cdots\tau_{3,1}^{p_{3,1}}\cdots\tau_{3,m_3}^{p_{3,m_3}})$$

Dyson–Schwinger equations and Hopf subalgebras (Bergbauer–Kreimer)

Dyson–Schwinger equations in a Hopf algebra of the form

$$X = 1 + \sum_{n=1}^{\infty} c_n B_{\delta}^{+}(X^{n+1})$$

- associative algebra \mathscr{A} (subalgebra of \mathscr{H}) generated by components x_n of unique solution of DS equation
- ullet using cocycle condition for B_δ^+ get

$$\Delta(x_n) = \sum_{k=0}^n \Pi_k^n \otimes x_k, \quad \text{where} \quad \Pi_k^n = \sum_{j_1 + \dots + j_{k+1} = n - k} x_{j_1} \cdots x_{j_{k+1}}$$

- ⇒ Hopf subalgebra
- generalized by Foissy for broader class of DS equations in Hopf algebras, including systems

Variant: Hopf ideals

- DS equation $X = 1 + \sum_{n=1}^{\infty} c_n B_{\delta}^+(X^{n+1})$
- *ideal* \mathcal{I} generated by the components x_n (with $n \ge 1$) of solution
- ullet cocycle condition for ${\cal B}_{\delta}^+ \Rightarrow {\mathscr I}$ Hopf ideal

elements of \mathscr{I} finite sums $\sum_{m=1}^{M} h_m x_{k_m}$ with $h_m \in \mathscr{H}$ and x_k components of unique solution of DS equation

Hopf ideal condition: $\Delta(\mathscr{I}) \subset \mathscr{I} \otimes \mathscr{H} \oplus \mathscr{H} \otimes \mathscr{I}$

coproduct $\Delta(x_k)$: primitive part $1 \otimes x_k + x_k \otimes 1$ in $\mathcal{H} \otimes \mathcal{I} \oplus \mathcal{I} \otimes \mathcal{H}$; other terms in $\mathcal{I} \otimes \mathcal{I}$, so coproducts $\Delta(h_m x_{k_m})$ in $\mathcal{H} \otimes \mathcal{I} \oplus \mathcal{I} \otimes \mathcal{H}$.

 \Rightarrow quotient Hopf algebra $\mathscr{H}_{\mathscr{I}}=\mathscr{H}/\mathscr{I}$

Note: commutative Hopf algebra; if noncommutative use two-sided ideals

Yanofsky's Galois theory of algorithms

- Yanofsky proposed equivalence relations on flowcharts = "implementing the same algorithm"
- algorithm as intermediate level between the flow chart (= labelled planar rooted tree) and the primitive recursive functions
- obtain "Galois correspondence"
- resulting automorphism groups are products of symmetric groups
- but there are problems:

Example: (Joachim Kock)

fix function f: infinitely many programs computing it; "Galois group" is symmetry group of that set; subgroup S_3 (or C_3) permuting (cyclically) three of the programs fixing others: same orbits but different groups

Proposal for a different form of Galois theory of algorithms

- *suggestion*: take the Hopf algebra structure into account in defining relations (= relations should be Hopf ideals)
- ullet instead of the kind of groups described by Yanofsky, find a sub-group scheme $G_{\mathscr{I}}\subset G_{\mathrm{flow}}$ corresponding to the quotient $\mathscr{H}_{\mathscr{I}}=\mathscr{H}/\mathscr{I}$, with G_{flow} group scheme dual to Hopf algebra \mathscr{H} of flow charts
- in particular get a $G_{\mathscr{I}}$ from a Dyson–Schwinger equation (system)
- the groups appearing in this way have a structure more similar to the "Galois groups" playing a role in QFT

From Hopf algebras to operads

- ullet operad of flow charts $\mathscr{O}_{\mathrm{flow},\mathscr{V}'}$
 - $\mathcal{O}(n) = \mathbb{K}$ -vector space spanned by labelled planar rooted trees with n incoming flags
 - operad composition operations

$$\circ_{\mathscr{O}}:\mathscr{O}(n)\otimes\mathscr{O}(m_1)\otimes\cdots\otimes\mathscr{O}(m_n)\to\mathscr{O}(m_1+\cdots+m_n)$$

on generators $\tau \otimes \tau_1 \otimes \cdots \otimes \tau_n$ by grafting output flag of τ_i to the *i*-th input flag of τ

Dyson–Schwinger equations in operads

- formal series $P(t) = 1 + \sum_{k=1}^{\infty} a_k t^k$
- collection $\beta = (\beta_n)$ with $\beta_n \in \mathcal{O}(n)$
- Dyson–Schwinger equation:

$$X = \beta(P(X))$$

with $X = \sum_k x_k$ a formal sum of $x_k \in \mathcal{O}(k)$

- self-similarity with respect to $X \mapsto \beta(P(X))$
- right-hand-side of equation: $\beta(P(X))_1 = 1 + \beta_1 \circ x_1$, with 1 identity in $\mathcal{O}(1)$, and for $n \geq 2$

$$\beta(P(X))_n = \sum_{k=1}^n \sum_{j_1+\dots+j_k=n} a_k \ \beta_k \circ (x_{j_1} \otimes \dots \otimes x_{j_k})$$

with
$$x_{j_1} \otimes \cdots \otimes x_{j_k} \in \mathscr{O}(j_1) \otimes \cdots \otimes \mathscr{O}(j_k)$$
, composition $\beta_k \circ_{\mathscr{O}} (x_{j_1} \otimes \cdots \otimes x_{j_k}) \in \mathscr{O}(n)$, with $j_1 + \cdots + j_k = n$

Inductive construction of solutions

- ullet $\mathscr{O} = \mathscr{O}_{\mathrm{flow},\mathscr{V}'}$ operad of flow charts
- assume $a_1\beta_1 \neq 1 \in \mathcal{O}(1)$
- then operadic Dyson–Schwinger equation $X = \beta(P(X))$ has unique solution $X \in \prod_{n \ge 1} \mathscr{O}(n)$ given inductively by

$$(1 - a_1 \beta_1) \circ x_{n+1} = \sum_{k=2}^{n+1} \sum_{j_1 + \dots + j_k = n+1} a_k \beta_k \circ (x_{j_1} \otimes \dots \otimes x_{j_k})$$

- $\mathscr{O}_{\beta,P}(n) = \mathbb{K}$ -linear span of all compositions $x_k \circ (x_{j_1} \otimes \cdots \otimes x_{j_k})$ for $k = 1, \ldots, n$ and $j_1 + \cdots + j_k = n$, with x_k coordinates of solution $X \Rightarrow \mathscr{O}_{\beta,P}(n)$ is a sub-operad
- choosing $a_1 \neq 1$ and β_k single vertex k incoming flags, label δ gives operadic version of DS equation with B_{δ}^+ , but more general DS equations in operadic setting (without cocycle condition)

Operads and Properads

- Manin: extend Hopf algebra of flow charts to graphs (not trees) with acyclic orientations
- replace operad with *properad*: compositions grafting outputs and inputs of acyclic graphs
- properad (Valette): operations with varying numbers of inputs and outputs labelled by connected acyclic graphs; (operads: trees varying number of inputs and single output; props: allow disconnected graphs)
- composition operations: *m* inputs, *n* outputs

$$\mathscr{P}(m,n)\otimes\mathscr{P}(j_1,k_1)\otimes\cdots\otimes\mathscr{P}(j_\ell,k_\ell)\to\mathscr{P}(j_1+\cdots+j_\ell,n)$$

for
$$k_1 + \cdots + k_\ell = m$$

- $\mathscr{P}_{\text{flow},\mathscr{V}'}$ properad of flow charts
- $\mathscr{P}(m, n) = \mathbb{K}$ -vector space spanned by planar connected directed (acyclic) graphs with m incoming flags and n outgoing flags
- vertices decorated by operations including \mathfrak{b} , \mathfrak{c} , \mathfrak{r} (m inputs, one output) and macros with m inputs and n outputs

Dyson-Schwinger equations in properads

- formal power series $P(t) = 1 + \sum_{k} a_k t^k$
- collection $\beta = (\beta_{m,n})$ with $\beta_{m,n} \in \mathscr{P}(m,n)$
- DS equation $X = \beta(P(X))$ (self-similarity)
- in components

$$\beta(P(X))_{m,n} = \sum_{k=1}^m a_k \sum_{\substack{j_1+\ldots j_k=m\\i_1+\cdots i_k=\ell}} \beta_{\ell,n} \circ (x_{j_1,i_1} \otimes \cdots \otimes x_{j_k,i_k})$$

Construction of solutions in properads

• transformations $\Lambda_n = \Lambda_n(a, \beta)$

$$\Lambda_n(a,\beta): \oplus_{k=1}^n \mathscr{P}(n,k) \to \oplus_{k=1}^n \mathscr{P}(n,k), \quad \text{with} \quad \Lambda_n(a,\beta)_{ij} = a_j \beta_{j,i}$$

- assume $I \Lambda_n(a, \beta)$ invertible for all n (not always satisfied)
- then unique solution to DS equation $X = \beta(P(X))$
- inductive construction: $x_{1,1} = \Lambda_1^{-1}$ and for m < n

$$x_{m,n} = \sum_{k=1}^{m} a_k \beta_{k,n} \circ \left(\sum_{\ell=1}^{k} \sum_{\substack{i_1 + \dots + i_\ell = m \\ i_1 + \dots + i_\ell = k}} x_{j_1,i_1} \otimes \dots \otimes x_{j_\ell,i_\ell} \right)$$

remaning components $m \ge n$ determined by

$$Y_n(x) = (I - \Lambda_n)^{-1} \Lambda_n V^{(n)}(x)$$

with $Y_n(x)^t = (x_{n,1}, \dots, x_{n,n})$ and $V^{(n)}(x)^t = (V^{(n)}(x)_j)_{j=1,\dots,n}$

$$V^{(n)}(x)_j = \sum_{k=2}^n \sum_{r_1+\cdots+r_k=n} x_{r_1,s_1} \otimes \cdots \otimes x_{r_k,s_k}$$

Manin's "renormalization of the halting problem"

- Idea: treat noncomputable functions like infinities in QFT
- Renormalization = extraction of finite part from divergent Feynman integrals; extraction of "computable part" from noncomputables
- First step: build a Hopf algebra (similar to flow charts case) and a Feynman rule that detects the presence of noncomputability (infinities)
- Second step: BPHZ type subtraction procedure
- Third step: what is the meaning of the "renormalized part" and of the "divergences part" of the Birkhoff factorization?

Partial recursive functions and the Hopf algebra

- ullet enlarge from primitive recursive to partial recursive: same elementary operations $\mathfrak{c},\mathfrak{b},\mathfrak{r}$ of composition, bracketing and recursion but additional μ operation
- μ operation: input function $f: \mathbb{N}^{n+1} \to \mathbb{N}$, output

$$h: \mathbb{N}^n \to \mathbb{N}, \quad h(x_1, \dots, x_n) = \min\{x_{n+1} \mid f(x_1, \dots, x_{n+1}) = 1\},$$
 with domain $\mathscr{D}(h)$ those (x_1, \dots, x_n) such that $\exists x_{n+1} \ge 1$
$$f(x_1, \dots, x_{n+1}) = 1, \text{ with } (x_1, \dots, x_n, k) \in \mathscr{D}(f), \forall k \le x_{n+1}$$

- Church's thesis: get all semi-computable functions, for which \exists program computing f(x) for $x \in \mathcal{D}(f)$ and computed zero or never stops for $x \notin \mathcal{D}(f)$
- ullet Hopf algebra: additional vertex decoration by μ operations, extended to arbitrary valence by combining with bracketing; edge decorations by partial recursive functions

Feynman rule for computation (Manin)

- \mathscr{B} algebra of functions $\Phi: \mathbb{N}^k \to \mathscr{M}(D)$ from \mathbb{N}^k , for some k, to algebra $\mathscr{M}(D)$ of analytic functions in unit disk $D = \{z \in \mathbb{C}: |z| < 1\}.$
- Rota–Baxter operator T on \mathscr{B} componentwise projection onto polar part at z=1
- \bullet For any tree τ that computes f set

$$\Phi_{\tau}(\underline{k},z) = \Phi(\underline{k},f,z) := \sum_{n\geq 0} \frac{z^n}{(1+n\overline{f}(\underline{k}))^2}$$

 $\overline{f}: \mathbb{N}^m \to \mathbb{Z}_{\geq 0}$ computes f(x) at $x \in \mathcal{D}(f)$ and 0 at $x \notin \mathcal{D}(f)$.

- $\Phi_{\tau}(\underline{k},z)$ pole at z=1 iff $\underline{k}\notin \mathscr{D}(f)$
- ullet this Φ is algebraic Feynman rule: commutative algebra homomorphism from enlarged Hopf algebra of flow charts to Rota–Baxter algebra ${\mathscr B}$

apply BPHZ

negative part of Birkhoff factorization becomes

$$\Phi_{-}(\underline{k}, f_{\tau}, z) = -T(\Phi(\underline{k}, f_{\tau}, z) + \sum_{C} \Phi_{-}(\underline{k}, f_{\pi_{C}(\tau)}, z)\Phi(\underline{k}, f_{\rho_{C}(\tau)}, z))$$

ullet Note: $f=f_{ au}$ label of outgoing flag of au: then $f_{
ho_{\mathcal{C}}(au)}=f_{ au}$

$$\Phi_{-}(\underline{k}, f_{\tau}, z) = -T \left(\Phi(\underline{k}, f_{\tau}, z) (1 + \Phi_{-}(\underline{k}, \sum_{C} f_{\pi_{C}(\tau)}, z)) \right)$$

ullet What is happening here? Like in QFT, looking not only at "divergences" of program au but also of *all subprograms* $\pi_{\mathcal{C}}(au)$ and $\rho_{\mathcal{C}}(au)$ determined by admissible cuts (the problem of subdivergences in renormalization)

Why subdivergences in computation?

- $\Phi_{-}(\underline{k}, f_{\tau}, z)$ detects not only if τ has infinities but if any subroutine does
- Note: $\Phi(\underline{k}, f_{\tau}, z)$ only depends on $f = f_{\tau}$ not on τ , but $\Phi_{-}(\underline{k}, f_{\tau}, z)$ really depends on τ
- Unlike QFT there are programs without divergences that do have subdivergences
- Example: (Joachim Kock)

identity function computed as composite of successor function followed by partial predecessor function $\mu(|y+1-x|)$ (undefined at 0, and x-1 for x>0), au with a $\mathfrak c$ node and a μ node

Renormalized part What does it measure?

$$\Phi_{+}(\underline{k}, f_{\tau}, z) = (1 - T)(\Phi(\underline{k}, f_{\tau}, z) + \sum_{C} \Phi_{-}(\underline{k}, f_{\pi_{C}(\tau)}, z)\Phi(\underline{k}, f_{\rho_{C}(\tau)}, z))$$

- Main question: is there a new f_{ren} , now *primitive recursive*, such that $\Phi_+(\underline{k}, f_{\tau}, z) = \Phi(\underline{k}, f_{\text{ren}}, z)$?
- in general not true simply as stated, but in QFT there is an equivalence relation on Feynman rules and renormalized values, a kind of gauge transformation by germs of holomorphic functions (Connes–Marcolli): correct statement of question is up to such an equivalence?
- ullet *Useful viewpoint*: every partial recursive function can be computed by a Hopf-primitive program: Kleene normal form as μ of a total function

