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We investigate the effect of varying boundary conditions on the renormalization group flow in a recently
developed noncommutative geometry model of particle physics and cosmology. We first show that there
is a sensitive dependence on the initial conditions at unification, so that, varying a parameter even
slightly can be shown to have drastic effects on the running of the model parameters. We compare
the running in the case of the default and the maximal mixing conditions at unification. We then exhibit

explicitly a particular choice of initial conditions at the unification scale, in the form of modified maximal
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mixing conditions, which have the property that they satisfy all the geometric constraints imposed by the
noncommutative geometry of the model at unification, and at the same time, after running them down
to lower energies with the renormalization group flow, they still agree in order of magnitude with the
predictions at the electroweak scale.
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1. Introduction

The recent work [26] developed cosmological models of the
very early universe based on the particle physics model of [13] de-
rived from noncommutative geometry, via the formalism of spec-
tral triple and the spectral action functional. Other results on cos-
mological aspects of noncommutative geometry models of parti-
cle physics include [9,23,27-31]. In the particle physics model of
[4,15,13], the Lagrangian is obtained by computing the asymptotic
expansion at high energy of the spectral action functional [11]
on a noncommutative space which is the product of an ordinary
(commutative) spacetime manifold and extra dimensions given in
the form of a noncommutative space which is metrically zero-
dimensional, but K-theoretically six-dimensional. The choice of the
noncommutative space determines the particle physics content of
the model and the gauge symmetries. The masses and mixing an-
gles arise geometrically as coordinates on the moduli space of
Dirac operators of the spectral triple describing the extra dimen-
sions. In the case of the model developed in [13], the particle
physics content is the same as in the vMSM, namely, in addi-
tion to the particles of the Minimal Standard Model, one has
right-handed neutrinos with Majorana mass terms. However, the
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model is significantly different from vMSM when it comes to the
properties of the action functional. In fact, as proved in [13], the
asymptotic expansion of the spectral action contains the full Stan-
dard Model Lagrangian, with the additional Majorana terms for
the right-handed neutrinos. One has unification of the coupling
constants of the three forces, hence the model has a preferred en-
ergy scale at unification. The asymptotic expansion of the spectral
action also contains gravitational terms, which are the most inter-
esting part from the point of view of applications to cosmological
models. These terms contain an Einstein-Hilbert term, a cosmo-
logical term, a conformal gravity term, a nondynamical topological
term, and a conformal coupling of the Higgs field to gravity.

In the approach to cosmological models developed in [26], one
uses the fact that, at the unification scale, in the terms one obtains
in the asymptotic expansion of the spectral action, the usual grav-
itational and cosmological constants are replaced by effective con-
stants, whose expression at unification depends upon the Yukawa
parameters of the particle physics content of the model. In [26],
this is used to derive an early universe model in which one allows
these effective gravitational and cosmological constant determined
by the boundary conditions given by the asymptotic expansion of
the spectral action, to run with the RGE flow of the associated
particle physics model, according to the running of the Yukawa pa-
rameters and Majorana mass terms. This allows for a much more
serious variability of the effective gravitational and cosmological
constant in between the unification and the electroweak epochs of
the very early universe (and in particular during the inflationary
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epoch) than is usually considered in other gravity models. In [26],
this type of running leads to several consequences on early uni-
verse cosmology, from mechanisms for inflation to effects on the
gravitational waves and the evaporation law for primordial black
holes.

For the purpose of the present Letter, the specific issues of the
running of the gravitational parameters and of the resulting in-
terpretations within the model are not directly relevant, since the
results we give here are specifically about the running with the
RGE flow of those expressions of Yukawa parameters and Majorana
masses, which enter the value at unification of the asymptotic ex-
pansion of the spectral action.

The analysis performed in [26] depends on the choice of initial
boundary conditions at unification for the renormalization group
flow. The results of [26] are obtained using the default boundary
conditions of [1]. However, as we show in the present Letter, one
obtains significantly different behaviors of the coefficients of the
asymptotic expansion of the spectral action by changing bound-
ary conditions. This implies that there will be the possibility of
drawing interesting exclusion curves in the space of all possible
boundary conditions, on the basis of comparing the model with
cosmological data, for example through the predictions for the
tensor-to-scalar ratio and the spectral index derived in [26].

For the purpose of the present Letter, we first show how one
obtains significantly different curves for the running of the param-
eters in the action functional with different choices of the bound-
ary conditions. This shows, as one would have expected, a sensitive
dependence on the initial conditions at unification, which means
that a fine-tuning problem arises within the model, in the choice
of the data at unification.

The main result of the Letter is then to exhibit a specific choice
of boundary conditions, which we denote modified maximal mix-
ing conditions, which differ from the default one of [1], and which
have the desired properties. Namely, we show that all the geo-
metric constraints on the data at unification derived in [13] are
satisfied by our choice of boundary conditions. We also show that,
when running the RGE flow with those boundary conditions, one
obtains values in the low energy limit that are still compatible in
order of magnitude with the physical predictions and observed val-
ues at low energy, as in the case of the default conditions of [1].

An important aspect of these models is understanding how
much nonperturbative effects in the spectral action may affect the
low energy behavior of the model, since that is the main obstacle
to extending to the more recent universe the cosmological models
of [26]. Our estimates of the low energy behavior when match-
ing geometric boundary conditions at unification may also provide
some indirect evidence for the magnitude of such effects.

Recent results of [27] show that, at least in the case of suf-
ficiently symmetric geometries, the spectral action can be fully
computed nonperturbatively, using the technique of [12], and the
nonperturbative effects are limited to the shape of the inflation
potential.

2. The spectral action and the renormalization group flow

In noncommutative geometry one models the analog of a Rie-
mannian manifold through the notion of a spectral triple, consisting
of data (A, H, D) of an involutive algebra, a Hilbert space repre-
sentation, and a Dirac operator, which has the compatibility condi-
tion of having bounded commutators with elements of the algebra.
Additional structure, in the form of grading y and real involution
J with compatibility conditions with the data (A, H, D) are also
introduced. In the particle physics context, y corresponds to the
two chiralities of fermions and | to the involution that exchanges
particles and antiparticles. See [13] for a more detailed account

of the underlying mathematical structure, which we do not recall
here. The action functional considered in noncommutative geome-
try models for particle physics is based on the spectral action [11]
for the Dirac operator of a spectral triple, with additional fermionic
terms. In the model of [13] this takes the form

1 - -
Tr(f(DA/A))+5(J$,DA$)- (21)

Here Do =D + A+ & JAJ™! is the Dirac operator with inner
fluctuations given by the gauge potentials of the form A = AT =
> vak[D, by, for elements a, by € A. The ¢’ is just a function of
n mod 8 that gives —1 for n congruent to 1 mod 4 and 1 for all
other values of n. The fermionic term (J&, D4&) should be seen
as a pairing of classical fields £ e HT = {€ € H | y& =&}, viewed
as Grassmann variables. For the purpose of cosmological applica-
tions, the most important part of this action functional is the one
that comes from the asymptotic expansion at high energy A of the
spectral action Tr(f(Da/A)), since this contains the gravitational
terms and their coupling to matter.

2.1. The asymptotic form of the spectral action

The asymptotic expansion of the spectral action is obtained in
the form (see [11,13])

Tr(f(D/A) ~ Y kak][|D|—"+f<0);n<0)+o(1>, (22)

keDimSp+

where fy = [¢° f(v)vk"1dv are the momenta of the function
f and the noncommutative integration is defined in terms of
residues of zeta functions

Za,p(s) =Tr(a|D|™%). (2.3)

The sum in (2.2) is over points in the dimension spectrum of the
spectral triple, which is a refined notion of dimension for non-
commutative spaces, consisting of the set of poles of the zeta
functions (2.3). More explicitly, as proved in [13], when applied
to a noncommutative space of the form X x F, with X an ordinary
4-dimensional (Euclidean) spacetime and F the noncommutative
space whose algebra of coordinates is C @ H & M3(C), with H the
algebra of quaternions, the expansion (2.2) of Tr(f(Da/A)) gives
terms of the form

1 4 4
S:F R./gd x+yo/ﬁdx

0

+a0/Cuupgcwpaﬁd‘lx—k‘m/R*R*ﬁd4x
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+ 1f(c§wcl”" + F&,FMY 4 B, BMY) /g d'x. (2.4)

4

The coefficients of these terms are functions
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These depend upon the three parameters fo, f2, fa, where fo =
f(0) and for k >0

fr =/f(V)v"‘1 dv,
0

where fo depends upon the common value of the coupling con-
stants at unification energy and f, and f4 are free parameters
of the model. The expressions (2.5) also depend upon the energy
scale A and the running of these parameters is the main topic of
our present investigation. In addition to the explicit dependence
on A of the coefficients (2.5) there is also an additional and very
interesting dependence on A through the coefficients a, b, ¢,
and e. These are functions of the Yukawa parameters and Majo-
rana masses of the particle physics content of the model, in the
form

a=Tr(Y Yy + YiYe +3(Yi Yy + YiYy)),
Tr((YTYV) +(Yive) +3(Yiva)? +3(Y)va)),
Tr(MMT),

Tr(MMT)°).

=Tr(MMTY]Y,).

0

(2.6)
2.2. Renormalization group flow

The particle physics models based on the spectral action func-
tional of noncommutative geometry as in [11,13] are (at present)
entirely a classical theory. In particular, this means that whenever
physical predictions are derived in these models using renormal-
ization group techniques to lower the energy scale from unifica-
tion, where the model naturally lives, to ordinary energies, one
uses beta functions and renormalization group equations that are
imported from the ordinary QFT of the specific particle physics La-
grangian that is obtained from the asymptotic expansion of the
spectral action. This is a delicate issue, since in fact the asymp-
totic expansion includes both matter and gravitational terms. The
beta functions and RGE flow adopted here (as in [26]) is the one
for the extension of the Minimal Standard Model that includes
right-handed neutrinos with Majorana mass terms, while the grav-
itational effects are not taken into account in the form of RGE. This
is an approximation, since the nonminimal coupling of the Higgs
to gravity in the model means that one no longer has a clear sepa-
ration between the particle and gravitational sectors. Consequences
of modified RGE flows coming from nonminimal couplings to the
Higgs can be found for instance in [7,8], and in [32], while ef-
fects from gravity terms are considered in [18]. For the Minimal
Standard Model, there is an extensive literature on the form of the
beta functions and the RGE flow, see for instance [24] and refer-
ences therein. In the case of the noncommutative geometry model
of particle physics of [14], which did not yet include right-handed
neutrinos and Majorana mass terms, predictions of the Higgs mass
were obtained based on using the RGE of the Minimal Standard
Model.

The RGE analysis of the model of [13] considered in [26], which
we also work with in this Letter, differs from the usual RGE analy-
sis of the Standard Model in the following ways:

e Instead of the RGE of the Minimal Standard Model, one consid-
ers the equations for the extension with right-handed neutri-
nos and Majorana masses, as in [1]. As in [1] these are treated
by considering different effective field theories in between the
different see-saw scales (see also [2,3]).

e We vary the initial conditions at unification, by imposing the
geometric constraints derived in [13] and at the same time
requiring that the low energy values remain close to the ex-
pected physical values.

The specific information on the NCG model of [13] enters here in
two ways: first in selecting the appropriate matter content of the
model (the presence of the extra right-handed neutrinos with Ma-
jorana mass terms in addition to the usual Standard Model), hence
the use of the RGE flow of [1], and also in the geometric con-
straints imposed on the boundary conditions at unification.

We use, as in [26] the renormalization group equations for
the Standard Model with right-handed neutrinos and Majorana
mass terms of [1]. The numerical results described here are ob-
tained with a Mathematica code based on the REAP program of
[1] adapted to our model by the first author.

We recall here that the RGE for this particle physics model is
given (at one loop) by the beta functions [1]

19 41
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Notice that we use here the normalization of the coupling con-
stants used in [1], which is different from the one of [13].

In particular, as in [1], we solve numerically these equations
using different effective field theories in the intervals of ener-
gies between the three see-saw scales, with matching boundary
conditions. Namely, starting from assigned boundary conditions at
unification, one runs the RGE flow down until the first see-saw
scale (the top eigenvalue of the Majorana mass matrix M). Then
one integrates out the higher modes by introducing a first effec-
tive theory with Yukawa parameters Y](,3) obtained by removing
the last row of Y, in the basis where M is diagonal and with Ma-
jorana mass matrix M® obtained by removing the last row and
column. One then restarts the RGE flow for these new variables
with matching boundary conditions at the top see-saw scale, until
the second see-saw scale, and so on. One has in this way effective
field theories (Y, M®), k=3,2,1.

We study the effect on this RGE flow of changing boundary
conditions at unification scale, and we then derive consequences
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for the running of the coefficients a, b, ¢, 9, ¢ of (2.6). In the next
section we show, as could have been expected, that the running
is highly sensitive to the choice of the initial conditions at unifi-
cation. This shows that there is an important fine-tuning issue in
the model related to the assigned values at unification. We then
present in the following section a specific choice of boundary con-
ditions that meets all the geometric constraints on the model and
that produces realistic values at low energies.

2.3. Aremark on gravitational and Yukawa parameters in the NCG
models

This subsection is not directly relevant to the main result of
the Letter, which is simply a statement about the running of the
parameters a, b, ¢, 0, ¢ of (2.6), subject to different choices of
boundary conditions at unification, with particular attention to
those dictated by the geometric constraints imposed by the model
of [13] at unification. However, we include it here to discuss briefly
and compare different existing points of view on the role of the
parameters (2.6) in the coefficients (2.5) of the spectral action ex-
pansion.

In the NCG model of [13], the relation (2.5) between the co-
efficients of the asymptotic expansion of the spectral action and
the Yukawa coupling and Majorana mass terms of the particle
physics sector holds only at unification energy. In particular, the
dependence of the effective gravitational and effective cosmologi-
cal constants upon the parameters a, b, ¢, 0, ¢ of (2.6) only sets
the boundary conditions at unification. In [13] (see also the ex-
position in Chapter 1 of [16]), consequently, the running of the
gravitational terms of the model is deduced from the usual ap-
proach as in [18], see also [19], by which one obtains only a very
moderate (or essential lack of) running of the gravitational param-
eters. The running of the particle physics sector is then ruled, in
the NCG models, only by the RGE flow of the matter Lagrangian,
neglecting gravitational effects (with the caveat mentioned above
on the nonminimal coupling with the Higgs).

However, there are cosmological models that include the pos-
sibility of a much more drastic variability of the gravitational pa-
rameters in the very early universe, including in particular the in-
flationary epoch. Scenarios with variable gravitational constant had
been considered early on in Jordan-Brans-Dicke gravity, where the
variability happens through the nonminimal coupling of gravity
to a scalar field, and more recently within other modified gravity
models, and in terms of RGE running [21], as well as in the con-
text of primordial black holes with gravitational memory (see for
instance [5], or the recent [10] and references therein). Similarly,
a variable cosmological constant plays a role in various models
(see, for example [6,20,25,33]).

In [26], therefore, a different viewpoint on the effective grav-
itational and cosmological constant in the asymptotic expansion
of the spectral action in the NCG models is proposed, and a pos-
sible early universe model is investigated, which only covers the
epochs in between the unification and the electroweak eras, a pe-
riod which is expected to include the inflationary epoch. It is
shown that, if one considers an effective action where the gravi-
tational and cosmological constant are allowed to run according to
the RGE flow of the coefficients (2.6) through the expressions (2.5)
and with the assigned boundary conditions at unification, then one
recovers many of the scenarios predicted by other models with
variable gravitational and cosmological constant, as [10,17,22], and
several different mechanism for inflation, with predictions about
parameters such as the spectral index and tensor-to-scalar ratio.

Other recent cosmological applications of [13], such as those
in [9,27-31], follow the more conventional point of view on the
asymptotic expansion of the spectral action and the form of the

coefficients (2.5). These different viewpoints do not directly affect
in any way the results of the present Letter, and we only mention
them here for the reader’s information.

3. Effects of changing boundary conditions

The REAP program from [1] allows the user to adjust the
boundary conditions. These changes are generally made at Ay,
taken here to be 2 x 10'® GeV. As we understand that only fine
tuned initial conditions for the universe allowed its current form,
we expect the boundary conditions at unification energy to dras-
tically effect the development of our model parameters. We show
here, as an example, the different running of the coefficients g, b, c,
0, ¢ of (2.6) for the default boundary conditions and for the max-
imal mixing case. We also show explicitly the changing behavior
of the running of one of these coefficients when one of the pa-
rameters varies at unification, in order to illustrate the significant
dependence on the initial conditions.

3.1. The default boundary conditions
The boundary conditions at unification used in [26] are the

default boundary conditions of [1] (see Fig. 1). These have the fol-
lowing values:

1
)\(Aum'f) = E s
5.40391 x 106 0 0
Yu(Aynif) = 0 0.00156368 0
0 0 0.482902

For Yq(Aynif) = (¥ij) they have

y11 = 0.0000482105 — 3.382 x 10~ 1%},
y12 = 0.000104035 + 2.55017 x 10771,
y13 = 0.0000556766 + 6.72508 x 10751,
y21 = 0.000104035 — 2.55017 x 10771,
y22 = 0.000509279 + 3.38205 x 10~ 1},
y23 = 0.00066992 — 4.91159 x 10781,
y31 = 0.000048644 — 5.87562 x 107,
y32 = 0.000585302 + 4.29122 x 1078,
y33 = 0.0159991 — 4.21364 x 10~2%;,

2.83697 x 106 0 0
Ye(Aynir) = 0 0.000598755 0 ,
0 0 0.0101789
1 0 0
Yiu (Aunif) = (0 05 O ) ,
0 0 01

M(Aunif) =
—6.01345 x 1014
3.17771 x 1012
—6.35541 x 101

—6.35541 x 101!
5.99027 x 1012
—4.6418 x 1012

3.17771 x 1012
—1.16045 x 104
5.99027 x 1012

3.2. Maximal mixing example
To look at the maximal mixing case, we simply change Y, at

unification energy. With maximal mixing, our parameters will take
these values:
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Fig. 1. The running coefficients with default boundary conditions near top see-saw scale.

¢ =exp(2mi/3),

(1
Upmns (Aunif) = 3 ¢ 1 ¢
2 ¢ 1

From the available estimates of the neutrino masses, we get the
diagonal mass matrix

12.2 x 1079 0 0
Siry = — 0 170 x 106 0
) = 576 X B
0 0 15.5 x 10
Finally,

Yo = UbunsS11 Upians.

Using this form for Y, and the default boundary conditions
on all the other parameters, we can look at the running coef-
ficients. From Fig. 2, we see that there are vast differences in
the development of the parameters with this boundary condition
change.

3.3. Running coefficients with changing boundary conditions

It is possible to get even more interesting behavior by using
less standard boundary conditions. By changing just one parameter
we can examine how it affects the flow of our running param-
eters. A specific example is the Y, matrix. Using our standard
boundary conditions, this matrix is diagonal at unification energy.
We can adjust each of these elements on the diagonal, which
correspond to our neutrino masses, to affect our flow. Using an-
imation functions in mathematica, it is possible to get a nearly
continuous idea of how the flow of our parameters develops with
our boundary conditions. Fig. 3 illustrate such a development dis-
cretely.

In these diagrams, we notice the transition changing as the
upper neutrino mass varies. The sharp transition at the upper
see-saw scale comes from the program integrating out the heavy
neutrino at this scale. The second plot shows the behavior we ex-
pect from the standard conditions. In the first plot we can see
the upper and middle transitions are much closer together than
in our second plot. The final plot shows the transition at a much
higher energy, corresponding to the higher neutrino mass. From
these and other such plots, we learn how the running develops
independently by changing different parameters. Of course, chang-
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Fig. 2. The running coefficients with maximal mixing boundary conditions near top see-saw scale.

ing multiple parameters complicates this development and is dealt
with in more detail when matching specific boundary conditions.

4. Geometric constraints at unification

There are some constraints on the boundary conditions at unifi-
cation that are imposed by the underlying geometry of the model.
These are derived in [13], see also the discussion in Section 1
of [16]. We recall them here. Not all of these constraints are
satisfied by the default boundary conditions of [1], so a first im-
provement on the model of [26] is to identify choices of boundary
conditions that satisfy these constraints, and then, among them,
eliminate those that produce nonphysical predictions.

We show here how to obtain a choice of boundary conditions
that satisfy all the constraints by modifying the maximal mixing
conditions.

4.1. Constraint on A

A first constraint imposed by the geometry is on the value of
the Higgs self-coupling A at unification. This satisfies

72 b(Aunif)

ﬁ a(Aunif)z . @D

)\(Aunif) =

Looking at our maximal mixing boundary conditions we can
calculate that A(Ayupny) = 2.989. By setting it to this value at unifi-
cation energy in our flow we can ensure that this requirement is

met.
4.2. The a parameter and the Higgs vacuum

The model of [13] also relates the parameter a to the Higgs
vacuum through the relation

Jafo _ 2Mw

T g’
where g is the common value of the coupling constants at unifica-
tion and My is the W-boson mass. As My is directly proportional
to /a, this condition is a statement of the equality of fo and the
coupling constants at unification energy.

(4.2)

4.3. Constraint on ¢

The see-saw mechanism is implemented in [13] geometrically,
through the fact that the restriction of the Dirac operator D(Y) to
the subspace of Hr spanned by vg, vi, Vg, vy is of the form
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Fig. 3. Coefficient ¢ at the upper see-saw scale with the first term of Y, as 0.5, 1.0, and 1.5 respectively.

o M, ML o
M, O 0 0
Mg O 0 M)

0o 0 M, O

where M, is the neutrino mass matrix, see Lemma 1.225 of [16].

This imposes a constraint at unification on the coefficient ¢, of the
form

szAZm'

7 L < e(Aump) < —
By setting our Majorana mass matrix to 10 times its default value,
the inequality can be matched. In this particular case, the f, that
is used is in the range given in [26]. fp is calculated from the
coupling constants at unification energy.

, (4.3)

2
szAum'f

(4.4)

4.4. The mass relation at unification

Another prediction which is specific to the model of [13] is a
quadratic relation between the masses at unification scale, of the
form

2 2 2 2 —am2
> (md+mg+3mE+3m)|,_ Ay = SMiy | Ay (45)
generations
where m,,, me, my, and my are the masses of the leptons and
quarks, that is, the eigenvectors of the matrices 841, 8,1, 643 and

8,3, respectively, and My is the W-boson mass. We use the fact
that My is given as a function of the model parameters by

Ja

M = My. (4.6)
232
So, our equation becomes

Do (mimg+3mi3my)],_, =alacay.  (47)

generations

In our maximal mixing boundary conditions, we get

> (mlmg+3mg+3m)|,_, = 0.6698 = a1,
generations

(4.8)

This value of a, when converted to conventional units, gives a value
of My of 72 GeV. The expected value on My is around 80 GeV
so these boundary conditions are believable.

4.5. Modified maximal mixing

Thus, the conclusion of this analysis is that we obtain a choice
of boundary conditions that satisfies all the geometric constraints
of the geometric model at unification by using our maximal mix-
ing boundary conditions as described in the previous section, but
with a modified Majorana mass matrix and Higgs parameter, as ex-
plained here. We refer to the resulting boundary conditions as the
modified maximal mixing conditions.

We then need to check that, when we run the RGE flow with
these initial conditions at unification, we obtain values at low en-
ergies that are compatible, within order of magnitude, with the
required physical values. We discus this in the next section.

5. Low energy physical constraints

At the electroweak scale, physical data impose other boundary
conditions on some of the Yukawa matrices. Finding the unification
scale conditions that can also match these lower energy require-
ments is crucial to the theory.

We look at the conditions that are expected from physical data
and compare to the results from the running of the model pa-
rameters. We show that our modified maximal mixing boundary
conditions also satisfy the required constraints at low energy.

5.1. Boundary conditions at the electroweak scale

Current predictions at the electroweak scale tell us that the
CKM matrix at Ag can be taken to be of the form
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0.97419 0.2257 0.00359
0.2256 0.97334 0.0415
0.00874 0.0407 0.999133

Combined with

Uckm(Aog) =

0.00475 0 0
5@3) (Ag) = % 0 1 0
0 0 4.25

we get that the Yukawa parameters for the quarks are given by

Yi= U(:1<1\/1(A0)<3(¢3)(/\O)UCKM(AO)T
and
0.0024 0 0
Y = — .
WA= 0 125 0
0 0 173

Similarly, for the matrix of charged leptons, the known values
and low energy are

0.000511 0 0
Ye(Ao) = —= 0 0.1056 0
o 246 0 0 1.777

The conditions for the other parameters are all given at the uni-
fication scale.

5.2. Comparison of expected and measured values

We use the modified maximal mixing boundary conditions to
run the parameters and compare to the physical boundary condi-
tions at low energy. From this analysis, we get that the measured
Yukawa parameters for quarks are

0.0121 0 0
Y, measured (A0) = 546 0 0.128 0
0 4.032
and
0.0032 0 0
Yu, measured (A0) = 546 0 0.9223 0

0 0 248
For the charged leptons, we get the mass matrix
0.000699 0 0

0 0.147 0
0 0 2.51

Y od(Ag) = —
e,measmed( O) 246

Comparing these to the expected values at low energies, we see
that the order of magnitude and form of the matrices agree. While
the agreement is not exact, it seems that this is the closest we
can get while maintaining the geometric constraints of the model.
In order to make the agreement more exact, further fine tuning is
required.

6. Conclusions

In this Letter we investigate the RGE running of the coefficients
a, b, ¢, 0, ¢ of (2.6), which appear in the asymptotic expansion
of the spectral action functional of the noncommutative geometry
model of particle physics of [13]. The equations used in the renor-
malization group analysis are based on the beta function calcula-
tion of [1], for the extension of the Standard Model that includes
right-handed neutrinos with Majorana mass terms.

We showed that the running is very sensitive to the fine tuning
of the initial conditions at unification energy. We exhibited, as sig-
nificant examples, the different running for the default boundary
conditions of [1] and the maximal mixing conditions, and we also
showed the effect on the running of the coefficients of changing a
single parameter in the initial conditions at unification.

We then showed that a choice of boundary conditions based
on the maximal mixing, with a modified Majorana mass matrix
and Higgs parameter at unification, satisfies all the geometric con-
straints on the model described in [13], while at the same time
gives rise to low energy values that are, within order of magni-
tude, in agreement with the expected physical values.

We consider here the asymptotic expansion of the spectral ac-
tion in the range of energies from the unification scale down to
the electroweak scale. Within this range of energies, replacing the
nonperturbative form of the spectral action with its asymptotic ex-
pansion is justified, since the error term is at worse of the order
of A~2. However, it is known that interesting nonperturbative ef-
fects do arise in the spectral action, as shown in the recent results
of [12], for example, in the form of a slow-roll inflation potential.
Cosmological implications of these effects are discussed in [27]. In
terms of the RGE analysis considered here, we find that with our
choice of modified maximal mixing conditions at unification, one
obtains low energy values that are in agreement with the physi-
cal data within order of magnitude, which is not yet as good an
agreement as one could hope for. This may be an indication that
further fine tuning of the initial conditions may achieve a better
fit of the low energy data, or else that nonperturbative effects may
play a role. This is not completely unlikely, considering that the
nonperturbative effects identified in [12] essentially appear in the
coupling of Higgs and gravity and this in turn can affect the form
of the RGE running, as observed in [7,8,32]. These questions will
require further investigation.
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