Quantum statistical mechanics, *L*-series, Anabelian Geometry

Matilde Marcolli

Beijing, August 2013

joint work with Gunther Cornelissen

General philosophy:

- Zeta functions are counting devices: spectra of operators with spectral multiplicities, counting ideals with given norm, number of periodic orbits, rational points, etc.
- Zeta function does not determine object: isospectral manifolds, arithmetically equivalent number fields, isogeny
- but ... sometimes a family of zeta functions does
- Zeta functions occur as partition functions of physical systems

Number fields: finite extensions \mathbb{K} of the field of rational numbers \mathbb{Q} .

- zeta functions: Dedekind $\zeta_{\mathbb{K}}(s)$ (for \mathbb{Q} Riemann zeta)
- symmetries: $G_{\mathbb{K}} = Gal(\overline{\mathbb{K}}/\mathbb{K})$ absolute Galois group; abelianized $G^{ab}_{\mathbb{K}}$
- ullet adeles $\mathbb{A}_{\mathbb{K}}$ and ideles $\mathbb{A}_{\mathbb{K}}^*$, Artin map $\vartheta_{\mathbb{K}}:\mathbb{A}_{\mathbb{K}}^* o \mathcal{G}_{\mathbb{K}}^{ab}$
- topology: analogies with 3-manifolds (arithmetic topology)

How well do we understand them?

Analogy with manifolds: are there complete invariants?

Recovering a Number Field from invariants

• Dedekind zeta function $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$ arithmetic equivalence Gaßmann examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{3})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt[8]{3\cdot 2^4})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

• Adeles rings $\mathbb{A}_{\mathbb{K}} \cong \mathbb{A}_{\mathbb{L}}$ adelic equivalence \Rightarrow arithmetic equivalence; Komatsu examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{2\cdot 9})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt[8]{2^5\cdot 9})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

• Abelianized Galois groups: $G^{ab}_{\mathbb{K}} \cong G^{ab}_{\mathbb{L}}$ also not isomorphism; Onabe examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt{-2})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt{-3})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

• But ... absolute Galois groups $G_{\mathbb{K}} \cong G_{\mathbb{L}} \Rightarrow$ isomorphism $\mathbb{K} \cong \mathbb{L}$: Neukirch–Uchida theorem (Grothendieck's anabelian geometry)

Question: Can combine $\zeta_{\mathbb{K}}(s)$, $\mathbb{A}_{\mathbb{K}}$ and $G^{ab}_{\mathbb{K}}$ to something as strong as $G_{\mathbb{K}}$ that determines isomorphism class of \mathbb{K} ?

Answer: Yes! Combine as a Quantum Statistical Mechanical system Main Idea:

- Construct a QSM system associated to a number field
- Time evolution and equilibrium states at various temperatures
- Low temperature states are related to L-series
- Extremal equilibrium states determine the system
- System recovers the number field up to isomorphism

Purely number theoretic consequence:

An identity of all *L*-functions with Großencharakter gives an isomorphism of number fields

Quantum Statistical Mechanics (minimalist sketch)

- \mathscr{A} unital C^* -algebra of observables
- σ_t time evolution, $\sigma: \mathbb{R} \to \operatorname{Aut}(\mathscr{A})$
- states $\omega: \mathscr{A} \to \mathbb{C}$ continuous, normalized $\omega(1) = 1$, positive

$$\omega(a^*a) \geq 0$$

- equilibrium states $\omega(\sigma_t(a)) = \omega(a)$ all $t \in \mathbb{R}$
- representation $\pi: \mathscr{A} \to \mathscr{B}(\mathscr{H})$, Hamiltonian H

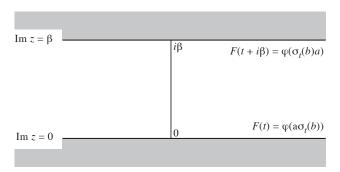
$$\pi(\sigma_t(a)) = e^{itH}\pi(a)e^{-itH}$$

- partition function $Z(\beta) = \text{Tr}(e^{-\beta H})$
- Gibbs states (equilibrium, inverse temperature β):

$$\omega_{\beta}(a) = \frac{\operatorname{Tr}(\pi(a)e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}$$

• Generalization of Gibbs states: KMS states (Kubo–Martin–Schwinger) $\forall a,b \in A, \exists$ holomorphic $F_{a,b}$ on strip $I_{\beta} = \{0 < \text{Im } z < \beta\}$, bounded continuous on ∂I_{β} ,

$$F_{a,b}(t) = \omega(a\sigma_t(b))$$
 and $F_{a,b}(t+i\beta) = \omega(\sigma_t(b)a)$



• Fixed $\beta > 0$: KMS $_{\beta}$ state convex simplex: extremal states (like points in NCG)

Isomorphism of QSM systems: $\varphi: (\mathscr{A}, \sigma) \to (\mathscr{B}, \tau)$

$$\varphi: \mathscr{A} \overset{\simeq}{\to} \mathscr{B}, \quad \varphi \circ \sigma = \tau \circ \varphi$$

C*-algebra isomorphism intertwining time evolution

 Algebraic subalgebras A[†] ⊂ A and B[†] ⊂ B: stronger condition: QSM isomorphism also preserves "algebraic structure"

$$\varphi: \mathscr{A}^{\dagger} \stackrel{\simeq}{\to} \mathscr{B}^{\dagger}$$

• Pullback of a state: $\varphi^*\omega(a) = \omega(\varphi(a))$

Why QSM and Number theory? (a historical note)

1995: Bost–Connes QSM system $\mathscr{A}_{BC} = C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}$

• generators e(r), $r \in \mathbb{Q}/\mathbb{Z}$ and μ_n , $n \in \mathbb{N}$ and relations

$$\mu_n \mu_m = \mu_m \mu_n, \quad \mu_m^* \mu_m = 1$$
 $\mu_n \mu_m^* = \mu_m^* \mu_n \quad \text{if} \quad (n, m) = 1$
 $e(r+s) = e(r)e(s), \quad e(0) = 1$
 $\mu_n e(r) \mu_n^* = \frac{1}{n} \sum_{ns=r} e(s)$

• time evolution $\sigma_t(f) = f$ and $\sigma_t(\mu_n) = n^{it}\mu_n$

• representations $\pi_{\rho}:\mathscr{A}_{BC}\to\ell^2(\mathbb{N}),\,\rho\in\hat{\mathbb{Z}}^*$

$$\pi_{\rho}(\mu_{n})\epsilon_{m}=\epsilon_{nm}, \quad \pi_{\rho}(e(r))\epsilon_{m}=\zeta_{r}^{m}\epsilon_{m}$$

$$\zeta_r = \rho(e(r))$$
 root of unity

• Hamiltonian $H\epsilon_m = \log(m) \epsilon_m$, partition function

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta_{\mathbb{Q}}(\beta)$$

Riemann zeta function

- Low temperature KMS states: L-series normalized by zeta
- Galois action on zero temperature states (class field theory)

Further generalizations: other QSM's with similar properties

- Bost-Connes as GL₁-case of QSM for moduli spaces of Q-lattices up to commensurability (Connes-M.M. 2006)
 - \Rightarrow GL₂-case, modular curves and modular functions
- QSM systems for imaginary quadratic fields (class field theory):
 Connes-M.M.-Ramachandran
- B.Jacob and Consani-M.M.: QSM systems for function fields (Weil and Goss L-functions as partition functions)
- Ha-Paugam: QSM systems for Shimura varieties ⇒ QSM systems for arbitrary number fields (Dedekind zeta function) further studied by Laca-Larsen-Neshveyev

We use these QSM systems for number fields

The Noncommutative Geometry viewpoint:

- Equivalence relation \mathscr{R} on X: quotient $Y = X/\mathscr{R}$. Even for very good $X \Rightarrow X/\mathscr{R}$ pathological!
- Functions on the quotient $\mathscr{A}(Y) := \{ f \in \mathscr{A}(X) \mid f\mathscr{R} \text{invariant} \}$ \Rightarrow often too few functions: $\mathscr{A}(Y) = \mathbb{C}$ only constants
- NCG: $\mathscr{A}(Y)$ noncommutative algebra $\mathscr{A}(Y) := \mathscr{A}(\Gamma_{\mathscr{R}})$ functions on the graph $\Gamma_{\mathscr{R}} \subset X \times X$ of the equivalence relation with involution $f^*(x,y) = \overline{f(y,x)}$ and convolution product

$$(f_1 * f_2)(x, y) = \sum_{x \sim u \sim y} f_1(x, u) f_2(u, y)$$

• $\mathscr{A}(\Gamma_{\mathscr{R}})$ associative noncommutative $\Rightarrow Y = X/\mathscr{R}$ noncommutative space (as good as X to do geometry, but new phenomena: time evolutions, thermodynamics, quantum phenomena)

In the various cases QSM system semigroup action on a space: Bost–Connes revisited (Connes–M.M. 2006)

• \mathbb{Q} -lattices: (Λ, ϕ) \mathbb{Q} -lattice in \mathbb{R}^n : lattice $\Lambda \subset \mathbb{R}^n$ + group homomorphism

$$\phi: \mathbb{Q}^n/\mathbb{Z}^n \longrightarrow \mathbb{Q}\Lambda/\Lambda$$

- Commensurability: $(\Lambda_1, \phi_1) \sim (\Lambda_2, \phi_2)$ iff $\mathbb{Q}\Lambda_1 = \mathbb{Q}\Lambda_2$ and $\phi_1 = \phi_2 \mod \Lambda_1 + \Lambda_2$
- ullet Quotient $\mathbb Q$ -lattices/Commensurability \Rightarrow NC space
- ullet 1-dimensional $\mathbb Q$ -lattices up to scaling $C(\hat{\mathbb Z})$

$$(\Lambda, \phi) = (\lambda \, \mathbb{Z}, \lambda \, \rho) \ \lambda > 0$$

$$\rho \in \operatorname{Hom}(\mathbb{Q}/\mathbb{Z},\mathbb{Q}/\mathbb{Z}) = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}$$

• with action of semigroup N commensurability

$$\alpha_n(f)(\rho) = f(n^{-1}\rho)$$
 or zero

 $C(\hat{\mathbb{Z}})
times \mathbb{N}$ Bost–Connes algebra: moduli space

QSM systems for number fields: algebra and time evolution (A, σ)

$$A_{\mathbb{K}} := \mathit{C}(\mathit{X}_{\mathbb{K}})
times \mathit{J}_{\mathbb{K}}^{+}, \ \ ext{with} \ \ \mathit{X}_{\mathbb{K}} := \mathit{G}_{\mathbb{K}}^{ab} imes \hat{\mathscr{O}}_{\mathbb{K}}^{*}, \ \hat{\mathscr{O}}_{\mathbb{K}},$$

 $\hat{\mathscr{O}}_{\mathbb{K}}=$ ring of finite integral adeles, $J_{\mathbb{K}}^+=$ is the semigroup of ideals, acting on $X_{\mathbb{K}}$ by Artin reciprocity

• Crossed product algebra $A_{\mathbb{K}}:=C(X_{\mathbb{K}})\rtimes J_{\mathbb{K}}^+$, generators and relations: $f\in C(X_{\mathbb{K}})$ and $\mu_{\mathfrak{n}},\,\mathfrak{n}\in J_{\mathbb{K}}^+$

$$\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^* = e_{\mathfrak{n}}; \ \mu_{\mathfrak{n}}^*\mu_{\mathfrak{n}} = 1; \ \rho_{\mathfrak{n}}(f) = \mu_{\mathfrak{n}}f\mu_{\mathfrak{n}}^*;$$

$$\sigma_{\mathfrak{n}}(f)e_{\mathfrak{n}} = \mu_{\mathfrak{n}}^*f\mu_{\mathfrak{n}}; \quad \sigma_{\mathfrak{n}}(\rho_{\mathfrak{n}}(f)) = f; \quad \rho_{\mathfrak{n}}(\sigma_{\mathfrak{n}}(f)) = fe_{\mathfrak{n}}$$

• Artin reciprocity map $\vartheta_{\mathbb{K}}: \mathbb{A}_{\mathbb{K}}^* \to G_{\mathbb{K}}^{ab}$, write $\vartheta_{\mathbb{K}}(\mathfrak{n})$ for ideal \mathfrak{n} seen as idele by non-canonical section s of

$$\mathbb{A}_{\mathbb{K},f}^* \xrightarrow{\hspace{1cm}} J_{\mathbb{K}} \hspace{1cm} : \hspace{1cm} (x_{\mathfrak{p}})_{\mathfrak{p}} \mapsto \prod_{\mathfrak{p} \hspace{1cm} \text{finite}} \mathfrak{p}^{v_{\mathfrak{p}}(x_{\mathfrak{p}})}$$

ullet semigroup action: $\mathfrak{n}\in J_{\mathbb{K}}^+$ acting on $f\in C(X_{\mathbb{K}})$ as

$$\rho_{\mathfrak{n}}(f)(\gamma,\rho) = f(\vartheta_{\mathbb{K}}(\mathfrak{n})\gamma, s(\mathfrak{n})^{-1}\rho)e_{\mathfrak{n}},$$

 $e_{\mathfrak{n}} = \mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^*$ projector onto $[(\gamma, \rho)]$ with $s(\mathfrak{n})^{-1}\rho \in \hat{\mathscr{O}}_{\mathbb{K}}$

partial inverse of semigroup action:

$$\sigma_{\mathfrak{n}}(f)(x) = f(\mathfrak{n} * x) \quad \text{with} \quad \mathfrak{n} * [(\gamma, \rho)] = [(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1} \gamma, \mathfrak{n} \rho)]$$

• Time evolution $\sigma_{\mathbb{K}}$ acts on $J_{\mathbb{K}}^+$ as a phase factor $N(\mathfrak{n})^{it}$

$$\sigma_{\mathbb{K},t}(f) = f$$
 and $\sigma_{\mathbb{K},t}(\mu_{\mathfrak{n}}) = N(\mathfrak{n})^{it} \mu_{\mathfrak{n}}$

for
$$f\in \mathit{C}(\mathcal{G}^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}}\hat{\mathscr{O}}_{\mathbb{K}})$$
 and for $\mathfrak{n}\in J^+_{\mathbb{K}}$

Algebraic structure: covariance algebra

Algebraic subalgebra $A_{\mathbb K}^\dagger$ of C^* -algebra $A_{\mathbb K}:=C(X_{\mathbb K})\rtimes J_{\mathbb K}^+$:

 $A_{\mathbb{K}}^{\dagger}$ unital, non-involutive algebra generated by $C(X_{\mathbb{K}})$ and the $\mu_{\mathfrak{n}}$, $\mathfrak{n} \in J_{\mathbb{K}}^{+}$ (but not $\mu_{\mathfrak{n}}^{*}$), with relations

(using
$$\mu_n^* \mu_n = 1$$
) $f \mu_n = \mu_n \sigma_n(f)$, $\mu_n f = \rho_n(f) \mu_n$

Comment: presence of an algebraic subalgebra also in previous examples of arithmetic QSM

Comment: similar NCG interpretation as moduli spaces of \mathbb{K} -lattices up to commensurability

QSM isomorphism: two number fields $\mathbb K$ and $\mathbb L$

$$\varphi: \mathbf{A}_{\mathbb{K}} \overset{\sim}{ o} \mathbf{A}_{\mathbb{L}}$$

C*-algebra isomorphism

$$\varphi \circ \sigma_{\mathbb{K}} = \sigma_{\mathbb{L}} \circ \varphi$$

intertwines the time evolutions

$$\varphi: \mathbf{A}_{\mathbb{K}}^{\dagger} \stackrel{\sim}{\to} \mathbf{A}_{\mathbb{L}}^{\dagger}$$

preserves the covariance algebras

Theorem The following are equivalent:

- lacktriangledown $\mathbb{K}\cong\mathbb{L}$ are isomorphic number fields
- Quantum Statistical Mechanical systems are isomorphic

$$(A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}})$$

 C^* -algebra isomorphism $\varphi:A_{\mathbb K}\to A_{\mathbb L}$ compatible with time evolution, $\sigma_{\mathbb L}\circ \varphi=\varphi\circ\sigma_{\mathbb K}$ and covariance $\varphi:A_{\mathbb K}^\dagger\overset{\sim}{\to}A_{\mathbb L}^\dagger$

3 There is a group isomorphism $\psi: \hat{G}^{ab}_{\mathbb{K}} \to \hat{G}^{ab}_{\mathbb{L}}$ of Pontrjagin duals of abelianized Galois groups with

$$L_{\mathbb{K}}(\chi, s) = L_{\mathbb{L}}(\psi(\chi), s)$$

identity of all L-functions with Großencharakter

Comments:

- Generalization of arithmetic equivalence:
 - $\chi=$ 1 gives $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$
- Now also a purely number theoretic proof of (3) ⇒ (1) available by Hendrik Lenstra and Bart de Smit
- L-functions $L(\chi, s)$, for $s = \beta > 1$ is product of $\zeta_{\mathbb{K}}(\beta)$ and evaluation of an extremal KMS $_{\beta}$ state of the QSM system $(A_{\mathbb{K}}, \sigma_{\mathbb{K}})$ at a test function $f_{\chi} \in C(X_{\mathbb{K}})$

Scheme of proof: $(2) \Rightarrow (1)$

- ullet QSM isomorphism \Rightarrow arithmetic equivalence $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$
- $A^\dagger_{\mathbb K}\simeq A^\dagger_{\mathbb L}$ gives homeomorphism $X_{\mathbb K}\simeq X_{\mathbb L}$ and compatible semigroup isomorphism $J^+_{\mathbb K}\simeq J^+_{\mathbb L}$
- ullet Group isomorphism $G^{ab}_{\mathbb K} \simeq G^{ab}_{\mathbb L}$
- This preserves ramification \Rightarrow isomorphism of local units $\hat{\mathcal{O}}_{\wp}^* \overset{\sim}{\to} \hat{\mathcal{O}}_{\wp(\wp)}^*$ and products $\varphi: \hat{\mathcal{O}}_{\mathbb{K}}^* \overset{\sim}{\to} \hat{\mathcal{O}}_{\mathbb{L}}^*$
- $\bullet \ \, \mathsf{Semigroup} \ \, \mathsf{isomorphism} \ \, \mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}} \stackrel{\sim}{\to} \mathbb{A}_{\mathbb{L},f}^* \cap \hat{\mathscr{O}}_{\mathbb{L}} \\$
- Endomorphism action of these \Rightarrow inner: $\mathscr{O}_{\mathbb{K},+}^{\times} \overset{\sim}{\to} \mathscr{O}_{\mathbb{L},+}^{\times}$ (tot pos non-zero integers)
- Recover additive structure (mod any totally split prime) $\varphi(x + y) = \varphi(x) + \varphi(y) \mod p$

$$\Rightarrow \mathscr{O}_{\mathbb{K}} \simeq \mathscr{O}_{\mathbb{L}} \Rightarrow \mathbb{K} \simeq \mathbb{L}$$

Scheme of proof: $(2) \Rightarrow (3)$

- ullet QSM isomorphism $\Rightarrow G^{ab}_{\mathbb{K}} \simeq G^{ab}_{\mathbb{L}}$ preserving ramification (as above)
- character groups $\psi:\hat{G}^{ab}_{\mathbb{K}}\stackrel{\sim}{\to}\hat{G}^{ab}_{\mathbb{L}}$
- character χ to function $f_{\chi} \in C(X_{\mathbb{K}})$, matching $\varphi(f_{\chi}) = f_{\psi(\chi)}$
- $\chi(\vartheta_{\mathbb{K}}(\mathfrak{n})) = \psi(\chi)(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n})))$
- Matching KMS $_{eta}$ states: $\omega_{\gamma,eta}^{\mathbb{L}}(arphi(f))=\omega_{\widetilde{\gamma},eta}^{\mathbb{K}}(f)$
- using arithmetic equivalence: $L_{\mathbb{K}}(\chi, s) = L_{\mathbb{L}}(\psi(\chi), s)$

QSM isomorphism ⇒ matching of L-series

Scheme of proof: $(3) \Rightarrow (1)$

- ullet need compatible isomorphisms $J_{\mathbb K}^+\stackrel{\sim}{ o} J_{\mathbb L}^+$ and $C(X_{\mathbb K})\stackrel{\sim}{ o} C(X_{\mathbb L})$
- know same number of primes
 ρ above same p with inertia degree f want to match compatibly with Artin map
- use combinations of *L*-series as counting functions: on finite quotients $\pi_G: G^{ab}_{\mathbb{K}} \to G$

$$\sum_{\substack{\mathfrak{n}\in J_{\mathbb{K}}^+\\N_{\mathbb{K}}(\mathfrak{n})}}\left(\sum_{\widehat{G}}\chi(\pi_G(\gamma)^{-1})\chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))\right)=b_{\mathbb{K},G,n}(\gamma)$$

$$b_{\mathbb{K},G,n}(\gamma)=\#\{\mathfrak{n}\in J_{\mathbb{K}}^{+}:\ N_{\mathbb{K}}(\mathfrak{n})=n\ ext{and}\ \pi_{G}(\vartheta_{\mathbb{K}}(\mathfrak{n}))=\pi_{G}(\gamma)\}$$

• For $G^{ab}_{\mathbb{L},n}=$ Gal of max ab ext unram over n, get unique $\mathfrak{m}\in J^+_{\mathbb{L}}$ with $N_{\mathbb{L}}(\mathfrak{m})=N_{\mathbb{K}}(\mathfrak{n})$ and

$$\pi_{G_{\mathbb{K},n}^{ab}}(\vartheta_{\mathbb{L}}(\mathfrak{m})) = \pi_{G_{\mathbb{L},n}^{ab}}((\psi^{-1})^*(\vartheta_{\mathbb{K}}(\mathfrak{n})))$$

• Use stratification of $X_{\mathbb{K}}$ to extend $\psi: C(G_{\mathbb{K}}^{ab}) \stackrel{\sim}{\to} C(G_{\mathbb{L}}^{ab})$ to $\varphi: C(X_{\mathbb{K}}) \stackrel{\sim}{\to} C(X_{\mathbb{L}})$ compatibly with semigroup actions

One more equivalent formulation: \mathbb{K} and \mathbb{L} isomorphic iff \exists

- ullet topological group isomorphism $\hat{\psi}:G^{ab}_{\mathbb{K}}\stackrel{\sim}{ o}G^{ab}_{\mathbb{L}}$
- ullet semigroup isomorphism $\Psi: \emph{J}_{\mathbb{K}}^+ \overset{\sim}{ o} \emph{J}_{\mathbb{L}}^+$

with compatibility conditions

- ullet Norm compatibility: $N_{\mathbb{L}}(\Psi(\mathfrak{n}))=N_{\mathbb{K}}(\mathfrak{n})$ for all $\mathfrak{n}\in J_{\mathbb{K}}^+$
- Artin map compatibility: for every finite abelian extension $\mathbb{K}' = (\mathbb{K}^{ab})^N/\mathbb{K}$, with $N \subset G^{ab}_{\mathbb{K}}$: prime \mathfrak{p} of \mathbb{K} unramified in $\mathbb{K}' \Rightarrow$ prime $\Psi(\mathfrak{p})$ unramified in $\mathbb{L}' = (\mathbb{L}^{ab})^{\hat{\psi}(N)}/\mathbb{L}$ and

$$\hat{\psi}(\operatorname{Frob}_{\mathfrak{p}}) = \operatorname{Frob}_{\Psi(\mathfrak{p})}$$

Conclusions

- Is Quantum Statistical Mechanics a "noncommutative version" of anabelian geometry?
- What about function fields? QSM systems exist, purely NT proof seems not to work, but this QSM proof may work

General philosophy *L*-functions as coordinates determining underlying geometry

Examples:

- Cornelissen-M.M.: zeta functions of a spectral triple on limit set of Schottky uniformized Riemann surface determine conformal structure
- Cornelissen

 –J.W.de Jong: family of zeta functions of spectral triple of Riemannian manifold determine manifold up to isometry

Anabelian versus Noncommutative

- Anabelian geometry describes a number field $\mathbb K$ in terms of the absolute Galois group $G_{\mathbb K}$
- But... no description of $G_{\mathbb{K}}$ in terms of internal data of \mathbb{K} only (Kronecker's hope)
- Langlands: relate to internal data via automorphic forms
- For abelian extensions yes: $G_{\mathbb{K}}^{ab}$ in terms of internal data: adeles, ideles (class field theory)
- But... $G^{ab}_{\mathbb{K}}$ does not recover \mathbb{K}
- Noncommutative geometry replaces $G_{\mathbb{K}}$ with the QSM system $(A_{\mathbb{K}}, \sigma_{\mathbb{K}})$ to reconstruct \mathbb{K}
- $A_{\mathbb{K}} = C(X_{\mathbb{K}}) \rtimes J_{\mathbb{K}}^+$ is built only from internal data of \mathbb{K} (primes, adeles, $G_{\mathbb{K}}^{ab}$)

More details on the proof of (2) \Rightarrow (1): Stratification of $X_{\mathbb{K}}$

$$oldsymbol{\hat{\mathscr{O}}}_{\mathbb{K},n}:=\prod_{\mathfrak{p}\mid n}\dot{\hat{\mathscr{O}}}_{\mathbb{K},\mathfrak{p}}$$
 and

$$X_{\mathbb{K},n} := G^{\mathrm{ab}}_{\mathbb{K}} imes_{\hat{\mathcal{O}}_{\mathbb{K}}^*} \hat{\mathcal{O}}_{\mathbb{K},n} \quad \mathrm{with} \quad X_{\mathbb{K}} = \varinjlim_{n} X_{\mathbb{K},n}$$

Topological groups

$$\mathit{G}^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}}\hat{\mathscr{O}}^*_{\mathbb{K},n}\simeq \mathit{G}^{ ext{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}(\hat{\mathscr{O}}^*_{\mathbb{K},n})=\mathit{G}^{ ext{ab}}_{\mathbb{K},n}$$

Gal of max ab ext *unramified* at primes dividing *n*

- $J_{\mathbb{K},n}^+ \subset J_{\mathbb{K}}^+$ subsemigroup gen by prime ideals dividing n
- Decompose $X_{\mathbb{K},n} = X^1_{\mathbb{K},n} \coprod X^2_{\mathbb{K},n}$

$$X^1_{\mathbb{K},n} := \bigcup_{\mathfrak{n} \in J^+_{\mathbb{K},n}} \vartheta_{\mathbb{K}}(\mathfrak{n}) G^{\mathrm{ab}}_{\mathbb{K},n} \ \ \mathrm{and} \ \ X^2_{\mathbb{K},n} := \bigcup_{\mathfrak{p} \mid n} Y_{\mathbb{K},\mathfrak{p}}$$

where $Y_{\mathbb{K},\mathfrak{p}}=\{(\gamma,\rho)\in X_{\mathbb{K},n}:
ho_{\mathfrak{p}}=0\}$

- $X^1_{\mathbb{K},n}$ dense in $X_{\mathbb{K},n}$ and $X^2_{\mathbb{K},n}$ has $\mu_{\mathbb{K}}$ -measure zero
- Algebra $C(X_{\mathbb{K},n})$ is generated by functions

$$f_{\chi,\mathfrak{n}}\,:\,\gamma\mapsto\chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))\chi(\gamma),\quad\chi\in\widehat{G}^{\mathtt{ab}}_{\mathbb{K},n},\quad\mathfrak{n}\in\mathcal{J}^+_{\mathbb{K},n}$$

First Step of (2)
$$\Rightarrow$$
 (1): $(A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}}) \Rightarrow \zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$

• QSM (A, σ) and representation $\pi : A \to B(\mathcal{H})$ gives Hamiltonian

$$\pi(\sigma_t(a)) = e^{itH}\pi(a)e^{-itH}$$
 $H_{\sigma_{\mathbb{K}}}\varepsilon_{\mathfrak{n}} = \log N(\mathfrak{n}) \varepsilon_{\mathfrak{n}}$

Partition function $\mathscr{H}=\ell^2(J_{\mathbb{K}}^+)$

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta_{\mathbb{K}}(\beta)$$

- Isomorphism $\varphi: (A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}}) \Rightarrow$ homeomorphism of sets of extremal KMS $_{\beta}$ states by pullback $\omega \mapsto \varphi^*(\omega)$
- KMS $_{\beta}$ states for $(A_{\mathbb{K}}, \sigma_{\mathbb{K}})$ classified [LLN]: $\beta > 1$

$$\omega_{\gamma,\beta}(f) = \frac{1}{\zeta_{\mathbb{K}}(\beta)} \sum_{\mathfrak{m} \in J_{+}^{+}} \frac{f(\vartheta_{\mathbb{K}}(\mathfrak{m})\gamma)}{N_{\mathbb{K}}(\mathfrak{m})^{\beta}}$$

parameterized by
$$\gamma \in \textit{G}^{\text{ab}}_{\mathbb{K}}/\vartheta_{\mathbb{K}}(\hat{\mathscr{O}}_{\mathbb{K}}^{*})$$

• Comparing GNS representations of $\omega \in \mathrm{KMS}_{\beta}(A_{\mathbb{L}}, \sigma_{\mathbb{L}})$ and $\varphi^*(\omega) \in \mathrm{KMS}_{\beta}(A_{\mathbb{K}}, \sigma_{\mathbb{K}})$ find Hamiltonians

$$H_{\mathbb{K}} = U H_{\mathbb{L}} U^* + \log \lambda$$

for some U unitary and $\lambda \in \mathbb{R}_+^*$

Then partition functions give

$$\zeta_{\mathbb{L}}(\beta) = \lambda^{-\beta} \zeta_{\mathbb{K}}(\beta)$$

identity of Dirichlet series

$$\sum_{n\geq 1} \frac{a_n}{n^{\beta}} \text{ and } \sum_{n\geq 1} \frac{b_n}{(\lambda n)^{\beta}}$$

with $a_1 = b_1 = 1$, taking limit as $\beta \to \infty$

$$a_1 = \lim_{\beta \to \infty} b_1 \lambda^{-\beta} \quad \Rightarrow \lambda = 1$$

Conclusion of first step: arithmetic equivalence $\zeta_{\mathbb{L}}(\beta) = \zeta_{\mathbb{K}}(\beta)$

Consequences:

From arithmetic equivalence already know \mathbb{K} and \mathbb{L} have same degree over \mathbb{Q} , discriminant, normal closure, unit groups, archimedean places.

But... not class group (or class number)

Second Step of (2) \Rightarrow (1): unraveling the crossed product

$$\varphi: C(X_{\mathbb{K}}) \rtimes J_{\mathbb{K}}^{+} \stackrel{\simeq}{\to} C(X_{\mathbb{L}}) \rtimes J_{\mathbb{L}}^{+} \text{ with } \sigma_{\mathbb{L}} \circ \varphi = \varphi \circ \sigma_{\mathbb{K}}$$

and preserving the covariance algebra $arphi: A^\dagger_{\mathbb{K}} \overset{\sim}{ o} A^\dagger_{\mathbb{L}}$

- Restrict to finitely many isometries μ_{\wp} , $\mathcal{N}_{\mathbb{K}}(\wp) = p$
- $A_{\mathbb{K}}$ generated by $\mu_{\mathfrak{n}} f \mu_{\mathfrak{m}}^*$; in $A_{\mathbb{K}}^{\dagger}$ only $\mu_{\mathfrak{n}} f$
- Eigenspaces of time evolution in $A_{\mathbb{K}}^{\dagger}$ preserved: so $C(X_{\mathbb{K}})\stackrel{\sim}{\to} C(X_{\mathbb{L}})$ and $\varphi(\mu_{\mathfrak{n}})=\sum \mu_{\mathfrak{m}} f_{\mathfrak{n},\mathfrak{m}}$
- Commutators $[f, \mu_{\mathfrak{n}}] = (f \rho_{\mathfrak{n}}(f))\mu_{\mathfrak{n}}$: match maximal ideals (mod commutators) so that homeomorphism $\Phi: X_{\mathbb{K}} \stackrel{\sim}{\to} X_{\mathbb{L}}$ compatible with semigroup actions $\gamma_{\alpha_{x}(\mathfrak{n})}(\Phi(x)) = \Phi(\gamma_{\mathfrak{n}}(x))$ with locally constant $\alpha_{x}: J_{\mathbb{K}}^{+} \to J_{\mathbb{L}}^{+}$ (that is, $\varphi(\mu_{\mathfrak{n}}) = \sum \delta_{\mathfrak{m},\alpha_{x}(\mathfrak{n})}\mu_{\mathfrak{n}}$)
- $\alpha_{\mathsf{X}} = \alpha$ constant: know [LLN] ergodic action of $J_{\mathbb{K}}^+$ on $X_{\mathbb{K}}$, level sets would be clopen invariant subsets

Third Step of (2) \Rightarrow (1): isomorphism $G^{ab}_{\mathbb{K}} \overset{\sim}{ o} G^{ab}_{\mathbb{L}}$

- ullet Projectors $e_{\mathbb{K},\mathfrak{n}}=\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^*$ mapped to projector $e_{\mathbb{L},arphi(\mathfrak{n})}$
- ullet Fix $\mathfrak{m}\in J_{\mathbb{K}}^+$ and $\hat{\mathscr{O}}_{\mathbb{K},\mathfrak{m}}=\prod_{\mathfrak{p}\mid\mathfrak{m}}\hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}$, then

$$V_{\mathbb{K},\mathfrak{m}}:=\bigcap_{(\mathfrak{m},\mathfrak{n})=1}\text{Range}(\textbf{\textit{e}}_{\mathbb{K},\mathfrak{n}})=\textbf{\textit{G}}_{\mathbb{K}}^{ab}\times_{\hat{\mathcal{O}}_{\mathbb{K}}^*}\{(0,\ldots,0,\hat{\mathcal{O}}_{\mathbb{K},\mathfrak{m}},0,\ldots,0)\}$$

$$\begin{split} \Phi(V_{\mathbb{K},\mathfrak{m}}) &= \bigcap_{(\mathfrak{m},\mathfrak{n})=1} \Phi(\text{Range}(\boldsymbol{e}_{\mathbb{K},\mathfrak{n}})) = \bigcap_{(\varphi(\mathfrak{m}),\varphi(\mathfrak{n}))=1} \text{Range}(\boldsymbol{e}_{\mathbb{L},\varphi(\mathfrak{n})}) \\ &= \boldsymbol{G}^{ab}_{\mathbb{L}} \times_{\hat{\mathcal{O}}^*} \{(0,\ldots,0,\hat{\mathcal{O}}_{\mathbb{L},\varphi(\mathfrak{m})},0,\ldots,0)\} = V_{\mathbb{L},\varphi(\mathfrak{m})} \end{split}$$

• 1_m integral adele = 1 at the prime divisors of m, zero elsewhere

$$H_{\mathbb{K},\mathfrak{m}}:=G^{ab}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}}\left\{1_{\mathfrak{m}}
ight\}\subseteq X_{\mathbb{K}}\overset{arphi}{
ightarrow}G^{ab}_{\mathbb{L}} imes_{\hat{\mathscr{O}}^*_{\mathbb{L}}}\left\{y_{arphi(\mathfrak{m})}
ight\}\subseteq X_{\mathbb{L}}$$

- check that $y \in \hat{\mathscr{O}}_{\mathbb{L},\mathfrak{m}}^*$ is a unit
- then $H_{\mathbb{K},\mathfrak{m}}$ classes $[(\gamma,1_{\mathfrak{m}})] \sim [(\gamma',1_{\mathfrak{m}})] \iff \exists u \in \hat{\mathscr{O}}_{\mathbb{K}}^*$ with $\gamma' = \vartheta_{\mathbb{K}}(u)^{-1}\gamma$ and $1_{\mathfrak{m}} = u1_{\mathfrak{m}}$

 \bullet then for $\mathring{G}^{ab}_{\mathbb{K},\mathfrak{m}}$ Gal of max ab ext unram *outside* prime div of \mathfrak{m}

$$\mathcal{H}_{\mathbb{K},\mathfrak{m}}\cong \mathcal{G}^{\mathsf{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}\left(\prod_{\mathfrak{q}
eq\mathfrak{m}}\hat{\mathscr{O}}^*_{\mathfrak{q}}
ight)\cong\mathring{\mathcal{G}}^{\mathsf{ab}}_{\mathbb{K},\mathfrak{m}}$$

- $\mathring{G}^{ab}_{\mathbb{K},\mathfrak{m}}$ has dense subgroup gen by $\vartheta_{\mathbb{K}}(\mathfrak{n})$, ideals coprime to \mathfrak{m} \Rightarrow $\mathcal{H}_{\mathbb{K},\mathfrak{m}}$ gen by these $\gamma_{\mathfrak{n}}:=[(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1},\mathbf{1}_{\mathfrak{m}})]$
- with $\mathbf{1}_{\mathfrak{m}} = [(1, 1_{\mathfrak{m}})]$ and $\Phi(\mathbf{1}_{\mathfrak{m}}) = [(x_{\mathfrak{m}}, y_{\mathfrak{m}})]$ get

$$\Phi(\gamma_{\mathfrak{n}_1} \cdot \gamma_{\mathfrak{n}_2}) = \Phi([(\vartheta_{\mathbb{K}}(\mathfrak{n}_1 \, \mathfrak{n}_2)^{-1}, \mathbf{1}_{\mathfrak{m}})])$$

$$=\Phi([(\vartheta_{\mathbb{K}}(\mathfrak{n}_1\,\mathfrak{n}_2)^{-1},\mathfrak{n}_1\,\mathfrak{n}_2\,1_{\mathfrak{m}})]) \text{ (since } \mathfrak{n}_1,\mathfrak{n}_2 \text{ coprime to } \mathfrak{m})$$

$$=\Phi(\mathfrak{n}_1\,\mathfrak{n}_2*\mathbf{1}_{\mathfrak{m}})=\varphi(\mathfrak{n}_1\,\mathfrak{n}_2)*\Phi(\mathbf{1}_{\mathfrak{m}})=[(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n}_1\,\mathfrak{n}_2))^{-1}X_{\mathfrak{m}},\varphi(\mathfrak{n}_1\,\mathfrak{n}_2)Y_{\mathfrak{m}})]$$

• $\lim_{m \to +\infty} \mathbf{1}_m = 1 \Rightarrow \lim_{m \to +\infty} \Phi(\mathbf{1}_m) = \Phi(1)$ and get

$$\widetilde{\Phi}(\gamma_1\gamma_2) = \Phi(\gamma_1\cdot\gamma_2)\Phi(1)^{-1} = \Phi(\gamma_1)\Phi(\gamma_2)\Phi(1)^{-2} = \widetilde{\Phi}(\gamma_1)\cdot\widetilde{\Phi}(\gamma_2)$$

Fourth step of (2): Preserving ramification

$$\mathit{N} \subset \mathit{G}^{ ext{ab}}_{\mathbb{K}}$$
 subgroup, $\mathit{G}^{ ext{ab}}_{\mathbb{K}}/\mathit{N} \stackrel{\sim}{ o} \mathit{G}^{ ext{ab}}_{\mathbb{L}}/\Phi(\mathit{N})$

$$\mathfrak{p}$$
 ramifies in $\mathbb{K}'/\mathbb{K} \iff \varphi(\mathfrak{p})$ ramifies in \mathbb{L}'/\mathbb{L}

where $\mathbb{K}'=(\mathbb{K}^{ab})^N$ finite extension and $\mathbb{L}':=(\mathbb{L}^{ab})^{\Phi(N)}$

- seen have isomorphism $\Phi: \mathring{G}^{ab}_{\mathbb{K},\mathfrak{m}} \overset{\sim}{\to} \mathring{G}^{ab}_{\mathbb{L},\varphi(\mathfrak{m})}$ (Gal of max ab ext $\mathbb{K}_{\mathfrak{m}}$ unram outside prime div of \mathfrak{m})
- ullet $\mathbb{K}'=(\mathbb{K}^{ ext{ab}})^N$ fin ext ramified precisely above $\mathfrak{p}_1,\ldots,\mathfrak{p}_r\in J^+_\mathbb{K}$
- By previous $\mathbb{L}' := (\mathbb{L})^{\Phi(N)}$ contained in $\mathbb{L}_{\varphi(\mathfrak{p}_1)\cdots\varphi(\mathfrak{p}_r)}$ but not in any $\mathbb{L}_{\varphi(\mathfrak{p}_1)\cdots\widehat{\varphi(\mathfrak{p}_i)}\cdots\varphi(\mathfrak{p}_r)} \Rightarrow \mathbb{L}'/\mathbb{L}$ ramified precisely above $\varphi(\mathfrak{p}_1),\ldots,\varphi(\mathfrak{p}_r)$

Fifth Step of (2) \Rightarrow (1): from QSM isomorphism get also

Isomorphism of local units

$$\varphi: \hat{\mathscr{O}}_{\mathfrak{p}}^* \stackrel{\sim}{\to} \hat{\mathscr{O}}_{\varphi(\mathfrak{p})}^*$$

max ab ext where $\mathfrak p$ unramified = fixed field of inertia group $I_{\mathfrak p}^{\rm ab}$, by ramification preserving

$$\Phi(\mathit{I}^{\mathrm{ab}}_{\mathfrak{p}})=\mathit{I}^{\mathrm{ab}}_{arphi(\mathfrak{p})}$$

and by local class field theory $\mathit{I}_{\mathfrak{p}}^{\mathsf{ab}} \simeq \hat{\mathscr{O}}_{\mathfrak{p}}^*$

• by product of the local units: isomorphism

$$\varphi:\,\hat{\mathscr{O}}_{\mathbb{K}}^*\stackrel{\sim}{\to}\hat{\mathscr{O}}_{\mathbb{L}}^*$$

Semigroup isomorphism

$$arphi \,:\, (\mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}}, imes) \stackrel{\sim}{ o} (\mathbb{A}_{\mathbb{L},f}^* \cap \hat{\mathscr{O}}_{\mathbb{L}}, imes)$$

by exact sequence

$$0 \to \hat{\mathscr{O}}_{\mathbb{K}}^* \to \mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}} \to J_{\mathbb{K}}^+ \to 0$$

(non-canonically) split by choice of uniformizer $\pi_{\mathfrak{p}}$ at every place

Recover multiplicative structure of the field

ullet Endomorphism action of $\mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}}$

$$\epsilon_{s}(f)(\gamma, \rho) = f(\gamma, s^{-1}\rho)e_{\tau}, \quad \epsilon_{s}(\mu_{\mathfrak{n}}) = \mu_{\mathfrak{n}} e_{\tau}$$

 $e_{ au}$ char function of set $s^{-1}
ho\in\hat{\mathscr{O}}_{\mathbb{K}}$

- $oldsymbol{\hat{\mathscr{O}}}_{\mathbb{K}}^{*}=$ part acting by automorphisms
- ullet $\overline{\mathscr{O}_{\mathbb{K},+}^*}$ (closure of tot pos units): trivial endomorphisms
- $\mathscr{O}_{\mathbb{K},+}^{\times} = \mathscr{O}_{\mathbb{K},+} \{0\}$ (non-zero tot pos elements of ring of integers): *inner endomorphisms* (isometries in $A_{\mathbb{K}}^{\dagger}$ eigenv of time evolution)
- ullet $\varphi(arepsilon_{s})=arepsilon_{arphi(s)}$ for all $s\in\mathbb{A}_{\mathbb{K},f}^*\cap\hat{\mathscr{O}}_{\mathbb{K}}$

Conclusion: isom of multiplicative semigroups of tot pos non-zero elements of rings of integers

$$\varphi: (\mathscr{O}_{\mathbb{K},+}^{\times}, \times) \xrightarrow{\sim} (\mathscr{O}_{\mathbb{L},+}^{\times}, \times)$$

Last Step of (2) \Rightarrow (1): Recover additive structure of the field Extend by $\varphi(0) = 0$ the map $\varphi: (\mathscr{O}_{\mathbb{K},+}^{\times}, \times) \stackrel{\sim}{\to} (\mathscr{O}_{\mathbb{L},+}^{\times}, \times)$, Claim: it is additive

- Start with induced multipl map of local units $\varphi: \hat{\mathcal{O}}_{\mathbb{K},\mathfrak{p}}^* \overset{\sim}{\to} \hat{\mathcal{O}}_{\mathbb{L},\varphi(\mathfrak{p})}^*$ (from ramification preserving)
- set $1_{\mathfrak{p}} = (0, \dots, 0, 1, 0, \dots, 0)$ and $1_{\mathfrak{p}} := [(1, 1_{\mathfrak{p}})] \in X_{\mathbb{K}}$; for $u \in \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}$, integral idele $u_{\mathfrak{p}} := (1, \dots, 1, u, 1, \dots, 1)$: $[(1, u_{\mathfrak{p}})] = [(\vartheta_{\mathbb{K}}(u_{\mathfrak{p}})^{-1}, 1)] \mapsto \Phi([(\vartheta_{\mathbb{K}}(u_{\mathfrak{p}})^{-1}), 1)]) =: [(1, \varphi(u)_{\varphi(\mathfrak{p})})]$
- Group isom to image $\lambda_{\mathbb{K},\mathfrak{p}}\colon \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}^* \to X_{\mathbb{K}} \xrightarrow{[\cdot \ \mathbf{1}_{\mathfrak{p}}]} Z_{\mathbb{K},\mathfrak{p}} \subset X_{\mathbb{K}}$ $u \mapsto [(1,u_{\mathfrak{p}})] \mapsto [(1,u_{\mathfrak{p}}\cdot 1_{\mathfrak{p}})] = [(1,(0,\ldots,0,u,0,\ldots,0)]$

 $\hat{\mathscr{O}}_{\mathbb{K}}^*$, $\overset{\lambda_{\mathbb{K},\mathfrak{p}}}{----}\gg Z_{\mathbb{K},\mathfrak{p}}$

Commutative diagram

$$\bigvee_{\psi}^{\varphi} \bigvee_{\psi}^{\Phi}$$
 $\downarrow_{L,\varphi(\mathfrak{p})}^{\varphi} \xrightarrow{\lambda_{\mathbb{L},\varphi(\mathfrak{p})}}^{Z_{\mathbb{L},\varphi(\mathfrak{p})}}$

- Fix rational prime p totally split in \mathbb{K} (hence unramified) \Rightarrow arithm equiv: p tot split in \mathbb{L}
- Set $\mathbb{Z}_{(p\Delta)}$ integers coprime to $p\Delta$ with $\Delta=\Delta_{\mathbb{K}}=\Delta_{\mathbb{L}}$ discriminant
- $\bullet \ \mathsf{map} \ \varpi_{\mathbb{K},\mathfrak{p}} \colon \mathbb{Z}_{(\rho\Delta)} \hookrightarrow \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \to Z_{\mathbb{K},\mathfrak{p}} \ \mathsf{with} \ \varpi_{\mathbb{K},\mathfrak{p}} \colon a \mapsto [(\mathsf{1},a \cdot \mathsf{1}_{\mathfrak{p}})]$
- $a = \mathfrak{p}_1 \dots \mathfrak{p}_r$ rational prime unramified \Rightarrow permute factors $\alpha_X((a)) = \mathfrak{p}_{\sigma(1)} \dots \mathfrak{p}_{\sigma(r)}$ so $\alpha_X((a)) = (a)$ fixes ideals $(a) \in J_{\mathbb{Q}}^+$ $\Phi(\varpi_{\mathbb{K},\mathfrak{p}}(a)) = \Phi((a)*\mathbf{1}_{\mathfrak{p}}) = \alpha_{\mathbf{1}_{\mathfrak{p}}}((a))*\Phi(\mathbf{1}_{\mathfrak{p}}) = (a)*\mathbf{1}_{\varphi(\mathfrak{p})} = \varpi_{\mathbb{L},\varphi(\mathfrak{p})}(a)$
- so $\varphi \colon \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}^* \overset{\sim}{\to} \hat{\mathscr{O}}_{\mathbb{L},\varphi(\mathfrak{p})}^*$ constant on $\mathbb{Z}_{(\rho\Delta)}$

- As above fix ational prime p totally split in $\mathbb K$ (hence in $\mathbb L$) and $\mathfrak p \in J_{\mathbb K}^+$ above p with $f(\mathfrak p \, | \mathbb K) = 1$ (hence $f(\varphi(\mathfrak p) | \mathbb L) = 1$)
- Use $\varphi: \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}^* \overset{\sim}{\to} \hat{\mathscr{O}}_{\mathbb{L},\varphi(\mathfrak{p})}^*$ to get multiplicative map of residue fields by Teichmüller lift $\tau_{\mathbb{K},p} \colon \overline{\mathbb{K}}_p^* \cong \mathbb{F}_p^* \hookrightarrow \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}^* \cong \mathbb{Q}_p^*$
- Show its extension by zero additive (hence identity map $\widetilde{\varphi} \colon \mathbb{F}_p^* \to \mathbb{F}_p^*$) by extending $\tau_{\mathbb{K},p} \colon \hat{\mathcal{O}}_{\mathbb{K},\mathfrak{p}}^* \to \hat{\mathcal{O}}_{\mathbb{K},\mathfrak{p}}^*$ with $x \mapsto \lim_{n \to +\infty} x^{p^n}$
- for \widetilde{a} residue class in $\overline{\mathbb{K}}_{\mathfrak{p}}^*\cong \mathbb{F}_p$, choose integer a congruent to \widetilde{a} mod \mathfrak{p} and coprime to discriminant Δ (Chinese remainder thm)

$$\varphi(\tau_{\mathbb{K},p}(a)) = \varphi\left(\lim_{n \to +\infty} a^{p^n}\right) = \lim_{n \to +\infty} \varphi(a)^{p^n} = \tau_{\mathbb{L},p}(\varphi(a)) = \tau_{\mathbb{L},p}(a)$$

$$\widetilde{\varphi}(\widetilde{a}) = \varphi(\tau_{\mathbb{K},\rho}(a)) \operatorname{mod} \varphi(\mathfrak{p}) = \tau_{\mathbb{L},\rho}(a) \operatorname{mod} \varphi(\mathfrak{p}) = \widetilde{a} \operatorname{mod} \varphi(\mathfrak{p})$$

• So φ identity mod any tot split prime, so for any $x,y\in\mathscr{O}_{\mathbb{K},+}$

$$\varphi(x+y) = \varphi(x) + \varphi(y) \bmod \varphi(\mathfrak{p})$$

totally split primes of arbitrary large norm (Chebotarev)

 $\Rightarrow \varphi$ additive

