# Quantum statistical mechanics, *L*-series, Anabelian Geometry

Matilde Marcolli

# Adem Lectures, Mexico City, January 2011

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry

joint work with Gunther Cornelissen

• Gunther Cornelissen, Matilde Marcolli, *Quantum Statistical Mechanics, L-series and Anabelian Geometry*, arXiv:1009.0736

イロト イヨト イヨト イヨト

Recovering a Number Field from invariants

 Dedekind zeta function ζ<sub>K</sub>(s) = ζ<sub>L</sub>(s) arithmetic equivalence Gaßmann examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{3})$$
 and  $\mathbb{L}=\mathbb{Q}(\sqrt[8]{3\cdot 2^4})$ 

not isomorphism  $\mathbb{K} \neq \mathbb{L}$ 

 Adeles rings A<sub>K</sub> ≅ A<sub>L</sub> adelic equivalence ⇒ arithmetic equivalence; Komatsu examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{2\cdot9})$$
 and  $\mathbb{L}=\mathbb{Q}(\sqrt[8]{2^5\cdot9})$ 

not isomorphism  $\mathbb{K} \neq \mathbb{L}$ 

イロト イポト イヨト イヨト

 Abelianized Galois groups: G<sup>ab</sup><sub>K</sub> ≅ G<sup>ab</sup><sub>L</sub> also not isomorphism; Onabe examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt{-2})$$
 and  $\mathbb{L}=\mathbb{Q}(\sqrt{-3})$ 

not isomorphism  $\mathbb{K} \neq \mathbb{L}$ 

イロト イポト イヨト イヨト

Question: Can combine  $\zeta_{\mathbb{K}}(s)$ ,  $\mathbb{A}_{\mathbb{K}}$  and  $G_{\mathbb{K}}^{ab}$  to something as strong as  $G_{\mathbb{K}}$  that determines isomorphism class of  $\mathbb{K}$ ?

Answer: Yes! Combine as a Quantum Statistical Mechanical system algebra and time evolution  $(A, \sigma)$ 

$$A_{\mathbb{K}} := C(X_{\mathbb{K}}) 
times J^+_{\mathbb{K}}, \quad ext{with} \quad X_{\mathbb{K}} := G^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}} \hat{\mathscr{O}}_{\mathbb{K}},$$

 $\hat{\mathscr{O}}_{\mathbb{K}} =$  ring of finite integral adeles,  $J_{\mathbb{K}}^+ =$  is the semigroup of ideals, acting on  $X_{\mathbb{K}}$  by Artin reciprocity

Time evolution  $\sigma_{\mathbb{K}}$  acts on  $J^+_{\mathbb{K}}$  as a phase factor  $N(\mathfrak{n})^{it}$ 

QSM systems introduced by Ha–Paugam to generalize Bost–Connes system, also recently studied by Laca–Larsen–Neshveyev [LLN]

イロト 不得下 イヨト イヨト 二日

The setting of Quantum Statistical Mechanics: Data

- $\mathscr{A}$  unital  $C^*$ -algebra of observables
- $\sigma_t$  time evolution,  $\sigma : \mathbb{R} \to \operatorname{Aut}(\mathscr{A})$
- states  $\omega : \mathscr{A} \to \mathbb{C}$  continuous, normalized  $\omega(1) = 1$ , positive

$$\omega(a^*a) \geq 0$$

- equilibrium states  $\omega(\sigma_t(a)) = \omega(a)$  all  $t \in \mathbb{R}$
- representation  $\pi : \mathscr{A} \to \mathscr{B}(\mathscr{H})$ , Hamiltonian H

$$\pi(\sigma_t(a)) = e^{itH}\pi(a)e^{-itH}$$

- partition function  $Z(\beta) = \text{Tr}(e^{-\beta H})$
- Gibbs states (equilibrium, inverse temperature  $\beta$ ):

$$\omega_{eta}(a) = rac{\operatorname{Tr}(\pi(a)e^{-eta H})}{\operatorname{Tr}(e^{-eta H})}$$

ヘロン ヘ回 とくほ とくほ とう

Generalization of Gibbs states: KMS states
 (Kubo–Martin–Schwinger) ∀a, b ∈ A, ∃ holomorphic F<sub>a,b</sub> on
 strip I<sub>β</sub> = {0 < Im z < β}, bounded continuous on ∂I<sub>β</sub>,

$$F_{a,b}(t) = \omega(a\sigma_t(b))$$
 and  $F_{a,b}(t+i\beta) = \omega(\sigma_t(b)a)$ 

- Fixed β > 0: KMS<sub>β</sub> state convex simplex: extremal states (like points in NCG)
- Isomorphism of QSM:  $\varphi : (\mathscr{A}, \sigma) \to (\mathscr{B}, \tau)$

$$\varphi:\mathscr{A}\stackrel{\simeq}{\to}\mathscr{B}, \quad \varphi\circ\sigma=\tau\circ\varphi$$

 $C^*$ -algebra isomorphism intertwining time evolution

• Pullback of a state:  $\varphi^*\omega(a) = \omega(\varphi(a))$ 

- ロト - 同ト - ヨト - ヨト - -

Theorem The following are equivalent:

- $\textcircled{0} \quad \mathbb{K} \cong \mathbb{L} \text{ are isomorphic number fields}$
- Quantum Statistical Mechanical systems are isomorphic

$$(A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}})$$

 $C^*$ -algebra isomorphism  $\varphi : A_{\mathbb{K}} \to A_{\mathbb{L}}$  compatible with time evolution,  $\sigma_{\mathbb{L}} \circ \varphi = \varphi \circ \sigma_{\mathbb{K}}$ 

• There is a group isomorphism  $\psi : \hat{G}^{ab}_{\mathbb{K}} \to \hat{G}^{ab}_{\mathbb{L}}$  of Pontrjagin duals of abelianized Galois groups with

$$L_{\mathbb{K}}(\chi, s) = L_{\mathbb{L}}(\psi(\chi), s)$$

identity of all L-functions with Großencharakter

Note: Generalization of arithmetic equivalence:  $\chi = 1$  gives  $\zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$ (now also purely number theoretic proof of (3)  $\Rightarrow$  (1) by Hendrik Lenstra and Bart de Smit)

## Setting and notation

Artin reciprocity map

$$\vartheta_{\mathbb{K}} : \mathbb{A}^*_{\mathbb{K}} \to G^{ab}_{\mathbb{K}}.$$

 $\vartheta_{\mathbb{K}}(\mathfrak{n})$  for ideal  $\mathfrak{n}$  seen as idele by non-canonical section s of

:



$$(x_{\mathfrak{p}})_{\mathfrak{p}}\mapsto\prod_{\mathfrak{p} \text{ finite }}\mathfrak{p}^{\nu_{\mathfrak{p}}(x_{\mathfrak{p}})}$$

Crossed product algebra

$$A_{\mathbb{K}}:= \mathit{C}(\mathit{X}_{\mathbb{K}}) 
times J^+_{\mathbb{K}} = \mathit{C}(\mathit{G}^{ extstyle extstyle}_{\mathbb{K}} imes \hat{\mathscr{O}}_{\mathbb{K}}) 
times J^+_{\mathbb{K}}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• semigroup crossed product:  $\mathfrak{n} \in J^+_{\mathbb{K}}$  acting on  $f \in C(X_{\mathbb{K}})$  as

$$\rho_{\mathfrak{n}}(f)(\gamma,\rho) = f(\vartheta_{\mathbb{K}}(\mathfrak{n})\gamma, s(\mathfrak{n})^{-1}\rho)e_{\mathfrak{n}},$$

 $e_{\mathfrak{n}} = \mu_{\mathfrak{n}}^* \mu_{\mathfrak{n}}$  projector onto  $[(\gamma, \rho)]$  with  $s(\mathfrak{n})^{-1} \rho \in \hat{\mathscr{O}}_{\mathbb{K}}$ 

partial inverse of semigroup action

 $\sigma_{\mathfrak{n}}(f)(x) = f(\mathfrak{n} * x)$  with  $\mathfrak{n} * [(\gamma, \rho)] = [(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1}\gamma, \mathfrak{n} \rho)]$ 

Generators and Relations:  $f \in C(X_{\mathbb{K}})$  and  $\mu_{\mathfrak{n}}, \mathfrak{n} \in J_{\mathbb{K}}^+$ 

$$\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^{*} = \boldsymbol{e}_{\mathfrak{n}}; \ \mu_{\mathfrak{n}}^{*}\mu_{\mathfrak{n}} = 1; \ \rho_{\mathfrak{n}}(f) = \mu_{\mathfrak{n}}f\mu_{\mathfrak{n}}^{*};$$
$$\sigma_{\mathfrak{n}}(f)\boldsymbol{e}_{\mathfrak{n}} = \mu_{\mathfrak{n}}^{*}f\mu_{\mathfrak{n}}; \ \sigma_{\mathfrak{n}}(\rho_{\mathfrak{n}}(f)) = f; \ \rho_{\mathfrak{n}}(\sigma_{\mathfrak{n}}(f)) = f\boldsymbol{e}_{\mathfrak{n}}$$

Time evolution:

$$\sigma_{\mathbb{K},t}(f) = f \quad \text{and} \quad \sigma_{\mathbb{K},t}(\mu_{\mathfrak{n}}) = N(\mathfrak{n})^{it} \mu_{\mathfrak{n}}$$
  
for  $f \in C(G^{ab}_{\mathbb{K}} imes_{\hat{\mathcal{O}}^{*}_{\mathbb{K}}} \hat{\mathcal{O}}_{\mathbb{K}})$  and for  $\mathfrak{n} \in J^{+}_{\mathbb{K}}$ 

イロト イヨト イヨト

Stratification of  $X_{\mathbb{K}}$ 

•  $\hat{\mathscr{O}}_{\mathbb{K},n} := \prod_{\mathfrak{p}|n} \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}$  and

$$X_{\mathbb{K},n} := G^{ab}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}} \hat{\mathscr{O}}_{\mathbb{K},n} \quad ext{with} \quad X_{\mathbb{K}} = \varinjlim_n X_{\mathbb{K},n}$$

Topological groups

$$G^{ extsf{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}}\hat{\mathscr{O}}^*_{\mathbb{K},n}\simeq G^{ extsf{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}(\hat{\mathscr{O}}^*_{\mathbb{K},n})=G^{ extsf{ab}}_{\mathbb{K},n}$$

Gal of max ab ext unramified at primes dividing n

J<sup>+</sup><sub>K,n</sub> ⊂ J<sup>+</sup><sub>K</sub> subsemigroup gen by prime ideals dividing *n*Decompose X<sub>K,n</sub> = X<sup>1</sup><sub>K,n</sub> ∐ X<sup>2</sup><sub>K,n</sub>

$$X^1_{\mathbb{K},n} := igcup_{\mathfrak{n}\in J^+_{\mathbb{K},n}} artheta_{\mathbb{K}}(\mathfrak{n})G^{ ext{ab}}_{\mathbb{K},n} ext{ and } X^2_{\mathbb{K},n} := igcup_{\mathfrak{p}\mid n}Y_{\mathbb{K},\mathfrak{p}}$$

where  $Y_{\mathbb{K},\mathfrak{p}} = \{(\gamma, \rho) \in X_{\mathbb{K},n} : \rho_{\mathfrak{p}} = 0\}$ 

- $X^1_{\mathbb{K},n}$  dense in  $X_{\mathbb{K},n}$  and  $X^2_{\mathbb{K},n}$  has  $\mu_{\mathbb{K}}$ -measure zero
- Algebra  $C(X_{\mathbb{K},n})$  is generated by functions

$$f_{\chi,\mathfrak{n}}\,:\,\gamma\mapsto\chi(artheta_{\mathbb{K}}(\mathfrak{n}))\chi(\gamma),\ \ \chi\in\widehat{G}_{\mathbb{K},n}^{\mathrm{ab}},\ \ \mathfrak{n}\in J_{\mathbb{K},n}^+,$$

First Step of (2)  $\Rightarrow$  (1):  $(A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}}) \Rightarrow \zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$ 

• QSM  $(A, \sigma)$  and representation  $\pi : A \to B(\mathscr{H})$  gives Hamiltonian

$$egin{aligned} \pi(\sigma_t(\pmb{a})) &= \pmb{e}^{itH} \pi(\pmb{a}) \pmb{e}^{-itH} \ H_{\sigma_{\mathbb{K}}} arepsilon_{\mathfrak{n}} &= \log \pmb{N}(\mathfrak{n}) \ arepsilon_{\mathfrak{n}} \end{aligned}$$

Partition function  $\mathscr{H} = \ell^2(J^+_{\mathbb{K}})$ 

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta_{\mathbb{K}}(\beta)$$

- Isomorphism φ : (A<sub>K</sub>, σ<sub>K</sub>) ≃ (A<sub>L</sub>, σ<sub>L</sub>) ⇒ homeomorphism of sets of extremal KMS<sub>β</sub> states by pullback ω ↦ φ<sup>\*</sup>(ω)
- KMS $_{\beta}$  states for ( $A_{\mathbb{K}}, \sigma_{\mathbb{K}}$ ) classified [LLN]:  $\beta > 1$

$$\omega_{\gamma,\beta}(f) = \frac{1}{\zeta_{\mathbb{K}}(\beta)} \sum_{\mathfrak{m} \in J^+_{\mathbb{K}}} \frac{f(\vartheta_{\mathbb{K}}(\mathfrak{m})\gamma)}{N_{\mathbb{K}}(\mathfrak{m})^{\beta}}$$

parameterized by  $\gamma \in \textit{G}^{\tt{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}(\hat{\mathscr{O}}^{*}_{\mathbb{K}})$ 

 Comparing GNS representations of ω ∈ KMS<sub>β</sub>(A<sub>L</sub>, σ<sub>L</sub>) and φ<sup>\*</sup>(ω) ∈ KMS<sub>β</sub>(A<sub>K</sub>, σ<sub>K</sub>) find Hamiltonians

$$H_{\mathbb{K}} = U H_{\mathbb{L}} U^* + \log \lambda$$

for some U unitary and  $\lambda \in \mathbb{R}^*_+$ 

Then partition functions give

$$\zeta_{\mathbb{L}}(\beta) = \lambda^{-\beta} \zeta_{\mathbb{K}}(\beta)$$

identity of Dirichlet series

$$\sum_{n\geq 1}rac{a_n}{n^{eta}}$$
 and  $\sum_{n\geq 1}rac{b_n}{(\lambda n)^{eta}}$ 

with  $a_1 = b_1 = 1$ , taking limit as  $\beta \to \infty$ 

$$a_1 = \lim_{\beta \to \infty} b_1 \lambda^{-\beta} \quad \Rightarrow \lambda = 1$$

イロト イポト イヨト イヨト

Conclusion of first step: arithmetic equivalence  $\zeta_{\mathbb{L}}(\beta) = \zeta_{\mathbb{K}}(\beta)$ 

#### Consequences:

From arithmetic equivalence already know  $\mathbb{K}$  and  $\mathbb{L}$  have same degree over  $\mathbb{Q}$ , discriminant, normal closure, unit groups, archimedean places.

But... not class group (or class number)

イロト イヨト イヨト

Intermezzo: a useful property (characterizing isometries)

Element *u* in  $A_{\mathbb{K}}$ :

• isometry:  $u^*u = 1$ 

• eigenvector of time evolution:  $\sigma_t(u) = q^{it}u$ , for q = n/mThen

$$u=\sum_{\mathfrak{n}}\mu_{\mathfrak{n}}f_{\mathfrak{n}}$$

with  $f_n \in C(X_{\mathbb{K}})$  and  $\mathfrak{n} \in J_{\mathbb{K}}^+$  with  $N_{\mathbb{K}}(\mathfrak{n}) = n$  and  $\sum_{\mathfrak{n}} |f_n|^2 = 1$ inner endomorphisms:  $a \mapsto u a u^*$ 

ヘロン ヘ回 とくほ とくほ とう

Second Step of (2)  $\Rightarrow$  (1): unraveling the crossed product

$$\varphi: \mathcal{C}(\mathcal{X}_{\mathbb{K}}) \rtimes J_{\mathbb{K}}^+ \stackrel{\simeq}{\to} \mathcal{C}(\mathcal{X}_{\mathbb{L}}) \rtimes J_{\mathbb{L}}^+ \quad \text{with} \quad \sigma_{\mathbb{L}} \circ \varphi = \varphi \circ \sigma_{\mathbb{K}}$$

Then is gives separately:

- A homeomorphism  $X_{\mathbb{K}}\cong X_{\mathbb{L}}$
- A semigroup isomorphism  $J^+_{\mathbb{K}}\cong J^+_{\mathbb{L}}$
- ullet compatible with the crossed product action ho

ヘロト ヘ回ト ヘヨト ヘヨト

#### Test case: a single isometry

- If single isometry: continuous injective self-map  $\gamma$  of space X then semigroup crossed product  $C(X) \rtimes_{\rho} \mathbb{Z}_{+}$  with  $\mu f \mu^{*}(x) = \rho(f)(x) = \chi(x)f(\gamma^{-1}(x))$ , with  $\chi =$  characteristic function of range of  $\gamma$ ; time evolution:  $\sigma_{t}(\mu) = \lambda^{it}\mu$
- Then isomorphism φ : (C(X) ⋊<sub>ρ</sub> ℤ<sub>+</sub>, σ) ≃ (C(X') ⋊<sub>ρ'</sub> ℤ<sub>+</sub>, σ') gives homeomorphism Φ : X ≃ X' with γ' ∘ Φ = Φ ∘ γ
- Basic step: write commutator ideals 𝒞<sub>0</sub> in terms of Fourier modes a = f<sub>0</sub> + Σ<sub>k>0</sub>(μ<sup>k</sup> f<sub>k</sub> + f<sub>-k</sub>(μ<sup>\*</sup>)<sup>k</sup>) and get matching of maximal ideals φ(*l*<sub>γ(x),0</sub>𝒞<sub>0</sub> + 𝒞<sub>0</sub><sup>2</sup>) = *l*<sub>Φ(γ(x)),0</sub>𝒞<sub>0</sub>' + (𝒞<sub>0</sub>')<sup>2</sup> where *l*<sub>y,0</sub>𝒞<sub>0</sub> + 𝒞<sub>0</sub><sup>2</sup> = 𝒢<sub>0</sub>*l*<sub>x,0</sub> + 𝒢<sub>0</sub><sup>2</sup>.

イロト イボト イヨト イヨト

## From one to N isometries

<u>Difficulty</u>: no longer know just from time evolution that image of C(X) does not involve terms like  $\mu_i \mu_j^*$  but only C(X')But ... Still works!

Result: for *N* commuting isometries and crossed products

$$\varphi: (\mathscr{A} = C(X) \rtimes_{\rho} \mathbb{Z}_{+}^{N}, \sigma) \xrightarrow{\simeq} (\mathscr{A}' = C(X') \rtimes_{\rho'} \mathbb{Z}_{+}^{N}, \sigma')$$

with  $\sigma_t(f) = f$  and  $\sigma_t(\mu_j) = \lambda^{it}\mu_j$  (both sides) with density hypothesis: any multi-indices  $\alpha, \beta \in \mathbb{Z}_+^N$  with  $\gamma_{\alpha} \neq \gamma_{\beta}$ 

$$\{x\in {\sf X}: \gamma_lpha(x)
eq \gamma_eta(x)\}$$
 dense in  ${\sf X}$ 

(and same for  $\mathscr{A}'$ )

Then isomorphism of QSM system gives:

- homeomorphism  $\Phi: X \simeq X'$
- and compatible isomorphism  $\alpha_x : \mathbb{Z}^N_+ \to \mathbb{Z}^N_+$ locally constant in  $x \in X$  (permutations of the generators)

In fact:

•  $\mu_i$  go to isometries  $u_i$  eigenvectors of time evolution  $\Rightarrow$ 

$$arphi(\mu_j) = \sum_k \mu'_k f_{jk}$$

- functions  $f(x) = e^{ih(x)}$  (local phase) go to local phase in C(X')
- for all functions  $\varphi(f_1)\varphi(f_2) = \varphi(f_2)\varphi(f_1)$
- applied to a local phase  $h_2 = \varphi(f_2)$  and an arbitrary function  $f_1$ :

$$f_{\alpha,\beta}\cdot(h_2\circ\gamma'_{\beta})=f_{\alpha,\beta}\cdot(h_2\circ\gamma'_{\alpha}).$$

where

$$arphi(\mathbf{f_1}) = \sum_{lpha,eta:|lpha| = |eta|} \mu'_lpha \ \mathbf{f}_{lpha,eta} \ \mu'^*_eta$$

Conclusion: C(X) goes to C(X') and  $\mu_i$  go to something with no  $\mu'^*_j$  then same argument as for one isometry

イロト イポト イヨト イヨト

## Applied to QSM system ( $A_{\mathbb{K}}, \sigma_{\mathbb{K}}$ ):

from finitely many to infinitely many isometries

- By separating eigenspaces of the time evolution by N(p) = p, apply case of N isoetries
- Density hypothesis: for any  $\mathfrak{m} \neq \mathfrak{n}$  dense set of  $x \in X_{\mathbb{K}}$  with  $\mathfrak{m} * x \neq \mathfrak{n} * x$ . In fact, check that set *E* of  $\mathfrak{m} * x = \mathfrak{n} * x$  means exists  $u \in \hat{\mathcal{O}}_{\mathbb{K}}^*$

$$\left\{ egin{array}{l} artheta_{\mathbb K}({\mathfrak m}) = artheta_{\mathbb K}(u\,{\mathfrak n}) \ s({\mathfrak m})
ho = u s({\mathfrak n})
ho \end{array} 
ight.$$

 $s\colon J^+_{\mathbb{K}} o \mathbb{A}^*_{\mathbb{K},f}$  section (defined up to units)

$${\sf E} = \left\{ egin{array}{ll} \emptyset & ext{if } \mathfrak{m} 
eq \mathfrak{n} \in {
m Cl}^+(\mathbb{K}); \ {\cal G}^{
m ab}_{\mathbb{K}} imes_{\widehat{\mathcal{O}}^*_{\mathbb{K}}} \{ 0 \} \cong {
m Cl}^+(\mathbb{K}) & ext{if } \mathfrak{m} \sim \mathfrak{n} \in {
m Cl}^+(\mathbb{K}). \end{array} 
ight.$$

finite or empty: complement dense

イロト イボト イヨト イヨト

Third step of (2): group isomorphism  $G^{ab}_{\mathbb{K}} \simeq G^{ab}_{\mathbb{L}}$ 

- $\gamma \mapsto \epsilon_{\gamma}$  (faithful) action of  $G^{ab}_{\mathbb{K}}$  as symmetries of  $A_{\mathbb{K}}$
- $G^{ab}_{\mathbb{K}}$  acts freely transitively on extremal KMS

$$\omega_{\beta,\gamma_1} \circ \epsilon_{\gamma_2} = \omega_{\beta,\gamma_1\gamma_2}$$

•  $\widetilde{\Phi}(\gamma) = \Phi(\gamma) \Phi(1)^{-1}$  group isomorphism, from

$$\varphi^{*}(\epsilon_{\gamma})(\omega_{\beta,\gamma'}^{\mathbb{L}}) = \omega_{\beta,\Phi(\Phi^{-1}(\gamma')\gamma)}^{\mathbb{L}}$$
$$\varphi^{*}(\epsilon_{\gamma_{2}}) = \epsilon_{\Phi(\gamma_{1})^{-1}\Phi(\gamma_{1}\gamma_{2})} = \epsilon_{\Phi(1)\Phi(\gamma_{2})}$$
$$\Phi(\gamma_{1}\gamma_{2}) = \Phi(1)\Phi(\gamma_{1})\Phi(\gamma_{2})$$

イロト イ理ト イヨト イヨト

Back to step 2: Got homeomorphism  $\Phi : X_{\mathbb{K}} \simeq X_{\mathbb{L}}$  and locally constant  $\alpha_x : J_{\mathbb{K}}^+ \simeq J_{\mathbb{L}}^+$ 

 The locally constant α<sub>x</sub> : J<sup>+</sup><sub>K</sub> ≃ J<sup>+</sup><sub>L</sub> is constant on x ∈ G<sup>ab</sup><sub>K</sub>. Use symmetries action of G<sup>ab</sup><sub>K</sub> on (A<sub>K</sub>, σ<sub>K</sub>). Isomorphism φ intertwines action of symmetries and get

$$\alpha_{\gamma x}(\mathfrak{n})\widetilde{\Phi}(\gamma x) = \widetilde{\Phi}(\theta_{\mathbb{K}}(\mathfrak{n})\gamma x) = \varphi(\gamma)\widetilde{\Phi}(\theta_{\mathbb{K}}(\mathfrak{n})x) = \alpha_{x}(\mathfrak{n})\widetilde{\Phi}(\gamma x)$$

Though don't know if constant on all of  $X_{\mathbb{K}}$ 

Note: Isomorphism type of  $G^{ab}_{\mathbb{K}}$ : Ulm invariants

ヘロン 人間 とくほ とくほ とう

Fourth step of (2): Preserving ramification

 $\begin{array}{l} \text{Result: } \textit{\textit{N}} \subset \textit{\textit{G}}_{\mathbb{K}}^{\text{ab}} \text{ subgroup, } \textit{\textit{G}}_{\mathbb{K}}^{\text{ab}} / \textit{\textit{N}} \stackrel{\sim}{\rightarrow} \textit{\textit{G}}_{\mathbb{L}}^{\text{ab}} / \Phi(\textit{\textit{N}}) \end{array}$ 

 $\mathfrak{p}$  ramifies in  $\mathbb{K}'/\mathbb{K}\iff \varphi(\mathfrak{p})$  ramifies in  $\mathbb{L}'/\mathbb{L}$ 

 $\mathbb{K}' = (\mathbb{K}^{ab})^N$  finite extension and  $\mathbb{L}' := (\mathbb{L}^{ab})^{\Phi(N)}$ 

• Mapping projectors  $\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^*=\pmb{e}_{\mathbb{K},\mathfrak{n}}$  (divisibility by  $\mathfrak{n}$ )

$$\varphi(\boldsymbol{e}_{\mathbb{K},\mathfrak{n}}) = \varphi(\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^*) = \mu_{\varphi(\mathfrak{n})}\mu_{\varphi(\mathfrak{n})}^* = \boldsymbol{e}_{\mathbb{L},\varphi(\mathfrak{n})}$$

• Use these to show matching of  $H_{\mathbb{K}}$ 

$$\mathcal{H}_{\mathbb{K}}\cong G^{ extstyle{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}\left(\prod_{\mathfrak{q}
eq\mathfrak{p}}\hat{\mathscr{O}}^{*}_{\mathfrak{q}}
ight)\cong \mathring{G}^{ extstyle{ab}}_{\mathbb{K},\mathfrak{p}}, \hspace{1em} extstyle{and}\hspace{1em} \Phi(\mathcal{H}_{\mathbb{K}})\cong \mathring{G}^{ extstyle{ab}}_{\mathbb{L},arphi(\mathfrak{p})}$$

 $G^{ab}_{\mathbb{K},\mathfrak{p}}$  Gal group of max ab extension unramified *outside*  $\mathfrak{p}$ 

くつう くぼう くほう くほう

Intermezzo: ramification matching proves  $(2) \Rightarrow (3)$ isomorphism  $\varphi : (A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \rightarrow (A_{\mathbb{L}}, \sigma_{\mathbb{L}}) \Rightarrow$  matching of *L*-series

• isom of  $G^{ab}$  groups  $\Rightarrow$  character groups

$$\psi : \widehat{\mathbf{G}}^{\mathsf{ab}}_{\mathbb{K}} \xrightarrow{\sim} \widehat{\mathbf{G}}^{\mathsf{ab}}_{\mathbb{L}}$$

• character  $\chi\in\widehat{G}^{ ext{ab}}_{\mathbb{K}}$  extends to function  $\mathit{f}_{\chi}\in\mathcal{C}(\mathit{X}_{\mathbb{K}})$ 

- check  $\varphi(f_{\chi}) = f_{\psi(\chi)}$ : need matching divisors of conductor
- $\mathfrak{p}$  is coprime to  $\mathfrak{f}_{\chi}$  iff  $\chi$  factors over  $G_{\mathbb{K},\mathfrak{p}}^{ab}$
- seen by ramification result these match:  $\psi(\chi) = \Phi^*(\chi)$  factoring over  $\Phi(G^{ab}_{\mathbb{K},\mathfrak{p}}) = G^{ab}_{\mathbb{L},\varphi(\mathfrak{p})}$
- then  $\chi(\vartheta_{\mathbb{K}}(\mathfrak{n})) = \psi(\chi)(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n})))$
- then matching KMS $_{\beta}$  states on  $\mathit{f} = \mathit{f}_{\chi}$

$$\omega_{\gamma,eta}^{\mathbb{L}}(arphi(\mathit{f}))=\omega_{\widetilde{\gamma},eta}^{\mathbb{K}}(\mathit{f})$$

and using arithmetic equivalence

Conclusion:  $L_{\mathbb{K}}(\chi, s) = L_{\mathbb{L}}(\psi(\chi), s)$ 

イロト イポト イヨト イヨト

Fifth Step of (2)  $\Rightarrow$  (1): from QSM isomorphism get also

Isomorphism of local units

$$\varphi \,:\, \hat{\mathscr{O}}^*_{\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\varphi(\mathfrak{p})}$$

max ab ext where p unramified = fixed field of inertia group  $I_{p}^{ab}$ , by ramification preserving

$$\Phi(I^{\mathsf{ab}}_{\mathfrak{p}}) = I^{\mathsf{ab}}_{\varphi(\mathfrak{p})}$$

and by local class field theory  $\mathit{I}^{\scriptscriptstyle ab}_{\mathfrak{p}} \simeq \hat{\mathscr{O}}^{*}_{\mathfrak{p}}$ 

by product of the local units: isomorphism

$$\varphi \,:\, \hat{\mathscr{O}}^*_{\mathbb{K}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\mathbb{L}}$$

Semigroup isomorphism

$$arphi\,:\,(\mathbb{A}^*_{\mathbb{K},f}\cap\hat{\mathscr{O}}_{\mathbb{K}}, imes)\stackrel{\sim}{
ightarrow}(\mathbb{A}^*_{\mathbb{L},f}\cap\hat{\mathscr{O}}_{\mathbb{L}}, imes)$$

by exact sequence

$$0 \to \hat{\mathscr{O}}_{\mathbb{K}}^* \to \mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}} \to J_{\mathbb{K}}^+ \to 0$$

(non-canonically) split by choice of uniformizer  $\pi_p$  at every place

Recover multiplicative structure of the field

• Endomorphism action of  $\mathbb{A}^*_{\mathbb{K},f} \cap \hat{\mathscr{O}}_{\mathbb{K}}$ 

$$\epsilon_{s}(f)(\gamma, \rho) = f(\gamma, s^{-1}\rho) \boldsymbol{e}_{\tau}, \ \ \epsilon_{s}(\mu_{\mathfrak{n}}) = \mu_{\mathfrak{n}} \, \boldsymbol{e}_{\tau}$$

 ${\it e}_{ au}$  char function of set  ${\it s}^{-1}
ho\in \hat{\mathscr{O}}_{\mathbb{K}}$ 

- $\hat{\mathscr{O}}_{\mathbb{K}}^{*}=$  part acting by automorphisms
- $\overline{\mathscr{O}^*_{\mathbb{K},+}}$  (closure of tot pos units): trivial endomorphisms
- 𝒞<sup>×</sup><sub>K,+</sub> = 𝒞<sub>K,+</sub> {0} (non-zero tot pos elements of ring of integers): *inner endomorphisms* (isometries eigenv of time evolution)

• 
$$\varphi(\varepsilon_s) = \varepsilon_{\varphi(s)}$$
 for all  $s \in \mathbb{A}^*_{\mathbb{K}, f} \cap \hat{\mathscr{O}}_{\mathbb{K}}$ 

Conclusion: isom of multiplicative semigroups of tot pos non-zero elements of rings of integers

$$\varphi\,:\,(\mathscr{O}_{\mathbb{K},+}^{\times},\times)\stackrel{\sim}{\rightarrow}(\mathscr{O}_{\mathbb{L},+}^{\times},\times)$$

イロト イヨト イヨト ・

Last Step of (2)  $\Rightarrow$  (1): Recover additive structure of the field Extend by  $\varphi(0) = 0$  the map

$$\varphi \,:\, (\mathscr{O}_{\mathbb{K},+}^{\times},\times) \xrightarrow{\sim} (\mathscr{O}_{\mathbb{L},+}^{\times},\times)$$

Claim: it is additive

Start from induced multipl map of local units  $\varphi: \hat{\mathscr{O}}^*_{\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\varphi(\mathfrak{p})}$ 

- Fix rational prime p totally split in  $\mathbb{K}$
- Teichmüller lift  $\tau_{\mathbb{K},\rho} \colon \overline{\mathbb{K}}_{\rho}^* \hookrightarrow \hat{\mathscr{O}}_{\mathbb{K},\rho}^*$  gives multiplicative map of residue fields



 To show additive (hence identity) on residue field, extend Teichmüller lift to

$$\tau_{\mathbb{K},\rho} \colon \hat{\mathscr{O}}^*_{\mathbb{K},\rho} \to \hat{\mathscr{O}}^*_{\mathbb{K},\rho} \colon x \mapsto \lim_{n \to +\infty} x^{p^n}$$

Show then  $\varphi: \hat{\mathscr{O}}^*_{\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\varphi(\mathfrak{p})}$  identity on  $\hat{\mathscr{O}}^*_{\mathfrak{p}} \cap \mathbb{Z}$ 

- Set Z<sub>(pΔ)</sub> integers coprime to pΔ with Δ = Δ<sub>K</sub> = Δ<sub>L</sub> discriminant
- rational prime *a* coprime to  $\Delta \Rightarrow$  ideal  $(a) \mapsto \alpha_x(a)$  also in  $\mathbb{Z}_{(p\Delta)}$ , since  $(a) = \mathfrak{p}_1 \dots \mathfrak{p}_r$  (distinct primes: totally spit) and  $\alpha_x$  permutes primes above same rational prime
- $\varphi$  fixes the element  $[(1, 1_{\rho})]$  (preserving ramification)  $\Rightarrow \varphi(a \cdot 1_{\rho}) = a \cdot 1_{\rho}$ , for  $a \in \mathbb{Z}_{(\rho\Delta)}$
- Injective map  $\varpi_{\mathbb{K}} \colon \mathbb{Z}_{(\rho\Delta)} \to X_{\mathbb{K}} \colon a \mapsto [(1, a \cdot 1_{\rho})]$
- Then  $\varphi(\varpi_{\mathbb{K}}(a)) = \varphi((a) * [(1, 1_{\rho})]) = (a) * [(1, 1_{\rho})] = \varpi_{\mathbb{L}}(a)$

イロト イボト イヨト イヨト

Start with residue class  $\tilde{a}$  in  $\overline{\mathbb{K}}_{\rho}^{*}$  and choose integer *a* congruent to  $\tilde{a}$  mod *p* and coprime to  $p\Delta$  (by Chinese remainder thm)  $\Rightarrow$  $\tau_{\mathbb{K},\rho}(\tilde{a}) = \tau_{\mathbb{K},\rho}(a)$ Conclusion: Continuity  $\Rightarrow \varphi$  identity map mod any totally split prime

$$\varphi(\mathbf{x} + \mathbf{y}) = \varphi(\mathbf{x}) + \varphi(\mathbf{y}) \operatorname{mod} \mathbf{p}$$

tot split primes of arbitrary large norm  $\Rightarrow \varphi$  additive

Then Conclusion of (2)  $\Rightarrow$  (1):

• Have isomorphism of semigroups of totally positive integers (additive and multiplicative)

- $\mathscr{O}_{\mathbb{K}}$  has  $\mathbb{Z}$ -basis of totally positive elements
- Then obtain  $\varphi: \mathscr{O}_{\mathbb{K}} \xrightarrow{\sim} \mathscr{O}_{\mathbb{L}} \Rightarrow \mathbb{K} \simeq \mathbb{L}$  field isomorphism  $\Box$

First Step of (3)  $\Rightarrow$  (2): identify  $J_{\mathbb{K}}^+$  and  $J_{\mathbb{L}}^+$  compatibly with Artin map Method: Fourier analysis on Number Fields

- Observation: matching of zeta functions, so know same number of primes p in K and q in L over the same rational prime p with inertia degree f
- Need to find a way to match them compatible with the Artin map: p → q so that ψ(χ)(θ<sub>L</sub>(q)) = χ(θ<sub>K</sub>(p)) for all characters χ with conductor coprime to p
- Need to show this can be done with a bijection between primes of  $\mathbb K$  and  $\mathbb L$
- Idea: use a combination of *L*-series as counting function for number of such q

イロト イポト イヨト イヨト

#### L-series and counting functions

- Fix a finite quotient  $G^{ab}_{\mathbb{K}} \twoheadrightarrow G$
- Set  $b_{\mathbb{K},G,n}(\gamma) := \#B_{\mathbb{K},G,n}(\gamma)$  cardinality of set

$$B_{\mathbb{K},G,n}(\gamma) = \{\mathfrak{n} \in J^+_{\mathbb{K}} : N_{\mathbb{K}}(\mathfrak{n}) = n \text{ and } \pi_G(\vartheta_{\mathbb{K}}(\mathfrak{n})) = \pi_G(\gamma)\}$$

Then use known fact that

$$\sum_{\mathfrak{n}\in \mathcal{J}_{\mathbb{K}}^+\atop N_{\mathbb{K}}(\mathfrak{n})} \left(\sum_{\widehat{G}} \chi(\pi_{G}(\gamma)^{-1})\chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))\right) = b_{\mathbb{K},G,n}(\gamma).$$

ヘロン 人間 とくほ とくほ とう

• Identity of *L*-functions gives, for fixed norm *n*,

$$\sum_{\mathfrak{n}\in J_{\mathbb{K}}^{+},\gamma\in\widehat{G}}\chi(\pi_{G}(\gamma)^{-1})\chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))=\sum_{\mathfrak{n}\in J_{\mathbb{L}}^{+},\gamma\in\widehat{G}}\chi(\pi_{G}(\gamma)^{-1})\psi(\chi)(\vartheta_{\mathbb{L}}(\mathfrak{n}))$$

Using isomorphism ψ : G<sup>ab</sup><sub>K</sub> → G<sup>ab</sup><sub>L</sub> preserving G<sup>ab</sup><sub>K,n</sub> = Gal of max abelian ext unramified above prime divisors of n, right-hand-side above gives, for (ψ<sup>-1</sup>)\*(G) = G',

$$\sum_{\widehat{G'}} \psi^{-1}(\eta)(\pi_G(\gamma)^{-1})\eta(\pi_{G'}(\vartheta_{\mathbb{L}}(\mathfrak{m})))$$

•  $\mathfrak{m}$  coprime to  $\mathfrak{f}_{\eta}$ : character on  $\widehat{G}'$  $\Xi_{\mathfrak{m}} : \eta \mapsto \psi^{-1}(\eta)(\pi_{G}(\gamma)^{-1})\eta(\pi_{G'}(\vartheta_{\mathbb{L}}(\mathfrak{m})))$  so that

$$\sum_{\widehat{G'}} \psi^{-1}(\eta)(\pi_G(\gamma)^{-1})\eta(\pi_{G'}(\vartheta_{\mathbb{L}}(\mathfrak{m}))) = \begin{cases} |G'| & \text{if } \Xi_{\mathfrak{m}} \equiv 1; \\ 0 & \text{otherwise.} \end{cases}$$

(4月) (4日) (4日)

•  $\Xi_{\mathfrak{m}} \equiv 1$  gives

 $\eta(\pi_{G'}(\vartheta_{\mathbb{L}}(\mathfrak{m}))) = \psi^{-1}(\eta)(\pi_{G}(\gamma))$  for all  $\eta \in G'$ 

so that  $\pi_{G'}(\vartheta_{\mathbb{L}}(\mathfrak{m})) = \pi_{G'}((\psi^{-1})^*(\gamma)).$ 

So from identity of L-function get counting identity

$$m{b}_{\mathbb{K},G,n}(\gamma)=m{b}_{\mathbb{L},(\psi^{-1})^*G,n}((\psi^{-1})^*(\gamma))$$

•  $G^{\rm ab}_{\mathbb{K},n}$  as inverse limit over finite quotients: same cardinality of

$$S_{1} = \{ \mathfrak{n} \in J_{\mathbb{K}}^{+} : N_{\mathbb{K}}(\mathfrak{n}) = n, \pi_{G_{\mathbb{K},n}^{ab}}(\vartheta_{\mathbb{K}}(\mathfrak{n}))) = \pi_{G_{\mathbb{K},n}^{ab}}(\gamma) \}$$
$$S_{2} = \{ \mathfrak{m} \in J_{\mathbb{L}}^{+} : N_{\mathbb{L}}(\mathfrak{m}) = n, \pi_{G_{\mathbb{L},n}^{ab}}(\vartheta_{\mathbb{L}}(\mathfrak{m})) = \pi_{G_{\mathbb{L},n}^{ab}}((\psi^{-1})^{*}(\gamma)) \}$$

- Artin map  $\vartheta_{\mathbb{K}} : J_{\mathbb{K}}^+ \to G_{\mathbb{K},n}^{ab}$  injective on ideals dividing *n*: get  $\#S_1 = 1$
- $\#S_2 = 1$  gives unique ideal  $\mathfrak{m} \in J^+_{\mathbb{L}}$  with  $N_{\mathbb{L}}(\mathfrak{m}) = N_{\mathbb{K}}(\mathfrak{n})$  and with

$$\pi_{G^{\mathrm{ab}}_{\mathbb{K},n}}(\vartheta_{\mathbb{L}}(\mathfrak{n})) = \pi_{G^{\mathrm{ab}}_{\mathbb{L},n}}((\psi^{-1})^*(\vartheta_{\mathbb{K}}(\mathfrak{n})))$$

 Get multiplicative map Ψ(n) := m, isomorphism of J<sup>+</sup><sub>K</sub> and J<sup>+</sup><sub>L</sub> compatible with Artin map

▲ロ → ▲園 → ▲ 国 → ▲ 国 → ● ● ● ● ●

Second Step of (3)  $\Rightarrow$  (2): matching  $C(X_{\mathbb{K}})$  and  $C(X_{\mathbb{L}})$  compatibly with  $J_{\mathbb{K}}^+$  and  $J_{\mathbb{L}}^+$  actions

- Idea: extend identification  $\psi : C(G^{ab}_{\mathbb{K}}) \xrightarrow{\sim} C(G^{ab}_{\mathbb{L}})$ from  $G^{ab}_{\mathbb{K}}$  to  $G^{ab}_{\mathbb{K}} \rtimes_{\hat{\mathcal{O}}^{*}_{\mathbb{K}}} \hat{\mathcal{O}}_{\mathbb{K}}$
- Using  $X_{\mathbb{K},n} := G^{ab}_{\mathbb{K}} \times_{\hat{\mathscr{O}}^*_{\mathbb{K}}} \hat{\mathscr{O}}_{\mathbb{K},n}$  and  $J^+_{\mathbb{K},n}$  gen by prime ideals dividing n
- know algebra  $C(X_{\mathbb{K},n})$  is generated by the functions

$$f_{\chi,\mathfrak{n}} \,:\, \gamma \mapsto \chi(artheta_{\mathbb{K}}(\mathfrak{n}))\chi(\gamma), \ \ \chi \in \widehat{G}^{\mathsf{ab}}_{\mathbb{K},n}, \ \ \mathfrak{n} \in J^+_{\mathbb{K},n}$$

• Map  $\psi_n$  :  $C(X_{\mathbb{K},n}) o C(X_{\mathbb{L},n})$  by

$$f_{\mathfrak{n},\chi}\mapsto f_{\Psi(\mathfrak{n}),\psi(\chi)}$$

well defined by matching ramification and conductors

- Direct limit  $\psi = \lim_{n \to \infty} \psi_n : C(X_{\mathbb{K}}) \xrightarrow{\sim} C(X_{\mathbb{L}})$
- Check algebra homomorphism: from compatibility with Artin map

$$\begin{split} \psi(f_{\chi,\mathfrak{n}})(\gamma') &= f_{\psi(\chi),\Psi(\mathfrak{n})}(\gamma') = \psi(\chi)(\vartheta_{\mathbb{L}}(\Psi(\mathfrak{n}))\psi(\chi)(\gamma') \\ \psi(f_{\chi,\mathfrak{n}})(\gamma') &= \chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))\chi(\psi^*(\gamma')) = (\psi^{-1})^*f_{\chi,\mathfrak{n}} \\ \psi(f_{\mathfrak{n},\chi} \cdot f_{\mathfrak{n}',\chi'}) &= (\psi^{-1})^*(f_{\mathfrak{n},\chi} \cdot f_{\mathfrak{n}',\chi'}) = \end{split}$$

So get multiplicative map:

$$(\psi^{-1})^*(f_{\mathfrak{n},\chi})\cdot(\psi^{-1})^*(f_{\mathfrak{n}',\chi'})=\psi(f_{\mathfrak{n},\chi})\cdot\psi(f_{\mathfrak{n}',\chi'})$$

• Compatibility with time evolution since  $N_{\mathbb{L}}(\Psi(\mathfrak{n})) = N_{\mathbb{K}}(\mathfrak{n})$ This completes all implications of main Theorem  $\Box$ 

イロト イヨト イヨト ・

#### What then?

- Function fields  $\mathbb{K} = \mathbb{F}_{p^m}(C)$ , curve *C* over finite field
- Analogies between number fields and function fields
- Same type of QSM systems
- Sneak Preview: purely NT proof seems not to work for function fields ... but NCG proof does!

... coming soon to a lecture hall near you

Thank you !

イロト イヨト イヨト