Quantum statistical mechanics, L-series, Anabelian Geometry

Matilde Marcolli

Adem Lectures, Mexico City, January 2011

joint work with Gunther Cornelissen

- Gunther Cornelissen, Matilde Marcolli, Quantum Statistical Mechanics, L-series and Anabelian Geometry, arXiv:1009.0736

Recovering a Number Field from invariants

- Dedekind zeta function $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$ arithmetic equivalence Gaßmann examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt[8]{3}) \text { and } \mathbb{L}=\mathbb{Q}\left(\sqrt[8]{3 \cdot 2^{4}}\right)
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- Adeles rings $\mathbb{A}_{\mathbb{K}} \cong \mathbb{A}_{\mathbb{L}}$ adelic equivalence \Rightarrow arithmetic equivalence; Komatsu examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt[8]{2 \cdot 9}) \text { and } \mathbb{L}=\mathbb{Q}\left(\sqrt[8]{2^{5} \cdot 9}\right)
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- Abelianized Galois groups: $G_{\mathbb{K}}^{\text {ab }} \cong G_{\mathbb{L}}^{\text {ab }}$ also not isomorphism; Onabe examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt{-2}) \text { and } \mathbb{L}=\mathbb{Q}(\sqrt{-3})
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- But ... absolute Galois groups $G_{\mathbb{K}} \cong G_{\mathbb{L}} \Rightarrow$ isomorphism $\mathbb{K} \cong \mathbb{L}$: Neukirch-Uchida theorem
(Grothendieck's anabelian geometry)

Question: Can combine $\zeta_{\mathbb{K}}(s), \mathbb{A}_{\mathbb{K}}$ and $G_{\mathbb{K}}^{\text {ab }}$ to something as strong as $G_{\mathbb{K}}$ that determines isomorphism class of \mathbb{K} ?
Answer: Yes! Combine as a Quantum Statistical Mechanical system algebra and time evolution (A, σ)

$$
A_{\mathbb{K}}:=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}, \quad \text { with } \quad X_{\mathbb{K}}:=G_{\mathbb{K}}^{\text {ab }} \times_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}},
$$

$\hat{\mathscr{O}}_{\mathbb{K}}=$ ring of finite integral adeles, $J_{\mathbb{K}}^{+}=$is the semigroup of ideals, acting on $X_{\mathbb{K}}$ by Artin reciprocity
Time evolution $\sigma_{\mathbb{K}}$ acts on $J_{\mathbb{K}}^{+}$as a phase factor $N(\mathfrak{n})^{i t}$
QSM systems introduced by Ha-Paugam to generalize Bost-Connes system, also recently studied by Laca-Larsen-Neshveyev [LLN]

The setting of Quantum Statistical Mechanics: Data

- \mathscr{A} unital C^{*}-algebra of observables
- σ_{t} time evolution, $\sigma: \mathbb{R} \rightarrow \operatorname{Aut}(\mathscr{A})$
- states ω : $\mathscr{A} \rightarrow \mathbb{C}$ continuous, normalized $\omega(1)=1$, positive

$$
\omega\left(a^{*} a\right) \geq 0
$$

- equilibrium states $\omega\left(\sigma_{t}(a)\right)=\omega(a)$ all $t \in \mathbb{R}$
- representation $\pi: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$, Hamiltonian H

$$
\pi\left(\sigma_{t}(a)\right)=e^{i t H} \pi(a) e^{-i t H}
$$

- partition function $Z(\beta)=\operatorname{Tr}\left(e^{-\beta H}\right)$
- Gibbs states (equilibrium, inverse temperature β):

$$
\omega_{\beta}(a)=\frac{\operatorname{Tr}\left(\pi(a) e^{-\beta H}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)}
$$

- Generalization of Gibbs states: KMS states (Kubo-Martin-Schwinger) $\forall a, b \in A, \exists$ holomorphic $F_{a, b}$ on strip $I_{\beta}=\{0<\operatorname{Im} z<\beta\}$, bounded continuous on ∂I_{β},

$$
F_{a, b}(t)=\omega\left(a \sigma_{t}(b)\right) \quad \text { and } \quad F_{a, b}(t+i \beta)=\omega\left(\sigma_{t}(b) a\right)
$$

- Fixed $\beta>0$: KMS_{β} state convex simplex: extremal states (like points in NCG)
- Isomorphism of QSM: $\varphi:(\mathscr{A}, \sigma) \rightarrow(\mathscr{B}, \tau)$

$$
\varphi: \mathscr{A} \stackrel{\simeq}{\rightarrow} \mathscr{B}, \quad \varphi \circ \sigma=\tau \circ \varphi
$$

C^{*}-algebra isomorphism intertwining time evolution

- Pullback of a state: $\varphi^{*} \omega(a)=\omega(\varphi(a))$

Theorem The following are equivalent:
(1) $\mathbb{K} \cong \mathbb{L}$ are isomorphic number fields
(2) Quantum Statistical Mechanical systems are isomorphic

$$
\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right)
$$

C^{*}-algebra isomorphism $\varphi: A_{\mathbb{K}} \rightarrow A_{\mathbb{L}}$ compatible with time evolution, $\sigma_{\mathbb{L}} \circ \varphi=\varphi \circ \sigma_{\mathbb{K}}$
(3) There is a group isomorphism $\psi: \hat{G}_{\mathbb{K}}^{a b} \rightarrow \hat{G}_{\mathbb{L}}^{a b}$ of Pontrjagin duals of abelianized Galois groups with

$$
L_{\mathbb{K}}(\chi, s)=L_{\mathbb{L}}(\psi(\chi), s)
$$

identity of all L-functions with Großencharakter
Note: Generalization of arithmetic equivalence:
$\chi=1$ gives $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$
(now also purely number theoretic proof of $(3) \Rightarrow(1)$
by Hendrik Lenstra and Bart de Smit)

Setting and notation

- Artin reciprocity map

$$
\vartheta_{\mathbb{K}}: \mathbb{A}_{\mathbb{K}}^{*} \rightarrow G_{\mathbb{K}}^{\text {ab }} .
$$

$\vartheta_{\mathbb{K}}(\mathfrak{n})$ for ideal \mathfrak{n} seen as idele by non-canonical section s of

- Crossed product algebra

$$
A_{\mathbb{K}}:=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}=C\left(G_{\mathbb{K}}^{\text {ab }} \times_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}
$$

- semigroup crossed product: $\mathfrak{n} \in J_{\mathbb{K}}^{+}$acting on $f \in C\left(X_{\mathbb{K}}\right)$ as

$$
\rho_{\mathfrak{n}}(f)(\gamma, \rho)=f\left(\vartheta_{\mathbb{K}}(\mathfrak{n}) \gamma, s(\mathfrak{n})^{-1} \rho\right) e_{\mathfrak{n}}
$$

$e_{\mathfrak{n}}=\mu_{\mathfrak{n}}^{*} \mu_{\mathfrak{n}}$ projector onto $[(\gamma, \rho)]$ with $s(\mathfrak{n})^{-1} \rho \in \hat{\mathscr{O}}_{\mathbb{K}}$

- partial inverse of semigroup action

$$
\sigma_{\mathfrak{n}}(f)(x)=f(\mathfrak{n} * x) \quad \text { with } \quad \mathfrak{n} *[(\gamma, \rho)]=\left[\left(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1} \gamma, \mathfrak{n} \rho\right)\right]
$$

Generators and Relations: $f \in C\left(X_{\mathbb{K}}\right)$ and $\mu_{\mathfrak{n}}, \mathfrak{n} \in J_{\mathbb{K}}^{+}$

$$
\begin{gathered}
\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}=e_{\mathfrak{n}} ; \mu_{\mathfrak{n}}^{*} \mu_{\mathfrak{n}}=1 ; \rho_{\mathfrak{n}}(f)=\mu_{\mathfrak{n}} f \mu_{\mathfrak{n}}^{*} ; \\
\sigma_{\mathfrak{n}}(f) e_{\mathfrak{n}}=\mu_{\mathfrak{n}}^{*} f \mu_{\mathfrak{n}} ; \quad \sigma_{\mathfrak{n}}\left(\rho_{\mathfrak{n}}(f)\right)=f ; \rho_{\mathfrak{n}}\left(\sigma_{\mathfrak{n}}(f)\right)=f e_{\mathfrak{n}}
\end{gathered}
$$

Time evolution:

$$
\sigma_{\mathbb{K}, t}(f)=f \quad \text { and } \quad \sigma_{\mathbb{K}, t}\left(\mu_{\mathfrak{n}}\right)=N(\mathfrak{n})^{i t} \mu_{\mathfrak{n}}
$$

for $f \in C\left(G_{\mathbb{K}}^{\text {ab }} \times{ }_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}}\right)$ and for $\mathfrak{n} \in J_{\mathbb{K}}^{+}$

Stratification of $X_{\mathbb{K}}$

- $\hat{\mathscr{O}}_{\mathbb{K}, n}:=\prod_{\mathfrak{p} \mid n} \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}$ and

$$
X_{\mathbb{K}, n}:=G_{\mathbb{K}}^{\mathrm{ab}} \times_{\hat{O}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}, n} \quad \text { with } \quad X_{\mathbb{K}}=\underset{n}{\lim _{n}} X_{\mathbb{K}, n}
$$

- Topological groups

$$
G_{\mathbb{K}}^{\mathrm{ab}} \times_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}, n}^{*} \simeq G_{\mathbb{K}}^{\mathrm{ab}} / \vartheta_{\mathbb{K}}\left(\hat{\mathscr{O}}_{\mathbb{K}, n}^{*}\right)=G_{\mathbb{K}, n}^{\mathrm{ab}}
$$

Gal of max ab ext unramified at primes dividing n

- $J_{\mathbb{K}, n}^{+} \subset J_{\mathbb{K}}^{+}$subsemigroup gen by prime ideals dividing n
- Decompose $X_{\mathbb{K}, n}=X_{\mathbb{K}, n}^{1} \amalg X_{\mathbb{K}, n}^{2}$

$$
X_{\mathbb{K}, n}^{1}:=\bigcup_{\mathfrak{n} \in J_{\mathbb{K}, n}^{+}} \vartheta_{\mathbb{K}}(\mathfrak{n}) G_{\mathbb{K}, n}^{\mathrm{ab}} \quad \text { and } \quad X_{\mathbb{K}, n}^{2}:=\bigcup_{\mathfrak{p} \mid n} Y_{\mathbb{K}, \mathfrak{p}}
$$

where $Y_{\mathbb{K}, \mathfrak{p}}=\left\{(\gamma, \rho) \in X_{\mathbb{K}, n}: \rho_{\mathfrak{p}}=0\right\}$

- $X_{\mathbb{K}, n}^{1}$ dense in $X_{\mathbb{K}, n}$ and $X_{\mathbb{K}, n}^{2}$ has $\mu_{\mathbb{K}}$-measure zero
- Algebra $C\left(X_{\mathbb{K}, n}\right)$ is generated by functions

$$
f_{\chi, \mathfrak{n}}: \gamma \mapsto \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right) \chi(\gamma), \quad \chi \in \widehat{G}_{\mathbb{K}, n}^{\mathrm{ab}}, \quad \mathfrak{n} \in J_{\mathbb{K}, n}^{+}
$$

First Step of $(2) \Rightarrow(1):\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right) \Rightarrow \zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$

- $\operatorname{QSM}(A, \sigma)$ and representation $\pi: A \rightarrow B(\mathscr{H})$ gives Hamiltonian

$$
\begin{aligned}
\pi\left(\sigma_{t}(a)\right) & =e^{i t H} \pi(a) e^{-i t H} \\
H_{\sigma_{\mathbb{K}}} \varepsilon_{\mathfrak{n}} & =\log N(\mathfrak{n}) \varepsilon_{\mathfrak{n}}
\end{aligned}
$$

Partition function $\mathscr{H}=\ell^{2}\left(J_{\mathbb{K}}^{+}\right)$

$$
Z(\beta)=\operatorname{Tr}\left(e^{-\beta H}\right)=\zeta_{\mathbb{K}}(\beta)
$$

- Isomorphism $\varphi:\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right) \Rightarrow$ homeomorphism of sets of extremal KMS_{β} states by pullback $\omega \mapsto \varphi^{*}(\omega)$
- KMS_{β} states for $\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ classified [LLN]: $\beta>1$

$$
\omega_{\gamma, \beta}(f)=\frac{1}{\zeta_{\mathbb{K}}(\beta)} \sum_{\mathfrak{m} \in J_{\mathbb{K}}^{+}} \frac{f\left(\vartheta_{\mathbb{K}}(\mathfrak{m}) \gamma\right)}{N_{\mathbb{K}}(\mathfrak{m})^{\beta}}
$$

parameterized by $\gamma \in G_{\mathbb{K}}^{\text {ab }} / \vartheta_{\mathbb{K}}\left(\widehat{O}_{\mathbb{K}}^{*}\right)$

- Comparing GNS representations of $\omega \in \operatorname{KMS}_{\beta}\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right)$ and $\varphi^{*}(\omega) \in \operatorname{KMS}_{\beta}\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ find Hamiltonians

$$
H_{\mathbb{K}}=U H_{\mathbb{L}} U^{*}+\log \lambda
$$

for some U unitary and $\lambda \in \mathbb{R}_{+}^{*}$

- Then partition functions give

$$
\zeta_{\mathbb{L}}(\beta)=\lambda^{-\beta} \zeta_{\mathbb{K}}(\beta)
$$

identity of Dirichlet series

$$
\sum_{n \geq 1} \frac{a_{n}}{n^{\beta}} \text { and } \sum_{n \geq 1} \frac{b_{n}}{(\lambda n)^{\beta}}
$$

with $a_{1}=b_{1}=1$, taking limit as $\beta \rightarrow \infty$

$$
a_{1}=\lim _{\beta \rightarrow \infty} b_{1} \lambda^{-\beta} \Rightarrow \lambda=1
$$

Conclusion of first step: arithmetic equivalence $\zeta_{\mathbb{L}}(\beta)=\zeta_{\mathbb{K}}(\beta)$
Consequences:
From arithmetic equivalence already know \mathbb{K} and \mathbb{L} have same degree over \mathbb{Q}, discriminant, normal closure, unit groups, archimedean places.

But... not class group (or class number)

Intermezzo: a useful property (characterizing isometries)
Element u in $A_{\mathbb{K}}$:

- isometry: $u^{*} u=1$
- eigenvector of time evolution: $\sigma_{t}(u)=q^{i t} u$, for $q=n / m$

Then

$$
u=\sum_{\mathfrak{n}} \mu_{\mathfrak{n}} f_{\mathfrak{n}}
$$

with $f_{\mathfrak{n}} \in C\left(X_{\mathbb{K}}\right)$ and $\mathfrak{n} \in J_{\mathbb{K}}^{+}$with $N_{\mathbb{K}}(\mathfrak{n})=n$ and $\sum_{\mathfrak{n}}\left|f_{\mathfrak{n}}\right|^{2}=1$
inner endomorphisms: $a \mapsto u a u^{*}$

Second Step of $(2) \Rightarrow(1)$: unraveling the crossed product

$$
\varphi: C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+} \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right) \rtimes J_{\mathbb{L}}^{+} \quad \text { with } \quad \sigma_{\mathbb{L}} \circ \varphi=\varphi \circ \sigma_{\mathbb{K}}
$$

Then is gives separately:

- A homeomorphism $X_{\mathbb{K}} \cong X_{\mathbb{L}}$
- A semigroup isomorphism $J_{\mathbb{K}}^{+} \cong J_{\mathbb{L}}^{+}$
- compatible with the crossed product action ρ

Test case: a single isometry

- If single isometry: continuous injective self-map γ of space X then semigroup crossed product $C(X) \rtimes_{\rho} \mathbb{Z}_{+}$with $\mu f \mu^{*}(x)=\rho(f)(x)=\chi(x) f\left(\gamma^{-1}(x)\right)$, with $\chi=$ characteristic function of range of γ; time evolution: $\sigma_{t}(\mu)=\lambda^{i t} \mu$
- Then isomorphism $\varphi:\left(C(X) \rtimes_{\rho} \mathbb{Z}_{+}, \sigma\right) \simeq\left(C\left(X^{\prime}\right) \rtimes_{\rho^{\prime}} \mathbb{Z}_{+}, \sigma^{\prime}\right)$ gives homeomorphism $\Phi: X \simeq X^{\prime}$ with $\gamma^{\prime} \circ \Phi=\Phi \circ \gamma$
- Basic step: write commutator ideals \mathscr{C}_{0} in terms of Fourier modes $a=f_{0}+\sum_{k>0}\left(\mu^{k} f_{k}+f_{-k}\left(\mu^{*}\right)^{k}\right)$ and get matching of maximal ideals $\varphi\left(\widetilde{I}_{\gamma(x), 0} \mathscr{C}_{0}+\mathscr{C}_{0}^{2}\right)=\widetilde{I}_{\Phi(\gamma(x)), 0} \mathscr{C}_{0}^{\prime}+\left(\mathscr{C}_{0}^{\prime}\right)^{2}$ where $\widetilde{I}_{y, 0} \mathscr{C}_{0}+\mathscr{C}_{0}^{2}=\mathscr{C}_{0} \widetilde{I}_{x, 0}+\mathscr{C}_{0}^{2}$.

From one to N isometries

Difficulty: no longer know just from time evolution that image of $C(X)$ does not involve terms like $\mu_{i} \mu_{j}^{*}$ but only $C\left(X^{\prime}\right)$
But ... Still works!
Result: for N commuting isometries and crossed products

$$
\varphi:\left(\mathscr{A}=C(X) \rtimes_{\rho} \mathbb{Z}_{+}^{N}, \sigma\right) \xrightarrow{\simeq}\left(\mathscr{A}^{\prime}=C\left(X^{\prime}\right) \rtimes_{\rho^{\prime}} \mathbb{Z}_{+}^{N}, \sigma^{\prime}\right)
$$

with $\sigma_{t}(f)=f$ and $\sigma_{t}\left(\mu_{j}\right)=\lambda^{i t} \mu_{j}$ (both sides)
with density hypothesis: any multi-indices $\alpha, \beta \in \mathbb{Z}_{+}^{N}$ with $\gamma_{\alpha} \neq \gamma_{\beta}$

$$
\left\{x \in X: \gamma_{\alpha}(x) \neq \gamma_{\beta}(x)\right\} \quad \text { dense in } X
$$

(and same for \mathscr{A}^{\prime})
Then isomorphism of QSM system gives:

- homeomorphism $\Phi: X \simeq X^{\prime}$
- and compatible isomorphism $\alpha_{X}: \mathbb{Z}_{+}^{N} \rightarrow \mathbb{Z}_{+}^{N}$
locally constant in $x \in X$ (permutations of the generators)

In fact:

- μ_{j} go to isometries u_{j} eigenvectors of time evolution \Rightarrow

$$
\varphi\left(\mu_{j}\right)=\sum_{k} \mu_{k}^{\prime} f_{j k}
$$

- functions $f(x)=e^{i h(x)}$ (local phase) go to local phase in $C\left(X^{\prime}\right)$
- for all functions $\varphi\left(f_{1}\right) \varphi\left(f_{2}\right)=\varphi\left(f_{2}\right) \varphi\left(f_{1}\right)$
- applied to a local phase $h_{2}=\varphi\left(f_{2}\right)$ and an arbitrary function f_{1} :

$$
f_{\alpha, \beta} \cdot\left(h_{2} \circ \gamma_{\beta}^{\prime}\right)=f_{\alpha, \beta} \cdot\left(h_{2} \circ \gamma_{\alpha}^{\prime}\right)
$$

where

$$
\varphi\left(f_{1}\right)=\sum_{\alpha, \beta:|\alpha|=|\beta|} \mu_{\alpha}^{\prime} f_{\alpha, \beta} \mu_{\beta}^{*}
$$

Conclusion: $C(X)$ goes to $C\left(X^{\prime}\right)$ and μ_{i} go to something with no $\mu_{j}^{* *}$ then same argument as for one isometry

Applied to QSM system ($A_{\mathbb{K}}, \sigma_{\mathbb{K}}$):
from finitely many to infinitely many isometries

- By separating eigenspaces of the time evolution by $N(\wp)=p$, apply case of N isoetries
- Density hypothesis: for any $\mathfrak{m} \neq \mathfrak{n}$ dense set of $x \in X_{\mathbb{K}}$ with $\mathfrak{m} * x \neq \mathfrak{n} * x$. In fact, check that set E of $\mathfrak{m} * x=\mathfrak{n} * x$ means exists $u \in \widehat{\mathscr{O}}_{\mathbb{K}}^{*}$

$$
\left\{\begin{array}{l}
\vartheta_{\mathbb{K}}(\mathfrak{m})=\vartheta_{\mathbb{K}}(u \mathfrak{n}) \\
s(\mathfrak{m}) \rho=u s(\mathfrak{n}) \rho
\end{array}\right.
$$

$s: J_{\mathbb{K}}^{+} \rightarrow \mathbb{A}_{\mathbb{K}, f}^{*}$ section (defined up to units)

$$
E= \begin{cases}\emptyset & \text { if } \mathfrak{m} \nsim \mathfrak{n} \in \mathrm{Cl}^{+}(\mathbb{K}) ; \\ G_{\mathbb{K}}^{a b} \times{\hat{O_{\mathbb{K}}}}\{0\} \cong \mathrm{Cl}^{+}(\mathbb{K}) & \text { if } \mathfrak{m} \sim \mathfrak{n} \in \mathrm{Cl}^{+}(\mathbb{K})\end{cases}
$$

finite or empty: complement dense

Third step of (2): group isomorphism $G_{\mathbb{K}}^{a b} \simeq G_{\mathbb{L}}^{a b}$

- $\gamma \mapsto \epsilon_{\gamma}$ (faithful) action of $G_{\mathbb{K}}^{a b}$ as symmetries of $A_{\mathbb{K}}$
- $G_{\mathbb{K}}^{a b}$ acts freely transitively on extremal KMS

$$
\omega_{\beta, \gamma_{1}} \circ \epsilon_{\gamma_{2}}=\omega_{\beta, \gamma_{1} \gamma_{2}}
$$

- $\widetilde{\Phi}(\gamma)=\Phi(\gamma) \Phi(1)^{-1}$ group isomorphism, from

$$
\begin{gathered}
\varphi^{*}\left(\epsilon_{\gamma}\right)\left(\omega_{\beta, \gamma^{\prime}}^{\mathbb{L}}\right)=\omega_{\beta, \Phi\left(\Phi^{-1}\left(\gamma^{\prime}\right) \gamma\right)}^{\mathbb{L}} \\
\varphi^{*}\left(\epsilon_{\gamma_{2}}\right)=\epsilon_{\Phi\left(\gamma_{1}\right)^{-1} \Phi\left(\gamma_{1} \gamma_{2}\right)}=\epsilon_{\Phi(1) \Phi\left(\gamma_{2}\right)}\left(\gamma_{1} \gamma_{2}\right)=\Phi(1) \Phi\left(\gamma_{1}\right) \Phi\left(\gamma_{2}\right)
\end{gathered}
$$

Back to step 2: Got homeomorphism $\Phi: X_{\mathbb{K}} \simeq X_{\mathbb{L}}$ and locally constant $\alpha_{X}: J_{\mathbb{K}}^{+} \simeq J_{\mathbb{L}}^{+}$

- The locally constant $\alpha_{x}: J_{\mathbb{K}}^{+} \simeq J_{\mathbb{L}}^{+}$is constant on $x \in G_{\mathbb{K}}^{a b}$. Use symmetries action of $G_{\mathbb{K}}^{a b}$ on ($A_{\mathbb{K}}, \sigma_{\mathbb{K}}$). Isomorphism φ intertwines action of symmetries and get

$$
\alpha_{\gamma x}(\mathfrak{n}) \widetilde{\Phi}(\gamma x)=\widetilde{\Phi}\left(\theta_{\mathbb{K}}(\mathfrak{n}) \gamma x\right)=\varphi(\gamma) \widetilde{\Phi}\left(\theta_{\mathbb{K}}(\mathfrak{n}) x\right)=\alpha_{x}(\mathfrak{n}) \widetilde{\Phi}(\gamma x)
$$

Though don't know if constant on all of $X_{\mathbb{K}}$
Note: Isomorphism type of $G_{\mathbb{K}}^{a b}$: Ulm invariants

Fourth step of (2): Preserving ramification

Result: $N \subset G_{\mathbb{K}}^{\text {ab }}$ subgroup, $G_{\mathbb{K}}^{\text {ab }} / N \xrightarrow{\sim} G_{\mathbb{L}}^{\text {ab }} / \Phi(N)$
\mathfrak{p} ramifies in $\mathbb{K}^{\prime} / \mathbb{K} \Longleftrightarrow \varphi(\mathfrak{p})$ ramifies in $\mathbb{L}^{\prime} / \mathbb{L}$
$\mathbb{K}^{\prime}=\left(\mathbb{K}^{\text {ab }}\right)^{N}$ finite extension and $\mathbb{L}^{\prime}:=\left(\mathbb{L}^{\text {ab }}\right)^{\Phi(N)}$

- Mapping projectors $\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}=e_{\mathbb{K}, \mathfrak{n}}$ (divisibility by \mathfrak{n})

$$
\varphi\left(e_{\mathbb{K}, \mathfrak{n}}\right)=\varphi\left(\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}\right)=\mu_{\varphi(\mathfrak{n})} \mu_{\varphi(\mathfrak{n})}^{*}=e_{\mathbb{L}, \varphi(\mathfrak{n})}
$$

- Use these to show matching of $H_{\mathbb{K}}$

$$
H_{\mathbb{K}} \cong G_{\mathbb{K}}^{\text {ab }} / \vartheta_{\mathbb{K}}\left(\prod_{\mathfrak{q} \neq \mathfrak{p}} \hat{\mathscr{O}}_{\mathfrak{q}}^{*}\right) \cong{\stackrel{\circ}{G_{\mathbb{K}}} \mathrm{p}, \mathfrak{p}}, \quad \text { and } \quad \Phi\left(H_{\mathbb{K}}\right) \cong \stackrel{\circ}{G}_{\mathbb{L}, \varphi(\mathfrak{p})}^{\text {ab }}
$$

$\stackrel{\circ}{G}_{\mathbb{K}, \mathfrak{p}}^{\mathrm{ab}}$ Gal group of max ab extension unramified outside \mathfrak{p}

Intermezzo: ramification matching proves (2) \Rightarrow (3)
isomorphism $\varphi:\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \rightarrow\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right) \Rightarrow$ matching of L-series

- isom of $G^{a b}$ groups \Rightarrow character groups

$$
\psi:{\widehat{G_{\mathbb{K}}}}^{\mathrm{ab}} \sim \widehat{G}_{\mathbb{L}}^{\mathrm{ab}}
$$

- character $\chi \in \widehat{G}_{\mathbb{K}}^{\text {ab }}$ extends to function $f_{\chi} \in C\left(X_{\mathbb{K}}\right)$
- check $\varphi\left(f_{\chi}\right)=f_{\psi(\chi)}$: need matching divisors of conductor
$\bullet \mathfrak{p}$ is coprime to \mathfrak{f}_{χ} iff χ factors over $G_{\mathbb{K}, \mathfrak{p}}^{\text {ab }}$
- seen by ramification result these match: $\psi(\chi)=\Phi^{*}(\chi)$ factoring $\operatorname{over} \Phi\left(G_{\mathbb{K}, \mathfrak{p}}^{\mathrm{ab}}\right)=G_{\mathbb{L}, \varphi(\mathfrak{p})}^{\mathrm{ab}}$
- then $\chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)=\psi(\chi)\left(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n}))\right)$
- then matching KMS_{β} states on $f=f_{\chi}$

$$
\omega_{\gamma, \beta}^{\mathbb{L}}(\varphi(f))=\omega_{\widetilde{\gamma}, \beta}^{\mathbb{K}}(f)
$$

and using arithmetic equivalence
Conclusion: $L_{\mathbb{K}}(\chi, s)=L_{\mathbb{L}}(\psi(\chi), s)$

Fifth Step of $(2) \Rightarrow(1)$: from QSM isomorphism get also

- Isomorphism of local units

$$
\varphi: \hat{\mathscr{O}}_{\mathfrak{p}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\varphi(\mathfrak{p})}^{*}
$$

max $a b$ ext where \mathfrak{p} unramified $=$ fixed field of inertia group $l_{\mathfrak{p}}^{\mathrm{ab}}$, by ramification preserving

$$
\Phi\left(l_{\mathfrak{p}}^{\mathrm{ab}}\right)=l_{\varphi(\mathfrak{p})}^{\mathrm{ab}}
$$

and by local class field theory $l_{\mathfrak{p}}^{\text {ab }} \simeq \hat{\mathscr{O}}_{\mathfrak{p}}^{*}$

- by product of the local units: isomorphism

$$
\varphi: \hat{\mathscr{O}}_{\mathbb{K}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\mathbb{L}}^{*}
$$

- Semigroup isomorphism

$$
\varphi:\left(\mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}, \times\right) \xrightarrow{\sim}\left(\mathbb{A}_{\mathbb{L}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{L}}, \times\right)
$$

by exact sequence

$$
0 \rightarrow \hat{\mathscr{O}}_{\mathbb{K}}^{*} \rightarrow \mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}} \rightarrow J_{\mathbb{K}}^{+} \rightarrow 0
$$

(non-canonically) split by choice of uniformizer $\pi_{\mathfrak{p}}$ at every place

Recover multiplicative structure of the field

- Endomorphism action of $\mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}$

$$
\epsilon_{s}(f)(\gamma, \rho)=f\left(\gamma, s^{-1} \rho\right) e_{\tau}, \quad \epsilon_{s}\left(\mu_{\mathfrak{n}}\right)=\mu_{\mathfrak{n}} e_{\tau}
$$

e_{τ} char function of set $s^{-1} \rho \in \hat{\mathscr{O}}_{\mathbb{K}}$

- $\hat{\mathscr{O}}_{\mathbb{K}}^{*}=$ part acting by automorphisms
- $\overline{\mathscr{O}_{\mathbb{K},+}^{*}}$ (closure of tot pos units): trivial endomorphisms
- $\mathscr{O}_{\mathbb{K},+}^{\times}=\mathscr{O}_{\mathbb{K},+}-\{0\}$ (non-zero tot pos elements of ring of integers): inner endomorphisms (isometries eigenv of time evolution)
- $\varphi\left(\varepsilon_{s}\right)=\varepsilon_{\varphi(s)}$ for all $s \in \mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}$

Conclusion: isom of multiplicative semigroups of tot pos non-zero elements of rings of integers

$$
\varphi:\left(\mathscr{O}_{\mathbb{K},+}^{\times}, \times\right) \xrightarrow{\sim}\left(\mathscr{O}_{\mathbb{L},+}^{\times}, \times\right)
$$

Last Step of $(2) \Rightarrow(1)$: Recover additive structure of the field
Extend by $\varphi(0)=0$ the map

$$
\varphi:\left(\mathscr{O}_{\mathbb{K},+}^{\times}, \times\right) \xrightarrow{\sim}\left(\mathscr{O}_{\mathbb{L},+}^{\times}, \times\right)
$$

Claim: it is additive
Start from induced multipl map of local units $\varphi: \widehat{\mathscr{O}}_{\mathfrak{p}}^{*} \xrightarrow{\sim} \widehat{\mathscr{O}}_{\varphi(\mathfrak{p})}^{*}$

- Fix rational prime p totally split in \mathbb{K}
- Teichmüller lift $\tau_{\mathbb{K}, p}: \overline{\mathbb{K}}_{p}^{*} \hookrightarrow \widehat{\mathscr{O}}_{\mathbb{K}, p}^{*}$ gives multiplicative map of residue fields

$$
\begin{aligned}
& \hat{\mathscr{O}}_{\mathbb{K}, p}^{*} \xrightarrow{\varphi} \hat{\mathscr{O}}_{\mathbb{L}, p}^{*} \\
& \tau_{\mathbb{K}, p}{\underset{\mathbb{K}}{p}}_{*}{ }^{*}-\widetilde{\varphi}_{-} \underset{\overline{\mathbb{L}}_{p}^{*}}{\stackrel{\downarrow}{\bmod p}}
\end{aligned}
$$

- To show additive (hence identity) on residue field, extend Teichmüller lift to

$$
\tau_{\mathbb{K}, p}: \hat{\mathscr{O}}_{\mathbb{K}, p}^{*} \rightarrow \hat{\mathscr{O}}_{\mathbb{K}, p}^{*}: x \mapsto \lim _{n \rightarrow+\infty} x^{p^{n}}
$$

Show then $\varphi: \hat{\mathscr{O}}_{\mathfrak{p}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\varphi}^{*}(\mathfrak{p})$ identity on $\hat{\mathscr{O}}_{\mathfrak{p}}^{*} \cap \mathbb{Z}$

- Set $\mathbb{Z}_{(p \Delta)}$ integers coprime to $p \Delta$ with $\Delta=\Delta_{\mathbb{K}}=\Delta_{\mathbb{L}}$ discriminant
- rational prime a coprime to $\Delta \Rightarrow$ ideal $(a) \mapsto \alpha_{x}(a)$ also in $\mathbb{Z}_{(p \Delta)}$, since $(a)=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$ (distinct primes: totally spit) and α_{x} permutes primes above same rational prime
- φ fixes the element $\left[\left(1,1_{p}\right)\right]$ (preserving ramification) \Rightarrow $\varphi\left(a \cdot 1_{p}\right)=a \cdot 1_{p}$, for $a \in \mathbb{Z}_{(p \Delta)}$
- Injective map $\varpi_{\mathbb{K}}: \mathbb{Z}_{(p \Delta)} \rightarrow X_{\mathbb{K}}: a \mapsto\left[\left(1, a \cdot 1_{p}\right)\right]$
- Then $\varphi\left(\varpi_{\mathbb{K}}(a)\right)=\varphi\left((a) *\left[\left(1,1_{p}\right)\right]\right)=(a) *\left[\left(1,1_{p}\right)\right]=\varpi_{\mathbb{L}}(a)$

Start with residue class \widetilde{a} in $\overline{\mathbb{K}}_{p}^{*}$ and choose integer a congruent to \widetilde{a} $\bmod p$ and coprime to $p \Delta$ (by Chinese remainder thm) \Rightarrow
$\tau_{\mathbb{K}, p}(\widetilde{a})=\tau_{\mathbb{K}, p}(a)$
Conclusion: Continuity $\Rightarrow \varphi$ identity map mod any totally split prime

$$
\varphi(x+y)=\varphi(x)+\varphi(y) \bmod p
$$

tot split primes of arbitrary large norm $\Rightarrow \varphi$ additive
Then Conclusion of $(2) \Rightarrow(1)$:

- Have isomorphism of semigroups of totally positive integers (additive and multiplicative)
- $\mathscr{O}_{\mathbb{K}}$ has \mathbb{Z}-basis of totally positive elements
- Then obtain $\varphi: \mathscr{O}_{\mathbb{K}} \xrightarrow{\sim} \mathscr{O}_{\mathbb{L}} \Rightarrow \mathbb{K} \simeq \mathbb{L}$ field isomorphism

First Step of $(3) \Rightarrow(2)$: identify $J_{\mathbb{K}}^{+}$and $J_{\mathbb{L}}^{+}$compatibly with Artin map Method: Fourier analysis on Number Fields

- Observation: matching of zeta functions, so know same number of primes \mathfrak{p} in \mathbb{K} and \mathfrak{q} in \mathbb{L} over the same rational prime p with inertia degree f
- Need to find a way to match them compatible with the Artin map: $\mathfrak{p} \mapsto \mathfrak{q}$ so that $\psi(\chi)\left(\theta_{\mathbb{L}}(\mathfrak{q})\right)=\chi\left(\theta_{\mathbb{K}}(\mathfrak{p})\right)$ for all characters χ with conductor coprime to p
- Need to show this can be done with a bijection between primes of \mathbb{K} and \mathbb{L}
- Idea: use a combination of L-series as counting function for number of such \mathfrak{q}

L-series and counting functions

- Fix a finite quotient $G_{\mathbb{K}}^{a b} \rightarrow G$
- Set $b_{\mathbb{K}, G, n}(\gamma):=\# B_{\mathbb{K}, G, n}(\gamma)$ cardinality of set

$$
B_{\mathbb{K}, G, n}(\gamma)=\left\{\mathfrak{n} \in J_{\mathbb{K}}^{+}: N_{\mathbb{K}}(\mathfrak{n})=n \text { and } \pi_{G}\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)=\pi_{G}(\gamma)\right\}
$$

- Then use known fact that

$$
\sum_{\substack{n \in \jmath_{\mathbb{K}}^{+} \\ N_{\mathbb{K}}(\mathfrak{n})}}\left(\sum_{\widehat{G}} \chi\left(\pi_{G}(\gamma)^{-1}\right) \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)\right)=b_{\mathbb{K}, G, n}(\gamma)
$$

- Identity of L-functions gives, for fixed norm n,

$$
\sum_{\mathfrak{n} \in J_{\mathbb{K}}^{+}, \gamma \in \widehat{G}} \chi\left(\pi_{G}(\gamma)^{-1}\right) \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)=\sum_{\mathfrak{m} \in J_{\mathbb{L}}^{+}, \gamma \in \widehat{G}} \chi\left(\pi_{G}(\gamma)^{-1}\right) \psi(\chi)\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)
$$

- Using isomorphism $\psi: G_{\mathbb{K}}^{a b} \rightarrow G_{\mathbb{L}}^{a b}$ preserving $G_{\mathbb{K}, n}^{a b}=$ Gal of max abelian ext unramified above prime divisors of n, right-hand-side above gives, for $\left(\psi^{-1}\right)^{*}(G)=\mathcal{G}^{\prime}$,

$$
\sum_{\widehat{G^{\prime}}} \psi^{-1}(\eta)\left(\pi_{G}(\gamma)^{-1}\right) \eta\left(\pi_{G^{\prime}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)\right)
$$

- \mathfrak{m} coprime to \mathfrak{f}_{η} : character on \widehat{G}^{\prime}

$$
\begin{aligned}
& \Xi_{\mathfrak{m}}: \eta \mapsto \psi^{-1}(\eta)\left(\pi_{G}(\gamma)^{-1}\right) \eta\left(\pi_{G^{\prime}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)\right) \text { so that } \\
& \sum_{\widehat{G^{\prime}}} \psi^{-1}(\eta)\left(\pi_{G}(\gamma)^{-1}\right) \eta\left(\pi_{G^{\prime}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)\right)= \begin{cases}\left|\mathcal{G}^{\prime}\right| & \text { if } \Xi_{\mathfrak{m}} \equiv 1 ; \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

- $\bar{\Xi}_{\mathfrak{m}} \equiv 1$ gives

$$
\eta\left(\pi_{G^{\prime}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)\right)=\psi^{-1}(\eta)\left(\pi_{G}(\gamma)\right) \text { for all } \eta \in G^{\prime}
$$

so that $\pi_{G^{\prime}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)=\pi_{G^{\prime}}\left(\left(\psi^{-1}\right)^{*}(\gamma)\right)$.

- So from identity of L-function get counting identity

$$
b_{\mathbb{K}, G, n}(\gamma)=b_{\mathbb{L},\left(\psi^{-1}\right)^{*} G, n}\left(\left(\psi^{-1}\right)^{*}(\gamma)\right)
$$

- $G_{\mathbb{K}, n}^{\text {ab }}$ as inverse limit over finite quotients: same cardinality of

$$
\begin{gathered}
\left.S_{1}=\left\{\mathfrak{n} \in J_{\mathbb{K}}^{+}: N_{\mathbb{K}}(\mathfrak{n})=n, \pi_{G_{\mathbb{R}, n}^{\mathrm{ab}}}\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)\right)=\pi_{G_{\mathbb{K}, n}^{\mathrm{ab}}}(\gamma)\right\} \\
S_{2}=\left\{\mathfrak{m} \in J_{\mathbb{L}}^{+}: N_{\mathbb{L}}(\mathfrak{m})=n, \pi_{G_{\mathbb{L}, n}^{\mathrm{ab}}, n}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)=\pi_{G_{\mathbb{L}, n}^{\mathrm{ab}}, n}\left(\left(\psi^{-1}\right)^{*}(\gamma)\right)\right\}
\end{gathered}
$$

- Artin map $\vartheta_{\mathbb{K}}: J_{\mathbb{K}}^{+} \rightarrow G_{\mathbb{K}, n}^{\mathrm{ab}}$ injective on ideals dividing n : get $\# S_{1}=1$
- $\# S_{2}=1$ gives unique ideal $\mathfrak{m} \in J_{\mathbb{L}}^{+}$with $N_{\mathbb{L}}(\mathfrak{m})=N_{\mathbb{K}}(\mathfrak{n})$ and with

$$
\pi_{G_{\mathbb{K}, n}^{\mathrm{ab}}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)=\pi_{G_{\mathbb{L}, n}^{\mathrm{ab}}}\left(\left(\psi^{-1}\right)^{*}\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)\right)
$$

- Get multiplicative map $\Psi(\mathfrak{n}):=\mathfrak{m}$, isomorphism of $J_{\mathbb{K}}^{+}$and $J_{\mathbb{L}}^{+}$ compatible with Artin map

Second Step of (3) $\Rightarrow(2)$: matching $C\left(X_{\mathbb{K}}\right)$ and $C\left(X_{\mathbb{L}}\right)$ compatibly with $J_{\mathbb{K}}^{+}$and $J_{\mathbb{L}}^{+}$actions

- Idea: extend identification $\psi: C\left(G_{\mathbb{K}}^{a b}\right) \xrightarrow{\sim} C\left(G_{\mathbb{L}}^{a b}\right)$ from $G_{\mathbb{K}}^{a b}$ to $G_{\mathbb{K}}^{a b} \rtimes_{\hat{\sigma}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}}$
- Using $X_{\mathbb{K}, n}:=G_{\mathbb{K}}^{a b} \times{\hat{\hat{O}_{\mathbb{K}}^{*}}} \hat{\mathscr{O}}_{\mathbb{K}, n}$ and $J_{\mathbb{K}, n}^{+}$gen by prime ideals dividing n
- know algebra $C\left(X_{\mathbb{K}, n}\right)$ is generated by the functions

$$
f_{\chi, \mathfrak{n}}: \gamma \mapsto \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right) \chi(\gamma), \quad \chi \in \widehat{G}_{\mathbb{K}, n}^{a b}, \quad \mathfrak{n} \in J_{\mathbb{K}, n}^{+}
$$

- Map $\psi_{n}: C\left(X_{\mathbb{K}, n}\right) \rightarrow C\left(X_{\mathbb{L}, n}\right)$ by

$$
f_{\mathfrak{n}, \chi} \mapsto f_{\Psi(\mathfrak{n}), \psi(\chi)}
$$

well defined by matching ramification and conductors

- Direct limit $\psi=\lim \underset{n}{\rightarrow} \psi_{n}: C\left(X_{\mathbb{K}}\right) \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right)$
- Check algebra homomorphism: from compatibility with Artin map

$$
\begin{gathered}
\psi\left(f_{\chi, \mathfrak{n}}\right)\left(\gamma^{\prime}\right)=f_{\psi(\chi), \Psi(\mathfrak{n})}\left(\gamma^{\prime}\right)=\psi(\chi)\left(\vartheta_{\mathbb{L}}(\Psi(\mathfrak{n})) \psi(\chi)\left(\gamma^{\prime}\right)\right. \\
\psi\left(f_{\chi, \mathfrak{n}}\right)\left(\gamma^{\prime}\right)=\chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right) \chi\left(\psi^{*}\left(\gamma^{\prime}\right)\right)=\left(\psi^{-1}\right)^{*} f_{\chi, \mathfrak{n}} \\
\psi\left(f_{\mathfrak{n}, \chi} \cdot f_{\mathfrak{n}^{\prime}, \chi^{\prime}}\right)=\left(\psi^{-1}\right)^{*}\left(f_{\mathfrak{n}, \chi} \cdot f_{\mathfrak{n}^{\prime}, \chi^{\prime}}\right)=
\end{gathered}
$$

So get multiplicative map:

$$
\left(\psi^{-1}\right)^{*}\left(f_{\mathfrak{n}, \chi}\right) \cdot\left(\psi^{-1}\right)^{*}\left(f_{\mathfrak{n}^{\prime}}, \chi^{\prime}\right)=\psi\left(f_{\mathfrak{n}, \chi}\right) \cdot \psi\left(f_{\mathfrak{n}^{\prime}, \chi^{\prime}}\right)
$$

- Compatibility with time evolution since $N_{\mathbb{L}}(\Psi(\mathfrak{n}))=N_{\mathbb{K}}(\mathfrak{n})$

This completes all implications of main Theorem \square

What then?

- Function fields $\mathbb{K}=\mathbb{F}_{p^{m}}(C)$, curve C over finite field
- Analogies between number fields and function fields
- Same type of QSM systems
- Sneak Preview: purely NT proof seems not to work for function fields ... but NCG proof does!
... coming soon to a lecture hall near you
Thank you!

