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Motives of algebraic varieties (Grothendieck) Universal cohomology
theory for algebraic varieties (with realizations)

• Pure motives: smooth projective varieties with correspondences

Hom((X , p,m), (Y , q, n)) = qCorrm−n
/∼,Q(X ,Y ) p

Algebraic cycles mod equivalence (rational, homological,
numerical), composition

Corr(X ,Y )× Corr(Y ,Z )→ Corr(X ,Z )

(πX ,Z )∗(π
∗
X ,Y (α) • π∗Y ,Z (β))

intersection product in X × Y × Z ; with projectors p2 = p and
q2 = q and Tate twists Q(m) with Q(1) = L−1

Numerical pure motives: Mnum,Q(k) semi-simple abelian category
(Jannsen)
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• Mixed motives: varieties that are possibly singular or not
projective (much more complicated theory!) Triangulated category
DM (Voevodsky , Levine, Hanamura)

m(Y )→ m(X )→ m(X r Y )→ m(Y )[1]

m(X × A1) = m(X )(−1)[2]

• Mixed Tate motives DMT ⊂ DM generated by the Q(m)

Over a number field: t-structure, abelian category of mixed Tate
motives (vanishing result, M.Levine)

Matilde Marcolli Motives in Quantum Field Theory



Quantum Field Theory perturbative (massless) scalar field theory

S(φ) =

∫
L(φ)dDx = S0(φ) + Sint(φ)

in D dimensions, with Lagrangian density

L(φ) =
1

2
(∂φ)2 − m2

2
φ2 − Lint(φ)

Perturbative expansion: Feynman rules and Feynman diagrams

Seff (φ) = S0(φ) +
∑

Γ

Γ(φ)

#Aut(Γ)
(1PI graphs)

Γ(φ) =
1

N!

∫
∑

i pi =0
φ̂(p1) · · · φ̂(pN)U(Γ(p1, . . . , pN))dp1 · · · dpN

U(Γ(p1, . . . , pN)) =

∫
IΓ(k1, . . . , k`, p1, . . . , pN)dDk1 · · · dDk`

` = b1(Γ) loops
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Feynman rules for IΓ(k1, . . . , k`, p1, . . . , pN):
- Internal lines ⇒ propagator = quadratic form qi

1

q1 · · · qn
, qi (ki ) = k2

i + m2

- Vertices: conservation (valences = monomials in L)∑
ei∈E(Γ):s(ei )=v

ki = 0

- Integration over ki , internal edges

U(Γ) =

∫
δ(
∑n

i=1 εv ,i ki +
∑N

j=1 εv ,j pj )

q1 · · · qn
dDk1 · · · dDkn

n = #Eint(Γ), N = #Eext(Γ)

εe,v =

 +1 t(e) = v
−1 s(e) = v

0 otherwise,
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Formal properties reduce combinatorics to 1PI graphs:

• Connected graphs: Γ = ∪v∈T Γv

U(Γ1 q Γ2, p) = U(Γ1, p1)U(Γ2, p2)

• 1PI graphs:

U(Γ, p) =
∏
v∈T

U(Γv , pv )
δ((pv )e − (pv ′)e)

qe((pv )e)

Note: formal properties can be used to construct abstract
“algebro-geometric Feynman rules” (Chern classes; Grothendieck ring)

P. Aluffi, M.M. Algebro-geometric Feynman rules, arXiv:0811.2514
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Parametric Feynman integrals
• Schwinger parameters q−k1

1 · · · q−kn
n =

1

Γ(k1) · · · Γ(kn)

∫ ∞
0

· · ·
∫ ∞

0

e−(s1q1+···+snqn) sk1−1
1 · · · skn−1

n ds1 · · · dsn.

• Feynman trick

1

q1 · · · qn
= (n − 1)!

∫
δ(1−

∑n
i=1 ti )

(t1q1 + · · ·+ tnqn)n
dt1 · · · dtn

then change of variables ki = ui +
∑`

k=1 ηik xk

ηik =

{
±1 edge ± ei ∈ loop `k

0 otherwise

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

ωn

ΨΓ(t)D/2VΓ(t, p)n−D`/2

σn = {t ∈ Rn
+|
∑

i ti = 1}, vol form ωn
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Graph polynomials

ΨΓ(t) = det MΓ(t) =
∑

T

∏
e /∈T

te with (MΓ)kr (t) =
n∑

i=0

tiηikηir

Massless case m = 0:

VΓ(t, p) =
PΓ(t, p)

ΨΓ(t)
and PΓ(p, t) =

∑
C⊂Γ

sC

∏
e∈C

te

cut-sets C (complement of spanning tree plus one edge)
sC = (

∑
v∈V (Γ1) Pv )2 with Pv =

∑
e∈Eext (Γ),t(e)=v pe for

∑
e∈Eext (Γ) pe = 0

with deg ΨΓ = b1(Γ) = deg PΓ − 1

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

stable range −n + D`/2 ≥ 0; log divergent n = D`/2:∫
σn

ωn

ΨΓ(t)D/2
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Graph hypersurfaces
Residue of U(Γ) (up to divergent Gamma factor)∫

σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

Graph hypersurfaces X̂Γ = {t ∈ An |ΨΓ(t) = 0}

XΓ = {t ∈ Pn−1 |ΨΓ(t) = 0} deg = b1(Γ)

• Relative cohomology: (range −n + D`/2 ≥ 0)

Hn−1(Pn−1rXΓ,Σnr(Σn∩XΓ)) with Σn = {
∏

i

ti = 0} ⊃ ∂σn

• Periods:
∫
σ ω integrals of algebraic differential forms ω on a

cycle σ defined by algebraic equations in an algebraic variety

Matilde Marcolli Motives in Quantum Field Theory



Feynman integrals and periods
Parametric Feynman integral: algebraic differential form on cycle
in algebraic variety
But... divergent: where XΓ ∩ σn 6= ∅, inside divisor Σn ⊃ σn of
coordinate hyperplanes

Blowups of coordinate linear spaces defined by edges of 1PI
subgraphs (toric variety P(Γ))

Iterated blowup P(Γ) separates strict transform of XΓ from
non-negative real points

Deform integration chain: monodromy problem; lift to P(Γ)

Subtraction of divergences: Poincaré residuces and limiting
mixed Hodge structure

• S. Bloch, E. Esnault, D. Kreimer, On motives associated to
graph polynomials, arXiv:math/0510011.
• S. Bloch, D. Kreimer, Mixed Hodge Structures and
Renormalization in Physics, arXiv:0804.4399.
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Periods and motives: Constraints on numbers obtained as periods
from the motive of the variety!

• Periods of mixed Tate motives are Multiple Zeta Values

ζ(k1, k2, . . . , kr ) =
∑

n1>n2>···>nr≥1

n−k1
1 n−k2

2 · · · n−kr
r

Conjecture proved recently:
• Francis Brown, Mixed Tate motives over Z, arXiv:1102.1312.

Feynman integrals and periods: MZVs as typical outcome:
• D. Broadhurst, D. Kreimer, Association of multiple zeta values
with positive knots via Feynman diagrams up to 9 loops,
arXiv:hep-th/9609128

⇒ Conjecture (Kontsevich 1997): Motives of graph hypersurfaces
are mixed Tate (or counting points over finite fields behavior)
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Conjecture was first verified for all graphs up to 12 edges:
• J. Stembridge, Counting points on varieties over finite fields
related to a conjecture of Kontsevich, 1998

But ... Conjecture is false!

P. Belkale, P. Brosnan, Matroids, motives, and a conjecture of
Kontsevich, arXiv:math/0012198

Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533

Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.

Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056

• Belkale–Brosnan: general argument shows “motives of graph
hypersurfaces can be arbitrarily complicated”

• Doryn, Brown–Schnetz, Brown–Doryn: explicit counterexamples
(14 edges)
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Motives and the Grothendieck ring of varieties
• Difficult to determine explicitly the motive of XΓ (singular
variety!) in the triangulated category of mixed motives

• Simpler invariant (universal Euler characteristic for motives):
class [XΓ] in the Grothendieck ring of varieties K0(V)

generators [X ] isomorphism classes

[X ] = [X r Y ] + [Y ] for Y ⊂ X closed

[X ] · [Y ] = [X × Y ]

Tate motives: Z[L,L−1] ⊂ K0(M)
(K0 group of category of pure motives: virtual motives)
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Universal Euler characteristics:
Any additive invariant of varieties: χ(X ) = χ(Y ) if X ∼= Y

χ(X ) = χ(Y ) + χ(X r Y ), Y ⊂ X

χ(X × Y ) = χ(X )χ(Y )

values in a commutative ring R is same thing as a ring
homomorphism

χ : K0(V)→ R

Examples:
• Topological Euler characteristic
• Couting points over finite fields
• Gillet–Soulé motivic χmot(X ):

χmot : K0(V)[L−1]→ K0(M), χmot(X ) = [(X , id , 0)]

for X smooth projective; complex χmot(X ) = W ·(X )
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Universality: a dichotomy

After localization (Belkale-Brosnan): the graph hypersurfaces
XΓ generate the Grothendieck ring localized at Ln − L, n > 1

Stable birational equivalence: the graph hypersurfaces span Z
inside Z[SB] = K0(V)|L=0

• P. Aluffi, M.M. Graph hypersurfaces and a dichotomy in the
Grothendieck ring, arXiv:1005.4470
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Graph hypersurfaces: computing in the Grothendieck ring

• P. Aluffi, M.M. Feynman motives of banana graphs,
arXiv:0807.1690

Example: banana graphs ΨΓ(t) = t1 · · · tn( 1
t1

+ · · ·+ 1
tn

)

[XΓn ] =
Ln − 1

L− 1
− (L− 1)n − (−1)n

L
− n (L− 1)n−2

where L = [A1] Lefschetz motive and T = [Gm] = [A1]− [A0]
XΓ∨ = L hyperplane in Pn−1

Γ∨= dual graph = polygon
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Method: Dual graph and Cremona transformation

C : (t1 : · · · : tn) 7→ (
1

t1
: · · · :

1

tn
)

outside Sn singularities locus of Σn = {
∏

i ti = 0}, ideal
ISn = (t1 · · · tn−1, t1 · · · tn−2tn, · · · , t1t3 · · · tn)

ΨΓ(t1, . . . , tn) = (
∏

e

te)ΨΓ∨(t−1
1 , . . . , t−1

n )

C(XΓ ∩ (Pn−1 r Σn)) = XΓ∨ ∩ (Pn−1 r Σn)

isomorphism of XΓ and XΓ∨ outside of Σn
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For banana graph case obtain:

[Lr Σn] = [L]− [L ∩ Σn] =
Tn−1 − (−1)n−1

T + 1

XΓn ∩ Σn = Sn with [Sn] = [Σn]− nTn−2

[XΓn ] = [XΓn ∩ Σn] + [XΓn r Σn]

Using Cremona transformation: [XΓn ] = [Sn] + [Lr Σn]
⇒ χ(XΓn ) = n + (−1)n
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Sum over graphs
Even when non-planar: can transform by Cremona
(new hypersurface, not of dual graph)
⇒ graphs by removing edges from complete graph: fixed vertices

SN =
∑

#V (Γ)=N

[XΓ]
N!

#Aut(Γ)
∈ Z[L],

Tate motive (though [XΓ] individually need not be)

• Spencer Bloch, Motives associated to sums of graphs,
arXiv:0810.1313

Suggests that although individual graphs need not give mixed Tate

contribution, the sum over graphs in Feynman amplitudes (fixed loops,

not vertices) may be mixed Tate
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Feynman rules in algebraic geometry
U(Γ) ∈ R (comm. ring R, finite graph Γ)

U(Γ) = U(Γ1) · · ·U(Γk ) for Γ = Γ1 q · · · q Γk

U(Γ) = U(L)#E(T )
∏

v∈V (T )

U(Γv )

non-1PI: Γ = ∪v∈V (T )Γv

Inverse propagator: U(L) for L = single edge

Algebro-geometric Feynman rules: Γ = Γ1 q Γ2

An1+n2 r X̂Γ = (An1 r X̂Γ1)× (An2 r X̂Γ2)

ΨΓ(t1, . . . , tn) = ΨΓ1 (t1, . . . , tn1 )ΨΓ2 (tn1+1, . . . , tn1+n2 )

In projective space not product but join:

Pn1+n2−1 r XΓ → (Pn1−1 r XΓ1)× (Pn2−1 r XΓ2)

Gm-bundle (assume Γi not a forest)
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Ring of immersed conical varieties F
V ⊂ AN N not fixed, homogeneous ideals (conical), [V ] up to linear

changes of coordinates (less than up to isomorphism)

[V ∪W ] = [V ] + [W ]− [V ∩W ]

[V ] · [W ] = [V ×W ]

embedded version of Grothendieck ring
• Mod by isomorphisms ⇒ maps to K0(V)
• Maps to polynomial invariant

ICSM : F → Z[T ]

not factoring through Grothendieck group
(characteristic classes of singular varieties)
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Algebro-geometric Feynman rules: homomorphisms

I : F → R, U(Γ) := I ([An])− I ([X̂Γ])

⇒ I ([An r X̂Γ]) Feynman rule with

U(L) = I ([A1])

Inverse propagator = affine line [A1] ⇒ Lefschetz motive L
• Universal algebro-geometric Feynman rule

U(Γ) = [An r X̂Γ] ∈ F

Motivic = factors through K0(V)

[An r X̂Γ] = (L− 1)[Pn−1 r XΓ] ∈ K0(V)

(if Γ not a forest) since [X̂Γ] = (L− 1)[XΓ] + 1 affine cone
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Euler characteristics and Feynman rules

• Is the Euler characteristic as Feynman rule?

• Not in projective case: for Γ = Γ1 q Γ2 complement Pn−1 r XΓ is
Gm-bundle over

(Pn1−1 r XΓ1)× (Pn2−1 r XΓ2)

so Euler characteristic χ(Pn−1 r XΓ) = 0

• Trivial in affine case: χ(An r X̂Γ) = 0

• Question (Bloch): is there a modification of the Euler
characteristic χnew ?

χnew (Pn−1 r XΓ) = χnew (Pn1−1 r XΓ1)χnew (Pn2−1 r XΓ2)
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Characteristic classes of singular varieties
• Nonsingular case: Chern class c(V ) = c(TV ) ∩ [V ] with∫

c(TV ) ∩ [V ] = χ(V ) deg of zero dim component
(Poincaré–Hopf)

• Singular case: cCSM(X ) Chern–Schwartz–MacPherson class
(M.H. Schwartz: radial vector fields; MacPherson: functoriality)

- Constructible functions F(X ) functor: f∗(1W ) = χ(W ∩ f −1(p))
- Natural transformation to homology (Chow):
c∗(1X ) = c(TX ) ∩ [X ] for smooth, and MacPherson formula with
Mather classes and local Euler obstructions for general case

Hypersurfaces with isolated singularities ⇒ Milnor numbers
...but XΓ non-isolated singularities
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Properties of cCSM

• Inclusion-exclusion (not isomorphism-invariant)

cCSM(X ) = cCSM(Y ) + cCSM(X r Y )

• classes cCSM(XΓ) in ambient Pn−1

equivalent to knowing the Euler characteristics of iterated
hyperplane sections (Aluffi)

Example: banana graphs: χ(XΓn ) = top deg term

cCSM(XΓn ) = ((1 + H)n − (1− H)n−1 − nH − Hn) · [Pn−1]
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Feynman rules from CSM classes

c∗(1X̂ ) = a0[P0] + a1[P1] + · · ·+ aN [PN ] ∈ A(PN)

natural transformation from constructible function 1X̂ for X̂ ⊂ AN

loc closed in PN to Chow group A(PN)
Define:

GX̂ (T ) := a0 + a1T + · · ·+ aNT N

independent of N, stops at dim X̂ ; invariant under coordinate
changes, with

GX̂∪Ŷ (T ) = GX̂ (T ) + GŶ (T )− GX̂∩Ŷ (T )

from inclusion-exclusion of CSM classes
So it defines a map

ICSM([X̂ ]) = GX̂ (T ), ICSM : F → Z[T ]
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Not easy to see:

ICSM([X̂ ]) = GX̂ (T ), ICSM : F → Z[T ]

is a ring homomorphism

GX̂×Ŷ (T ) = GX̂ (T ) · GŶ (T )

need CSM classes of joins J(X ,Y ) ⊂ Pm+n−1

(sx1 : · · · : sxm : ty1 : · · · : tyn), (s : t) ∈ P1

X̂ × Ŷ affine cone over J(X ,Y ):

c∗(1J(X ,Y )) = ((f (H) + Hm)(g(H) + Hn)− Hm+n) ∩ [Pm+n−1]

c∗(1X ) = Hnf (H) ∩ [Pn+m−1], c∗(1Y ) = Hmg(H) ∩ [Pn+m−1]
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CSM Feynman rule:

UCSM(Γ) = CΓ(T ) = ICSM([An])− ICSM([X̂Γ])

• it is algebro geometric but not motivic:

CΓ1(T ) = T (T + 1)2 CΓ2(T ) = T (T 2 + T + 1)

[An r X̂Γi
] = [A3]− [A2] ∈ K0(V)
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Properties of CΓ(T ):

• CΓ(T ) monic of deg n
• Γ = forest ⇒ CΓ(T ) = (T + 1)n

• Inverse propagator UCSM(L) = T + 1
• Coeff of T n−1 is n − b1(Γ)
• C ′Γ(0) = χ(Pn−1 r XΓ)

⇒ it is a modification of χ(Pn−1 r X̂Γ) giving Feynman rule
(answer to the question of χnew )

Matilde Marcolli Motives in Quantum Field Theory



Deletion–contraction relation
In general cannot compute explicitly [XΓ]: would like relations that

simplify the graph... but cannot have true deletion-contraction relation,

else always mixed Tate... What kind of deletion-contraction?

• P. Aluffi, M.M. Feynman motives and deletion-contraction
relations, arXiv:0907.3225

• Graph polynomials: Γ with n ≥ 2 edges, deg ΨΓ = ` > 0

ΨΓ = teΨΓre + ΨΓ/e

ΨΓre =
∂ΨΓ

∂tn
and ΨΓ/e = ΨΓ|tn=0

• General fact: X = {ψ = 0} ⊂ Pn−1, Y = {F = 0} ⊂ Pn−2

ψ(t1, . . . , tn) = tnF (t1, . . . , tn−1) + G (t1, . . . , tn−1)

Y = cone of Y in Pn−1: Projection from (0 : · · · : 0 : 1) ⇒ isomorphism

X r (X ∩ Y )
∼−→ Pn−2 r Y

Matilde Marcolli Motives in Quantum Field Theory



Then deletion-contraction: for X̂Γ ⊂ An

[An r X̂Γ] = L · [An−1 r (X̂Γre ∩ X̂Γ/e)]− [An−1 r X̂Γre ]

if e not a bridge or a looping edge

[An r X̂Γ] = L · [An−1 r X̂Γre ] = L · [An−1 r X̂Γ/e ]

if e bridge

[An r X̂Γ] = (L− 1) · [An−1 r X̂Γre ]

= (L− 1) · [An−1 r X̂Γ/e ]

if e looping edge

Note: intersection X̂Γre ∩ X̂Γ/e difficult to control motivically: first
place where non-Tate contributions will appear
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Example of application: Multiplying edges
Γme obtained from Γ by replacing edge e by m parallel edges
(Γ0e = Γ r e, Γe = Γ)

Generating function: T = [Gm] ∈ K0(V)∑
m≥0

U(Γme)
sm

m!
=

eTs − e−s

T + 1
U(Γ)

+
eTs + Te−s

T + 1
U(Γ r e)

+

(
s eTs − eTs − e−s

T + 1

)
U(Γ/e).

e not bridge nor looping edge: similar for other cases
For doubling: inclusion-exclusion

U(Γ2e) = L · [An r (X̂Γ ∩ X̂Γo )]− U(Γ)

[X̂Γ ∩ X̂Γo ] = [X̂Γ/e ] + (L− 1) · [X̂Γre ∩ X̂Γ/e ]

then cancellation

U(Γ2e) = (L− 2) · U(Γ) + (L− 1) · U(Γ r e) + L · U(Γ/e)
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Example of application: Lemon graphs and chains of polygons
Λm = lemon graph m wedges; ΓΛ

m = replacing edge e of Γ with Λm

Generating function:
∑

m≥0 U(ΓΛ
m)sm =

(1− (T + 1)s)U(Γ) + (T + 1)Ts U(Γ r e) + (T + 1)2s U(Γ/e)

1− T(T + 1)s − T(T + 1)2s2

e not bridge or looping edge; similar otherwise

Recursive relation:

U(Λm+1) = T(T + 1)U(Λm) + T(T + 1)2U(Λm−1)

am = U(Λm) is a divisibility sequence: U(Λm−1) divides U(Λn−1) if
m divides n
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Determinant hypersurfaces and Schubert cells
Mixed Tate question reformulated in terms of determinant hypersurfaces

and intersections of unions of Schubert cells in flag varieties

• P. Aluffi, M.M. Parametric Feynman integrals and determinant
hypersurfaces, arXiv:0901.2107

Υ : An → A`
2
, Υ(t)kr =

∑
i

tiηikηir , X̂Γ = Υ−1(D̂`)

determinant hypersurface D̂` = {det(xij ) = 0}

[A`
2
r D̂`] = L(`2)

∏̀
i=1

(Li − 1)⇒ mixed Tate

When Υ embedding

U(Γ) =

∫
Υ(σn)

PΓ(x , p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2

If Σ̂Γ normal crossings divisor in A`2
with Υ(∂σn) ⊂ Σ̂Γ

m(A`
2
r D̂`, Σ̂Γ r (Σ̂Γ ∩ D̂`)) mixed Tate motive?
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Combinatorial conditions for embedding Υ : An r X̂Γ ↪→ A`2 r D̂`
• Closed 2-cell embedded graph ι : Γ ↪→ Sg with Sg r Γ union of
open disks (faces); closure of each is a disk.
• Two faces have at most one edge in common
• Every edge in the boundary of two faces

Sufficient: Γ 3-edge-connected with closed 2-cell embedding of
face width ≥ 3.

Face width: largest k ∈ N, every non-contractible simple closed
curve in Sg intersects Γ at least k times (∞ for planar).

Note: 2-edge-connected =1PI; 2-vertex-connected conjecturally
implies face width ≥ 2
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Identifying the motive m(X ,Y ). Set Σ̂Γ ⊂ Σ̂`,g (f = `− 2g + 1)

Σ̂`,g = L1 ∪ · · · ∪ L(f
2){

xij = 0 1 ≤ i < j ≤ f − 1

xi1 + · · ·+ xi,f−1 = 0 1 ≤ i ≤ f − 1

m(A`
2
r D̂`, Σ̂`,g r (Σ̂`,g ∩ D̂`))

Σ̂`,g = normal crossings divisor ΥΓ(∂σn) ⊂ Σ̂`,g

depends only on ` = b1(Γ) and g = min genus of Sg

• Sufficient condition: Varieties of frames mixed Tate?

F(V1, . . . ,V`) := {(v1, . . . , v`) ∈ A`
2
r D̂` | vk ∈ Vk}
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Varieties of frames
• Two subspaces: (d12 = dim(V1 ∩ V2))

[F(V1,V2)] = Ld1+d2 − Ld1 − Ld2 − Ld12+1 + Ld12 + L

• Three subspaces (D = dim(V1 + V2 + V3))

[F(V1,V2,V3)] = (Ld1 − 1)(Ld2 − 1)(Ld3 − 1)

−(L− 1)((Ld1 −L)(Ld23 − 1) + (Ld2 −L)(Ld13 − 1) + (Ld3 −L)(Ld12 − 1)

+(L− 1)2(Ld1+d2+d3−D − Ld123+1) + (L− 1)3

• Higher: difficult to find suitable induction

• Other formulation: Flag`,{di ,ei}({Vi}) locus of complete flags
0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E` = E , with dim Ei ∩ Vi = di and
dim Ei ∩ Vi+1 = ei : are these mixed Tate? (for all choices of di , ei )

• F(V1, . . . ,V`) fibration over Flag`,{di ,ei}({Vi}): class [F(V1, . . . ,V`)]

= [Flag`,{di ,ei}({Vi})](Ld1 − 1)(Ld2 − Le1 )(Ld3 − Le2 ) · · · (Ldr − Ler−1 )

Flag`,{di ,ei}({Vi}) intersection of unions of Schubert cells in flag varieties

⇒ Kazhdan–Lusztig?
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Other approach: Feynman integrals in configuration space

• Özgür Ceyhan, M.M. Feynman integrals and motives of
configuration spaces, arXiv:1012.5485
Singularities of Feynman amplitude along diagonals

∆e = {(xv )v∈VΓ
| xv1 = xv2 for ∂Γ(e) = {v1, v2}}

ConfΓ(X ) = X VΓ r
⋃

e∈EΓ

∆e = X VΓ r ∪γ⊂GΓ
∆γ ,

with GΓ subgraphs induced (all edges of Γ between subset of vertices)

and 2-vertex-connected

ConfΓ(X ) ↪→
∏
γ∈GΓ

Bl∆γX VΓ

iterated blowup description (wonderful “compactifications”:
generalize Fulton-MacPherson)

Conf Γ(X ) = ConfΓ(X ) ∪
⋃

N∈ G−nests

X ◦N

stratification by G-nests of subgraphs (based on work of Li Li)
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Voevodsky motive (quasi-projective smooth X )

m(Conf Γ(X )) = m(X VΓ)⊕
⊕

N∈GΓ-nests,µ∈MN

m(X VΓ/δN (Γ))(‖µ‖)[2‖µ‖]

where MN := {(µγ)∆γ∈GΓ
: 1 ≤ µγ ≤ rγ − 1, µγ ∈ Z} with

rγ = rγ,N := dim(∩γ′∈N :γ′⊂γ∆γ′)− dim ∆γ and ‖µ‖ :=
∑

∆γ∈GΓ
µγ

Class in the Grothendieck ring

[Conf Γ(X )] = [X ]|VΓ| +
∑

N∈GΓ-nests

[X ]|VΓ/δN (Γ)|
∑
µ∈MN

L‖µ‖

Key ingredient: Blowup formulae
• For mixed motives:

m(BlV (Y )) ∼= m(Y )⊕
codimY (V )−1⊕

k=1

m(V )(k)[2k]

• Bittner relation in K0(V): exceptional divisor E

[BlV (Y )] = [Y ]− [V ] + [E ] = [Y ] + [V ]([PcodimY (V )−1]− 1)
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Conf Γ(X ) are mixed Tate motives if X is

To regularize Feynman integrals: lift to blowup Conf Γ(X )

Ambiguities by monodromies along exceptional divisors of the
iterated blowups

Residues of Feynman integrals and periods on hypersurface
complement in Conf Γ(X )

Poincaré residues: periods on intersections of divisors of the
stratification
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Some other recent results:

All the original Broadhurst–Kreimer cases now proved
Mapping to moduli space M̄0,n and using results on multiple zeta

values as periods of M̄0,n (Goncharov-Manin, Brown)

• Francis Brown, On the periods of some Feynman integrals,
arXiv:0910.0114

Chern classes of graph hypersurfaces
Mixed Tate cases possible thanks to XΓ being singular (in low

codimension): Chern–Schwartz–MacPherson classes measure

singularities and can be assembled into an algebro-geometric

Feynman rule: deletion-contraction and recursions

• Paolo Aluffi, Chern classes of graph hypersurfaces and
deletion-contraction relations, arXiv:1106.1447
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Regularization and renormalization
Removing divergences from Feynman integrals by adjusting bare
parameters in the Lagrangian

LE =
1

2
(∂φ)2(1− δZ ) +

(
m2 − δm2

2

)
φ2 − g + δg

6
φ3

Regularization: replace divergent integral U(Γ) by function Uz (Γ)
with pole (z ∈ C∗ in DimReg, ε deformation of XΓ, etc.)

Renormalization: consistency over subgraphs (Hopf algebra
structure)

• Kreimer, Connes–Kreimer, Connes–M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms
of Rota–Baxter algebras
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BPHZ renormalization method:
• Preparation:

R̄(Γ) = U(Γ) +
∑

γ∈V(Γ)

C (γ)U(Γ/γ)

• Counterterm: projection onto polar part

C (Γ) = −T (R̄(Γ))

• Renormalized value:

R(Γ) = R̄(Γ) + C (Γ)

= U(Γ) + C (Γ) +
∑

γ∈V(Γ)

C (γ)U(Γ/γ)
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Connes–Kreimer Hopf algebra H = H(T ) (depends on theory L(φ))

• Free commutative algebra in generators Γ 1PI Feynman graphs

• Grading: loop number (or internal lines)

deg(Γ1 · · · Γn) =
∑

i

deg(Γi ), deg(1) = 0

• Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ

• Antipode: inductively

S(X ) = −X −
∑

S(X ′)X ′′

for ∆(X ) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′

Extended to gauge theories (van Suijlekom): Ward identities as
Hopf ideals
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Algebraic renormalization (Ebrahimi-Fard, Guo, Kreimer)
• Rota–Baxter algebra of weight λ = −1: R commutative unital
algebra; T : R → R linear operator with

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy)

• Example: T = projection onto polar part of Laurent series

• T determines splitting R+ = (1− T )R, R− = unitization of
TR; both R± are algebras

• Feynman rule φ : H → R commutative algebra homomorphism
from CK Hopf algebra H to Rota–Baxter algebra R weight −1

φ ∈ HomAlg(H,R)

• Note: φ does not know that H Hopf and R Rota-Baxter, only
commutative algebras
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• Birkhoff factorization ∃φ± ∈ HomAlg(H,R±)

φ = (φ− ◦ S) ? φ+

where φ1 ? φ2(X ) = 〈φ1 ⊗ φ2,∆(X )〉
• Connes-Kreimer inductive formula for Birkhoff factorization:

φ−(X ) = −T (φ(X ) +
∑

φ−(X ′)φ(X ′′))

φ+(X ) = (1− T )(φ(X ) +
∑

φ−(X ′)φ(X ′′))

where ∆(X ) = 1⊗ X + X ⊗ 1 +
∑

X ′ ⊗ X ′′
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Recent developments

• Yuri Manin proposed a use of algebraic renormalization in the
context of the theory of computation and the halting problem

Yu.I. Manin, Renormalization and computation I: motivation
and background, arXiv:0904.4921

Yu.I. Manin, Renormalization and Computation II: Time
Cut-off and the Halting Problem, arXiv:0908.3430

C.Delaney, M.M., Dyson-Schwinger equations in the theory of
computation, arXiv:1302.5040

• Other questions: relations of the Rota–Baxter formalism to the
algebro–geometric Feynman rules? Motivic version of algebraic
renormalization?
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