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Abstract We propose a construction of anyon systems associated to quantum tori with real multiplication and the
embedding of quantum tori in AF algebras. These systems generalize the Fibonacci anyons, with weaker categorical
properties, and are obtained from the basic modules and the real multiplication structure.
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1 Introduction

Quantum computation refers, broadly, to the use of quantum phenomena such as entanglement and superposition
to perform operations on data. It is believed that quantum computation is significantly more powerful than classical
computation in certain respects, and could lead to advances in many areas of computation such as quantum simu-
lation, cryptography, and database searching. In the quantum setting, one thinks of computation in terms of qubits
instead of classical bits. While classical bits take on precisely one of two possible states (e.g. 0 or 1), the state of a
qubit may be in a superposition of two orthonormal states:

|ψ〉 = α|0〉 + β|1〉.
In the above expression, α and β are complex numbers, and |0〉 and |1〉 form an orthonormal basis for this vector

space. An example of an entangled state of two qubits is

β00 ≡ 1√
2
(|00〉 + |11〉).

In the above state, measurement of one qubit results in a collapse of the wavefunction of the other qubit as well.
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Quantum gates, analogous to classical gates, are implemented by applying unitary operators to qubits. For
example, consider the single-qubit X and Z gates, defined by

X ≡
(

0 1
1 0

)
, Z ≡

(
1 0
0 −1

)
.

We see that X can be interpreted as a bit flip (since X |0〉 = |1〉) and Z can be interpreted as a phase flip (since
Z |+〉 = |−〉, where |±〉 ≡ 1√

2
(|0〉 ± |1〉)). Similarly, one can construct quantum gates that act on two or more

qubits.
A set of quantum gates is universal if any operation possible on a quantum computer can be realized to arbitrary

accuracy by a finite sequence of gates in the set. A well known example of an anyon system that is universal for
quantum computation is known as the Fibonacci anyons [15,22,29].

In this paper, we make a proposal for a possible construction of anyon systems based on the geometry of quantum
tori with real multiplication. The Fibonacci anyons are recovered as a special case. Except in the Fibonacci case,
however, the systems described here have weaker properties from the categorical standpoint. In particular, they
do not arise from modular tensor categories. Nonetheless, they still exhibit some of the behavior of the Fibonacci
anyons.

Our construction is based on the embedding of quantum tori in AF algebras and on the description of AF algebras
in terms of Bratteli diagrams, and on the basic modules of the quantum torus that give the real multiplication structure
when the modulus is a quadratic irrationality.

We first describe how anyon systems in the usual sense (those arising from modular tensor categories and
the associated fusion rules) determine Bratteli diagrams describing the fusion paths and associated AF algebras
of operators acting on the Hilbert space of the system. In the Fibonacci case, we show that this gives the usual
description of the anyon system. We also show that, in general, the K0-group of the AF algebra arising from an
anyon system can be described in terms of the eigenvalues of the fusion matrices and the number field generated
by them.

The opposite process, from AF algebras to anyon systems, cannot always be carried out, but we focus on only
those AF algebras Aθ in which quantum tori Aθ with real multiplication embed, with the embedding inducing
an isomorphism on K0. In this setting we use the geometry of the quantum torus to provide a candidate for an
associated anyon system.

We first show that the AF algebra Aθ can be equivalently described by a Bratteli diagram with incidence matrix
given by a matrix in GL2(Z) that fixes θ (which exists because θ is a quadratic irrationality), or by a Bratteli diagram
with incidence matrix given by the fusion matrix N1 of the anyon system, of the form

N1 =
(

Tr(g) 1
1 0

)
,

where x0 = 1 and x1 are the two anyon types in the system, with x0 ⊗xi = xi ⊗x0 = xi and x1 ⊗x1 = x⊕Tr(g)
1 ⊕x0.

The Fibonacci case corresponds to Tr(g) = 1. We compute explicitly the S-matrix of the resulting fusion rule.
The approximations in the AF algebra Aθ to the generators U and V of the quantum torus are phase shifter and
downshift permutation quantum gates on the Hilbert space of the fusion paths of the anyon system.

We show that the fusion ring determined by the fusion rules of this anyon system is isomorphic to K0(Aθ ) with
the product given by identifying it, via the range of the trace, with an order in the real quadratic field Q(θ). We then
propose that a categorification of this fusion ring is obtained by considering basic modules Egk (θ), k ∈ Z, with
the tensor product Eg(θ)⊗Aθ

· · · ⊗Aθ
Eg(θ) = Egk (θ). Thus, the basic module X1 = Eg(θ) with g(θ) = θ and

X0 = Aθ have classes x1 = [Eg(θ)] and x0 = 1 in K0(Aθ ) that satisfy the fusion rules. From this perspective,
we describe the F-matrices as homomorphisms between sums of basic modules on the quantum torus, and we
formulate a version of the pentagon relation as an equation in the quantum torus Aθ . We suggest a possible
approach to constructing solutions using elements in the algebra that satisfy a pentagon identity, related to the
quantum dilogarithm function.

In the original Fibonacci case, we reformulate the braiding action in terms of the AF algebra and we show that
elements of the K0-group, seen as dimension functions, determine associated disconnected braidings of the anyons.
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A word of comment about the title of this paper: our focus is primarily on anyon systems, for which we propose
a construction based on noncommutative tori with real multiplication. Although other topics like quantum gates
are touched upon only briefly in Sect. 4.4, our title emphasizes the relation to quantum computing, because anyons
with their fusion rules lie at the heart of topological quantum computing, where quantum gates are given by anyon
braiding. The Fibonacci anyons, which are the prototype example of anyon system that we use to model our general
construction, are universal for quantum computation. As we show in this paper, for more general noncommutative
tori the resulting anyon systems have weaker categorical properties then the Fibonacci anyons. Nonetheless, our
emphasis in the title stresses the fact that, in our viewpoint, the main motivating question for this work is whether
noncommutative tori with real multiplication can be used to model quantum computation.

2 Anyon Systems

An anyon is a two-dimensional quasiparticle with nontrivial braiding statistics, that is, swapping two identical
anyons induces a nontrivial phase shift of the wavefunction. For anyons with abelian braiding statistics:

ψ �→ eπ iθψ , with θ ∈ R\Z. (2.1)

More generally, one may have anyons with non-abelian braiding statistics, corresponding to higher-dimensional
representations of the braid group:

ψα �→
∑
β

ραβψβ,

with ρ a unitary square matrix with dimension corresponding to the degeneracy of the system, see [22].
Note that this property is unique to two dimensions; in three spacial dimensions, swapping two particles results

in a phase shift of only +1 (bosons) or −1 (fermions). One performs computation by swapping these anyons in
various ways, which can be interpreted as acting on the system by the braid group. The result of a computation is
measured by fusing the anyons together in a certain order, and measuring the topological q-spin of the resulting
product at each step of the fusion. The set of possible fusion paths is the basis for the corresponding Hilbert space
of the system.

2.1 Fusion Rules

An anyon system is specified by a list of the different particle types and fusion rules that assign to a pair of anyons
a combination of resulting anyons,

xi ⊗ x j = ⊕k N k
i j xk, (2.2)

where the non-negative integers N k
i j specify the admissible fusion channels.

One requires that one of the anyon types corresponds to the vacuum 1, the ground state of the system that satisfies

1 ⊗ 1 = 1 and 1 ⊗ xi = xi ⊗ 1 = xi

for all anyon types in the system. We will label the anyon types {x0, . . . , xN } so that x0 = 1.
One also assumes that each anyon xi has a dual x∗

i , which is also one of the anyons in the list. The vacuum 1 is
self-dual.

The fusion coefficients satisfy the identities

N k
0 j = δ jk, N 0

i j = δi j ′
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and

N k
i j = N k

ji = N j ′
ik′ = N k′

i ′ j ′,

where xi ′ = x∗
i denotes the dual anyon, so that, if Ni is the matrix with (Ni ) jk = N k

i j , then Ni ′ = N t
i , the transpose

matrix [30].
Let 	i = diag(λi j ) be the diagonal matrix with entries the eigenvalues λi j of the matrix Ni , and let Si be the

matrix with columns the corresponding eigenvectors.

2.2 Categorical Setting

We recall briefly some categorical notions relevant to anyon based quantum computing. For more details, we refer
the reader to [11] and other references below.

Modular tensor categories provide the typical categorical setting considered to describe anyon systems (see
[17,34]). However, here we will be considering systems that satisfy weaker categorical structures, hence we review
here the simplest levels of categorical structure that we will be working with.

A category C is semi-monoidal if it is endowed with a functor ⊗ : C × C → C, and with natural associativity
isomorphisms

τX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z

for all X,Y, Z ∈ Obj(C) satisfying the pentagon relation

(τX,Y,Z ⊗ 1W ) ◦ τX,Y⊗Z ,W ◦ (1X ⊗ τY,Z ,W ) = τX⊗Y,Z ,W ◦ τX,Y,Z⊗W .

It is braided semi-monoidal if it also has natural symmetry isomorphisms

σX,Y : X ⊗ Y → Y ⊗ X

for all X,Y ∈ Obj(C) satisfying the hexagon relation

τX,Y,Z ◦ σX⊗Y,Z ◦ τX,Y,Z = (σX,Z ⊗ 1Y ) ◦ τX,Z ,Y ◦ (1X ⊗ σY,Z ).

The braiding is symmetric if σX,Y ◦ σY,X = 1X for all X,Y ∈ Obj(C).
A category C is monoidal (or tensor) if it is semi-monoidal and has a unit object 1 ∈ Obj(C) with natural

isomorphisms λX : 1 ⊗ X → X and ρX : X ⊗ 1 → X satisfying the triangle relation

1X ⊗ λY = (ρX ⊗ 1Y ) ◦ τX,1,Y .

Given a semi-monoidal category C, its unit augmentation C+ is a monoidal category given by the coproduct
C 
 I , where I is the trivial group seen as a category with a single object 1 and morphism 11, and with the tensor
product ⊗ on C extended by − ⊗ 1 = 1 ⊗ − = I dC
I , see [14].

A category C is braided monoidal if it is monoidal and braided semi-monoidal, with the compatibility between
the braiding and the unit given by

λX ◦ σX,1 = ρX .

A category C is C-linear if HomC(X,Y ) are C-vector spaces, for all X,Y ∈ Obj(C). It is semisimple if it is an
abelian category in which every object can be written as a direct sum of simple objects, and finite if there are only
finitely many simple objects up to isomorphism. If C is a monoidal category and it is C-linear finite semisimple,
one assumes also that the unit object 1 is a simple object. A fusion category is a C-linear finite semisimple rigid
tensor category where all the Hom spaces are finite dimensional.
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2.3 Fusion Rules and Categorification

Specifying anyon systems on the basis of the particle types and fusion rules leads to a set of discrete data, which
can be expressed algebraically in the form of a fusion ring. The underlying categorical setting can then be seen as
a categorification of the fusion rules and fusion ring.

We can formulate more precisely this procedure as in [31], in the form of modular data, which may or may not
come from a modular tensor category.

Definition 2.1 A modular fusion rule consists of

(1) a set {xi }i=1,...,N of anyon types,
(2) a charge conjugation matrix Ci j = δi i ′ where xi ′ = x∗

i is the dual,
(3) a set of N × N -matrices Ni = (N k

i j ), for i = 1, . . . , N with entries in Z≥0 and with a common basis of
eigenvectors,

Ni = S̃	i S̃†, (2.3)

where 	i = diag(λi j ) is the diagonal matrix with entries the eigenvalues of Ni and the columns of S̃ are the
corresponding eigenvectors.

Modular fusion data (see Definition 2.1 of [31]) satisfy the properties above and are additionally endowed with
a diagonal matrix T with Ti j = δi jθ j and θi ∈ U (1), satisfying (ST )3 = D+S00 S2, where S = D−1 S̃ with
D = (

∑
i d2

i )
1/2 with di the Perron–Frobenius eigenvalue of Ni , and D+ = ∑

i θi d2
i . Not all modular fusion data

come from modular tensor categories, see the classification results of [31]. We will not be concerned with modular
tensor categories here, and we will only look at a weaker requirement for a categorification of fusion rules.

The fusion ring R associated to a modular fusion rule is obtained by considering the polynomial ring
Z[x1, . . . , xN ] modulo the ideal generated by the relations xi x j = ∑

k N k
i j xk . The categorification problem then

consists of constructing a braided monoidal category C with K0(C) = R.

2.4 Fibonacci Anyons

A simple but very interesting model of anyon system used in topological quantum computation is known as the
Fibonacci anyon model [15,22,29].

In this model we have two possible particles, denoted by x0 = 1 and x1 = τ . The fusion rules are

x0 ⊗ x0 = x0, x0 ⊗ x1 = x1 ⊗ x0 = x1, and x1 ⊗ x1 = x0 ⊕ x1. (2.4)

The final fusion rule above implies that fusing two q-spin 1 quasiparticles results in a quasiparticle with q-spin
in a superposition of 0 and 1. This model is enticing because it is the simplest topological model that is universal,
in the sense that every unitary operation on the Hilbert space can be approximated to arbitrary accuracy by braiding
alone.

Our goal is to reformulate and study this system and some direct generalizations in noncommutative geometry
terms.

3 Anyon Systems and AF Algebras

We show that fusion rules for anyon systems determine the data of a stationary Bratteli diagram, which specifies
an AF (approximately finite dimensional) C∗-algebra with a representation on a Hilbert space that is isomorphic
to the state space of the anyon system described in terms of fusion paths. We also show that the K0 group of the
AF algebra, which can be computed as a direct limit of abelian groups over the Bratteli diagram, has an explicit



68 M. Marcolli, J. Napp

expression in terms of the quantum dimensions of the anyon system and it is endowed with a product structure
induced by the fusion ring of the anyon system.

3.1 Bratteli Diagrams and AF Algebras

We recall here a few well known facts about Bratteli diagrams and AF algebras that we need to use in the following
(see [4,10]).

A Bratteli diagram is an infinite directed graph 
 = (V, E) where the vertex set has a partitioning V = ∪n≥0Vn

and the edge set has a partitioning E = ∪n≥0 En , where En is the set of oriented edges with source vertex in Vn

and target vertex in Vn+1. One further assumes that V0 consists of a single vertex. The incidence matrices ϕn of the
Bratteli diagrams are given by (ϕn)i j = #{e ∈ En | s(e) = vi ∈ Vn, t (e) = v j ∈ Vn+1}.

Given a Bratteli diagram 
 one can form new diagrams 
′ by telescoping. Namely, given a sequence 0 < m1 <

· · · < mk < · · · , the new diagram 
′ has V ′
n = Vmn and edge set E ′

n given by all the possible directed paths in
the original diagram 
 with source in Vmn and target in Vmn+1 . The incidence matrices are given by the product

ϕ′
n = ∏mn+1−1

k=mn
ϕk .

An AF algebra A is a C∗-algebra given by a direct limit

A = lim−→
n

An

of finite dimensional C∗-algebras An . By Wedderburn’s theorem, the latter are direct sums of matrix algebras over
C,

An =
Nn⊕

k=1

Mrk (C).

An AF algebra can therefore always be described in terms of a Bratteli diagram (see [4]), where one has #Vn = Nn

with the vertices in Vn decorated by the direct summands Mrk (C). The embedding An ↪→ An+1 of the direct system
of finite dimensional algebras is determined by the incidence matrix ϕn , namely, one embeds the matrix algebra
Mri (C) attached to the vertex vi ∈ Vn in the matrix algebra Mr j (C) attached to the vertex v j ∈ Vn+1 with
multiplicity (ϕn)i j ,

Mri (C)
⊕(ϕn)i j ↪→ Mr j (C).

Isomorphism of Bratteli diagrams 
 = (V, E) and 
′ = (V ′, E ′) is defined as a bijection of V and V ′ and E
and E ′ preserving the grading, that intertwines the source and target maps.

One considers the set of Bratteli diagrams up to the equivalence relation generated by isomorphisms and telescop-
ing. It is shown in [4] that the equivalence class of the Bratteli diagram under this equivalence relation is a complete
isomorphism invariant of the AF algebra. A complete isomorphism invariant of AF algebras of K -theoretic nature
is given by the dimension group (see [10]), which is the ordered K0-group of the AF algebra and can be obtained
as a direct limit of abelian groups associated to the Bratteli diagram.

A Bratteli diagram 
 is stationary if #Vn = N and ϕn = ϕ for all n ≥ 1. It is simple if there is a telescoping 
′
such that all entries of the incidence matrices ϕ′

n are positive.
Associated to a Bratteli 
, we also consider a Hilbert space H, obtained as a direct limit of the system of finite

dimensional Hilbert spaces

Hn =
Nn⊕

k=1

C
rk (3.1)

with embeddings Hn ↪→ Hn+1 determined by the incidence matrices ϕn of 
, with suitable normalization factors
so that the embeddings are isometries, as in (2.32)–(2.35) of [18].
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3.2 Fibonacci AF Algebra and Fibonacci Anyons

We reformulate the fusion properties of a system of Fibonacci anyons in terms of the data of an AF algebra,
determined via a Bratteli diagram.

Proposition 3.1 The fusion properties of a system of Fibonacci anyons with an arbitrarily large number of par-
ticles are encoded in the Fibonacci AF C∗ algebra given by the direct limit A = lim−→n

An of matrix algebras
An = MFib(n)(C) ⊕ MFib(n−1)(C), with Fib(n) the n-th Fibonacci number, with embeddings φn : An ↪→ An+1

implemented by the matrix describing the basic fusion rules (2.4),

ϕ =
(

1 1
1 0

)
(3.2)

Proof One can diagrammatically describe the fusion properties of configurations anyons via a Bratteli diagram,
which depicts the possible fusion paths in a system of an arbitrary number of particles. The Bratteli diagram for a
system of Fibonacci anyons is of the form

x1 ��

���
��

��
��

��
��

��
� x1 ��

���
��

��
��

��
��

��
� x1 ��

���
��

��
��

��
��

��
� x1 ��

���
��

��
��

��
��

��
� · · ·

x1

����������

���
��

��
��

�

x0

����������������
x0

����������������
x0

����������������
x0

���������������� · · ·
where x1 represents a Fibonacci anyon and x0 = 1 represents the particle with trivial braiding statistics. Note that
this diagram depicts how an x1 particle fused with an x1 particle can result in an x0 or x1 particle, respectively, with
probabilities p(x0) = τ−2 and p(x1) = τ−1, with τ = (1 + √

5)/2 the golden ratio (see [32]); while an x0 fused
with an x1 can result only in an x1. For such a system with N anyons, there will be N columns in the corresponding
Bratteli diagram.

More precisely, we check that the Hilbert space of the system, as defined by the Bratteli diagram, agrees with
the Hilbert space of the anyon system.

Recall that a basis of the Hilbert space of the system is given by the set of fusion paths. It is known that the fusion
tree basis for fusions of N Fibonacci anyons, that is the counting of all possible labelings of the fusion paths, has
cardinality Fib(N ), see [32].

Thus, we can identify the Hilbert space HN = C
Fib(N ) of a system of N Fibonacci anyons system with the

Hilbert space C
Fib(N ) � C

Fib(N−1) ⊕ C
Fib(N−2) constructed after N steps of the Bratteli diagram above, where we

replace the labeling x0 and x1 on the nodes with the dimensions of the corresponding Hilbert space at each level
and total q-spin. The diagram is given by

1 ��

���
��

��
��

��
��

��
� 2 ��

���
��

��
��

��
��

��
� 3 ��
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��
� 5 ��

��	
		

		
		

		
		

		
		

· · · ��
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��������������� · · ·

������������������
Fib(n − 1)

������������������
· · ·

We recognize this diagram as describing the direct system of Hilbert spaces HN that give a representation of
the Fibonacci AF algebra (see [8]). This is the AF C∗-algebra A given by A = ∪n≥1An with An = MFib(n)(C)⊕
MFib(n−1)(C) where Mn(C) is the full matrix algebra of n × n matrices, and the embeddings of An in An+1 are as
specified in the diagram. The AF algebra A is obtained as the direct limit over the stationary Bratteli diagram with
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ϕn =
(

1 1
1 0

)
.

In terms of the anyons model, the Fibonacci AF algebra A = Aτ is the algebra of operators acting on the Hilbert
space of the anyon system given by a direct limit H = lim−→n

Hn with dim Hn = Fib(n +1) = Fib(n)+Fib(n −1).��
Corollary 3.2 The Fibonacci AF algebra computed by the Bratteli diagram of Proposition 3.1 is isomorphic to the
AF algebra computed by the stationary Bratteli diagram with incidence matrix

ϕ =
(

0 1
1 1

)
. (3.3)

Proof The incidence matrices (3.2) and (3.3) are related by a unitary conjugation(
0 1
1 0

)(
0 1
1 1

) (
0 1
1 0

)
=

(
1 1
1 0

)
.

��

3.3 AF Algebras from Anyon Systems

Suppose given an anyon system, with fusion rules defined by the data {xi }i=0,...,N−1 and N k
i j as in Definition 2.1.

For each i , form a stationary Bratteli diagram 
i with #Vn = N for all n ≥ 1, with the single vertex of V0 labelled
by x0 and the N vertices of Vn labelled by {xi }i=0,...,N−1. The incidence matrices are taken to be ϕi,n = ϕi = Ni .

These Bratteli diagrams define AF algebras Ai = lim−→n
Ai,n acting on Hilbert spaces Hi = lim−→n

Hi,n , as in (3.1),

with Ai,n = Mdi,n (C)
⊕N .

Lemma 3.3 The Hilbert space H = ⊕iHi , with the Hi determined by the Bratteli diagram 
i as above, is
isomorphic to the Hilbert space of the anyon system.

Proof The embeddings Hi,n ↪→ Hi,n+1 are determined by the incidence matrices ϕi,n = ϕi of 
i , normalized so
as to obtain an isometry, see [18]. Thus, the Hilbert space Hi,n = ⊕N−1

j=0 Hi,n, j has dimension

di,n = dim Hi,n =
∑

j1,..., jn

N j2
i j1

· · · N jn−1
i jn

, (3.4)

with the individual component Hi,n, j of dimension

di,n, j = dim Hi,n, j =
∑

j1,..., jn−1

N j2
i j1

· · · N jn−1
i j .

The total Hilbert space H is then given by the direct limit of the ⊕iHi,n of dimensions dn = ∑
i di,n . This

counting of dimensions agrees with the usual counting of dimensions for the Hilbert space of anyon fusion paths
(see for instance §4.1.3 of [23]). ��

The AF algebra A = ⊕i Ai then acts as operators on the Hilbert space H of the anyon system.
Two torsion-free abelian groups of finite rank G1 and G2 are quasi-isomorphic if there exist morphisms f1 :

G1 → G2 and f2 : G2 → G1 with f1 ◦ f2 = n idG2 and f2 ◦ f1 = n idG1 for some n ∈ N.
For an algebraic integer λ let Kλ = Q[λ] with Oλ the ring of integers and set, as in [9],

Lλ = Oλ[λ−1]. (3.5)
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We then obtain the following result relating the AF algebra to the number field generated by the eigenvalues of
the fusion matrices. For a detailed study of the role of this number field in the setting of modular tensor categories,
we refer the reader to [6].

Proposition 3.4 The K0-group K0(Ai ) of the AF algebra Ai of the anyon system is quasi-isomorphic to

LAi :=
⊕

j

Lλi j , (3.6)

where λi j are the eigenvalues of the fusion matrix Ni .

Proof The dimension group of an AF algebra A, that is, the K0-group as a scaled ordered group, can be computed
as a direct limit over the Bratteli diagram, [10], with

(K0(A), K0(A)
+, [1A]) = lim−→

ϕn

(K0(An), K0(An)
+, [1An ]). (3.7)

For the stationary Bratteli diagram
i withϕi,n = ϕi , and with Ai,n = ⊕N−1
j=0 Mdi,n, j (C), we have K0(Ai,n) = Z

N ,
with the standard ordering and unit, and the limit is

(K0(Ai ), K0(Ai )
+, [1Ai ]) = lim−→

ϕi

Z
N . (3.8)

We use the approach of Dugas [9] to evaluate direct limits of the form (3.8). Under the assumption that ϕ :
Z

N → Z
N is an injective homomorphism, let Spec(ϕ) the set of eigenvalues of ϕ. These are algebraic integers. It

is shown in [9] that the direct limit is quasi-isomorphic to

G = lim−→
ϕ

Z
N �

⊕
λ∈Spec(ϕ)

L⊕nλ
λ , (3.9)

where nλ is the dimension of the Jordan block Jnλ(λ) in the Jordan normal form of ϕ.
The matrix ϕi = Ni is by construction equal to Ni = S̃	i S̃†, as in (2.3) with 	i = diag(λi j ) the diagonal

matrix of eigenvalues. Thus, using the above, we can identify, up to quasi-isomorphism, the direct limit abelian
group K0(Ai ) with

⊕
j Lλi j . ��

Notice that LAi = ⊕
j Lλi j above is just considered as an abelian group. We now show that there is a ring

structure on ⊕i LAi coming from the fact that the eigenvalues λi j of the fusion matrices satisfy a Verlinde formula,
and we compare it with the fusion ring of the anyon system.

Lemma 3.5 Consider the abelian group LA = ⊕i LAi with LAi as in (3.6). The Verlinde formula for the eigenvalues
λi j of the fusion matrices Ni implies that LA has a ring structure that recovers the fusion ring of the anyon system.

Proof The eigenvalues λi j of the fusion matrices Ni satisfy the Verlinde formula (see in (8) of [6])

λajλbj =
∑

c

N c
abλc, j .

For a fixed j , this is the same multiplicative structure as in the fusion ring of the anyon system Z[x0, . . . , xN−1]/
(xi x j − ∑

k N k
i j xk). ��

In general, one cannot conversely construct an anyon system from any arbitrary data of an AF algebra and its
Bratteli diagrams. However, we will see in the next section that there is a particular class of AF algebras in which
quantum tori with real multiplication embed with isomorphic K0, for which one can use the additional structure of
the quantum torus with real multiplication to construct an anyon system. The Fibonacci anyons are recovered as a
particular case in this class.
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4 Anyon Systems and Quantum Tori with Real Multiplication

We now restrict our attention to AF algebras Aθ associated to the continued fraction expansion of an irrational
number θ that is a quadratic irrationality. It is well known [24] that the quantum torus Aθ of modulus θ can be
embedded in the AF algebra Aθ in such a way as to induce an isomorphism on K0. We use the geometry of quantum
tori with real multiplication to construct anyon systems associated to an arbitrary quadratic irrationality θ , which
generalize the case of the Fibonacci anyons, where θ = τ = (1 +√

5)/2 is the golden ratio. The real multiplication
structure determines the fusion rules for the resulting anyon system.

4.1 AF Algebras and Quantum Tori

The quantum torus of modulus θ ∈ R is the universal C∗-algebra Aθ generated by two unitaries U, V satisfying
the commutation relation

U V = e2π iθV U. (4.1)

We will be concerned with the case where the modulus is irrational θ ∈ R � Q, and in particular.
It was shown in [24,25] that the C∗-algebra Aθ of the quantum torus can always be embedded into an AF algebra

Aθ so that the embedding determines an isomorphism on K0 preserving the positive cone. The AF algebra Aθ of
[24] is obtained by considering the continued fraction expansion of θ = [c0, c1, c2, . . .], with qn the denominators
of the successive convergents of the expansion. One considers the algebras

An,θ = Mqn (C)⊕ Mqn−1(C). (4.2)

The embeddings An−1,θ ↪→ An,θ are given by

ϕn =
(

0 1
1 cn

)
,

Mqn−1(C)⊕ Mqn−2(C) → Mqn−1(C)⊕ (Mqn−2(C)⊕ Mqn−1(C)
⊕cn

) ⊂ Mqn (C),

where cn is the n-th digit of the continued fraction expansion, satisfying

qn = cnqn−1 + qn−2.

As in Corollary 3.2, one can equivalently work (as in [18,24]) with embeddings of the form

ϕn =
(

cn 1
1 0

)
.

Note that the AF algebra Aθ is not the quantum torus itself. Rather, the quantum torus Aθ is embedded into Aθ .

4.2 Quantum Tori with Real Multiplication

We are especially interested here in the case of quantum tori Aθ with irrational modulus θ ∈ R � Q that is a
quadratic irrationality, that is, a solution of a quadratic polynomial equation over Q, or equivalently θ ∈ K � Q,
with K a real quadratic field. A theory of quantum tori with real multiplication was initiated by Manin [21], as
candidate geometric objects that may play, in the case of real quadratic field, a similar role as elliptic curves with
complex multiplication play in the imaginary quadratic case. The theory was further developed in [27] and [26,33].

As in [19], we denote by Red = ∪n≥1Redn the semigroup of reduced matrices in GL2(Z), with

Redn =
{(

0 1
1 k1

)
· · ·

(
0 1
1 kn

)
| k1, . . . , kn ∈ N

}
. (4.3)
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All reduced matrices are hyperbolic and every conjugacy class g of hyperbolic matrices in GL2(Z) contains reduced
representatives, all of which have the same length �(g). The number of such representatives is �(g)/k(g) where
k(g) is the largest integer such that g = hk(g) for some h [19].

Lemma 4.1 Let Aθ be a quantum torus with real multiplication, namely θ is a quadratic irrationality. Then the
AF algebra Aθ in which Aθ embeds is determined by a stationary Bratteli diagram with #Vn = 2 for all n ≥ 1 and
with incidence matrix ϕn = ϕ ∈ Red ⊂ GL2(Z) that fixes the modulus,

ϕ(θ) = aθ + b

cθ + d
= θ, where ϕ =

(
a b
c d

)
.

Proof Let Aθ be the AF algebra with An = Mqn (C) ⊕ Mqn−1(C), as above, in which the quantum torus Aθ

embeds. The AF algebra Aθ is determined by a Bratteli diagram 
θ of the form

q0
c1 ��

���
��

��
��

��
��

��
� q1

c2 ��

���
��

��
��

��
��

��
� · · · ��

���
��

��
��

��
��

��
��

· · · cN ��

���
��

��
��

��
��

��
��

qN
c1 ��

���
��

��
��

��
��

��
��

qN+1
a2 ��

��



























 · · ·

q−1

����������

����
��

��
��

q−1

����������������
q0

�����������������
q1

����������������� · · ·

����������������� · · ·

�����������������
qN

������������������
qN+1 · · ·

where q−1 = q0 = 1 and qn = cnqn−1 + qn−2 are the ranks of the matrix algebras attached to the vertices.
If θ ∈ R is a quadratic irrationality, then there exists a matrix g ∈ SL2(Z) such that g · θ = θ with g acting

by fractional linear transformations. Moreover, the continued fraction expansion of θ is eventually periodic. Let
c1, . . . , cN be the period of the continued fraction expansion of θ .

We telescope the Bratteli diagram 
θ to a new 
′
θ that collapses together N successive steps from V1 to VN , and

then the next N steps and so on, so that in 
′
θ we have ϕ′

�N+n = ∏N
k=1 ϕk , for all � ≥ 0. Then the resulting diagram

is isomorphic to the stationary diagram

q0 ��

���
��

��
��

��
��

��
��

qN ��

���
��

��
��

��
��

��
��

· · ·

q−1

����������

����
��

��
��

q−1 ��

�����������������
qN−1 ��

����������������� · · ·
with incidence matrix

g =
(

a b
c d

)
∈ Red ⊂ GL2(Z).

��
Example 4.2 In particular, in the case of with θ = τ , the golden ratio, we find a copy of the quantum torus Aτ

embedded in the Fibonacci AF algebra. The quantum torus Aτ with modulus the golden ratio τ = (1 + √
5)/2

embeds in the Fibonacci AF C∗-algebra A of Proposition 3.1, inducing an isomorphism on K0. Indeed, the golden
ratio has continued fraction expansion τ = [1, 1, 1, 1, 1, . . .], hence we recognize the Fibonacci AF algebra A as
the AF algebra of [24] for the quantum torus Aτ .

4.3 Bimodules and Quantum Tori with Real Multiplication

As above, consider the action of GL2(Z) on P
1(R) by fractional linear transformations

g(θ) = aθ + b

cθ + d
, for g =

(
a b
c d

)
∈ GL2(Z).
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For θ ∈ R�Q, an important family of finite projective (right) modules over the quantum torus Aθ was constructed
in [7]. They are defined as follows: given a matrix

g =
(

a b
c d

)
∈ GL2(Z) (4.4)

one considers the Schwartz space S(R × Z/cZ) = S(R)c with an action of the generators U and V given by

( f U )(t, s) = f

(
t − cθ + d

c
, s − 1

)
, ( f V )(t, s) = exp

(
2π i

(
t − ad

c

))
f (t, s).

This module is denoted by Eg(θ) and is referred to as a basic module. It also carries a (left) action of Ag(θ), with
generators U ′ and V ′, given by

(U ′ f )(t, s) = f

(
t − 1

c
, s − a

)
, (V ′ f )(t, s) = exp

(
2π i

(
t

cθ + d
− s

c

))
f (t, s).

Norm completion is taken with respect to ‖ f ‖ = ‖Ag(θ)〈 f, f 〉‖1/2. The basic modules satisfy (Corollary 1.4 of
[28])

HomAθ
(Eg(θ), Eh(θ)) � Ehg−1(g(θ)). (4.5)

In the real multiplication case, with θ a quadratic irrationality, we have a g ∈ GL2(Z) with g(θ) = θ . We can
assume that cθ + d ≥ 0, for g written as in (4.4). The basic module Eg(θ) is an Aθ–Aθ bimodule and one can form
tensor products over Aθ . The n-fold tensor product satisfies

Eg(θ)⊗Aθ
Eg(θ)⊗Aθ

· · · ⊗Aθ
Eg(θ) � Egn (θ). (4.6)

The bimodule Eg(θ) generates the nontrivial self Morita equivalences of the torus Aθ that determine the real
multiplication structure [21].

Theorem 4.3 Let θ be a quadratic irrationality and g ∈ GL2(Z) a matrix with g(θ) = θ . Assume that g has
non-negative entries and det(g) = −1. Let Aθ be the quantum torus with real multiplication implemented by the
basic bimodule Eg(θ). Then the objects Aθ and Eg(θ) in the category of finite projective (right) modules over Aθ

form an anyon system, whose fusion ring is given by Z[x0, x1] modulo xi x j = ∑
k N k

i j xk , with fusion matrices

N k
0 j = δ jk = N k

j0 and N 1
11 = Tr(g) and N 0

11 = 1. The elements x0, x1 in the fusion ring correspond to the classes
x0 = [Aθ ] and x1 = [Eg(θ)] in K0(Aθ ).

Proof Consider the subcategory Mθ of the category of finite projective (right) modules over Aθ generated by
the basic module Eg(θ) and by Aθ , seen as a module over itself. This category Mθ is monoidal, with tensor
product ⊗Aθ

, with the object Aθ = 1 as the unit. To see that this gives a categorification of the fusion ring
it suffices to check what the tensor product Eg(θ) ⊗Aθ

Eg(θ) = Eg2(θ) corresponds to in K0(Aθ ). We have
K0(Aθ ) = K0(Aθ ) = Z + Zθ . The basic module Eg(θ) has dimension (given by the range of the trace on K0)
cθ+d, [7], hence under the identification K0(Aθ ) = Z+Zθ , given by the von Neumann trace of the quantum torus,
we have [Eg(θ)] = cθ + d. The unit element satisfies [Aθ ] = [E1(θ)] = 1. We then have [Eg2(θ)] = c′θ + d ′,
where

g2 =
(

a′ b′
c′ d ′

)
=

(
a2 + bc b(a + d)
c(a + d) d2 + bc

)

so that we get

[Eg2(θ)] = c(a + d)θ + d2 + bc = Tr(g) (cθ + d)− det(g) = Tr(g) [Eg(θ)] − det(g)[Aθ ].
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If all the entries of g are non-negative and det(g) = −1, we obtain

[Eg2(θ)] = Tr(g) [Eg(θ)] + [1].
Thus, we can form an anyon system with two anyon types x0and x1, where X0 = 1 and X1 = Eg(θ), with the
tensor product (4.6). The corresponding classes x0 = [X0] and x1 = [X1] in K0(Aθ ) generate a fusion ring with
x0xi = xi x0 = xi for i = 0, 1, and x1x1 = Tr(g) x1 + x0. ��
Corollary 4.4 Let θ be a quadratic irrationality and

g =
(

a b
c d

)
∈ GL2(Z)

a matrix satisfying g(θ) = θ with non-negative entries and det(g) = −1. Then for the anyon system constructed in
Theorem 4.3 the matrix S̃ of the modular fusion rules (2.3) is of the form

S̃ = 1

(1 + (cθ + d)2)1/2

(
1 cθ + d

cθ + d −1

)
. (4.7)

Proof We write the fusion matrix in the form

N1 =
(

Tr(g) 1
1 0

)
. (4.8)

The eigenvalues of N1 are the same as the eigenvalues of g, since they are solutions of the characteristic polynomials

det(g − λ I ) = λ2 − Tr(g)λ+ det(g) = det(N1 − λ I ) = 0.

The eigenvalues satisfy the relation λ1λ2 = det(g) = −1, and the eigenvectors of N1 satisfy the conditions y = λx
and x(1 + Tr(g)λ− λ2) = 0, hence we find that a unitary matrix of eigenvectors is of the form

S̃ = 1

(1 + λ2)1/2

(
1 λ

λ −1

)
,

with λ an eigenvalue of the matrix g. Observe then that

g

(
θ

1

)
=

(
aθ + b
cθ + d

)
= (cθ + d)

(
θ

1

)
,

since g(θ) = θ , hence λ = cθ + d is an eigenvalue of g. Thus, we obtain (4.7). ��
In a similar way, we can show that the AF algebras associated to the incidence matrices g and (4.8) are the same.

Corollary 4.5 Let θ be a quadratic irrationality with θ > 1. Let Aθ be the AF algebra computed by the stationary
Bratteli diagram with #Vn = 2 for all n ≥ 1 and incidence matrix ϕn = ϕ = g with g(θ) = θ , where g has non-
negative entries and det(g) = −1. Then Aθ is isomorphic to the AF algebra computed by the stationary Bratteli
diagram with incidence matrix

ϕ =
(

Tr(g) 1
1 0

)
. (4.9)

Proof It suffices to show that the ordered K0-groups of the two AF algebras are isomorphic. They’re both isomorphic
to Z

2 as abelian groups, so we need to check that the order structure agrees. The order structure on the direct limit
of

Z
2 g→ Z

2 g→ Z
2 g→ Z

2 → · · ·
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is obtained by describing the direct limit as K0(Aθ ) = ∪m Gm with Gm = g−1(Z2) with G+
m = g−1(Z2+). An

element h is in the positive cone K0(Aθ )+ if it is in some G+
m . Equivalently, the trace of h is positive, where the trace

on Gm that induces the trace on K0(Aθ ) is given in terms of Perron–Frobenius eigenvalue and eigenvector of g,
(see (11)–(13) of [5]) as λ−m+1〈v, h〉. As observed in Corollary 4.4 above, g has a positive eigenvalue λ = cθ + d
with eigenvector (θ, 1). Thus, we have h = (n,m) positive if θn + m ≥ 0. In the case of the stationary Bratteli
diagram

Z
2 N1→ Z

2 N1→ Z
2 N1→ Z

2 → · · ·
with N1 as in (4.8), we similarly have the condition that h = (n,m) is in the positive cone determined by the
positivity of 〈v, h〉. The matrix N1 has the same eigenvalues as g, hence the same positive eigenvalue λ = cθ + d,
but with the corresponding eigenvector given by (1, cθ+d) as we saw in Corollary 4.4 above. Thus, h = (n,m) is in
the positive cone whenever n+m(cθ+d) ≥ 0. To see that these two conditions are equivalent, if n+m(cθ+d) ≥ 0
then m + n/(cθ + d) ≥ 0 and n ≤ aθn + bn since θ > 1 and a, b ≥ 0 (not both zero), hence using g(θ) = θ we
obtain nθ + m ≥ 0. Conversely, if nθ + m ≥ 0, then nθ + (aθ + b)m ≥ 0, hence m + n/(cθ + d) ≥ 0 which gives
that h is in the positive cone n + m(cθ + d) ≥ 0. ��

Corollary 4.5 ensures that the Hilbert space determined by the Bratteli diagram of the AF algebra Aθ is indeed
isomorphic to the Hilbert space of the fusion paths of the anyon system constructed in Theorem 4.3 above.

Corollary 4.6 Theorem 4.3 applied to the case of the golden ratio θ = τ = (1 + √
5)/2 recovers the Fibonacci

anyon system.

Proof In this case we have g(τ ) = τ with

g =
(

1 1
1 0

)

with Tr(g) = 1 and det(g) = −1. The basic bimodule Eg(τ ) satisfies [Eg2(τ )] = [Eg(τ )⊗Aθ
Eg(τ )] = [Eg(τ )]+

[1]. Thus, the fusion ring generated by x0 = [Aτ ] = [1] and x1 = [Eg(τ )] satisfies the fusion rules of the Fibonacci
anyons x0xi = xi x0 = xi and x1x1 = x1 + x0. This ring structure agrees with the product on K0(Aτ ) = Z + Zτ

seen as algebraic integers in K = Q(
√

5), with [Eg(τ )] = τ and [1] = 1 and [Eg2(τ )] = τ + 1 = τ 2. ��
Thus, we can view the construction above for more general quadratic irrationalities θ as a direct generalization

of the Fibonacci anyons.

Remark 4.7 By Corollary 4.4 and the classification of the modular tensor categories of §3 of [31], we see that the
modular fusion rules of the real multiplication anyons of Theorem 4.3 arise from a modular tensor category only in
the case of the Fibonacci anyons, with θ = τ = (1 + √

5)/2. In all the other cases one has modular fusion rules,
but the corresponding categorification has weaker properties than the modular tensor case.

4.4 Quantum Gates and Approximate Generators of the Quantum Torus

One can realize the generators of a quantum torus Aθ , through the embedding into the AF algebra Aθ , as limits of
a sequence of matrices, which give approximate generators. We show that the natural choice of an approximating
sequence (see [18,24]) can be interpreted as quantum gates.

Proposition 4.8 Let θ be a quadratic irrationality and Aθ the AF algebra constructed from its continued fraction
expansion as above. Then Aθ contains unitary operators Un and Vn that approximate the generators U and V of
the quantum torus Aθ and that act on the Hilbert space C

qn of fusion paths of length n as phase shifter gates with
phase exp(2π i pn

qn
) and downshift permutation gates on qn elements, respectively.
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Proof As shown in [24], the generators U and V of the quantum torus are approximated by elements Un and Vn in
Mqn (C) satisfying the relation

Un Vn = exp

(
2π i

pn

qn

)
Vn Un, (4.10)

with pn/qn the successive quotients of the continued fraction expansion approximation of the modulus of the
quantum torus. The elements Un and Vn are explicitly given by qn × qn-matrices

Un =

⎛
⎜⎜⎜⎜⎜⎝

1
ξn

ξ2
n
. . .

ξ
qn−1
n

⎞
⎟⎟⎟⎟⎟⎠
, with ξn = exp(2π i

pn

qn
), (4.11)

Vn =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

(4.12)

Thus, the approximate generators Un and Vn act on the Hilbert space C
qn of the system as (compositions of)

phase shifter gates with phase ξn and downshift permutation gates on qn elements (see e.g. §3.3.3 of [35]). ��

4.5 F-Matrices and Pentagons

We consider the problem of computing the F-matrix for our real multiplication anyon systems.
Recall that the F-matrices are determined by the natural transformations

⊕
c

Hom(xu, xc ⊗ xk)⊗ Hom(xc, xi ⊗ x j )
Fi jk

u−→
⊕

d

Hom(xu, xi ⊗ xd)⊗ Hom(xd , x j ⊗ xk), (4.13)

where the left-hand-side is Hom(xu, (xi ⊗ x j )⊗ xk) and the right-hand-side is Hom(xu, xi ⊗ (x j ⊗ xk)).

4.5.1 F-Matrices and Basic Modules

In our setting, we can view the transformation (4.13) at different levels. If we view as in Theorem 4.3 the fusion of
anyons as the tensor product over Aθ of basic modules, we obtain the following description of the F-matrices.

Proposition 4.9 Let θ be a quadratic irrationality and g ∈ GL2(Z) with nonnegative entries det(g) = −1, such
that g(θ) = θ . Let X0 = Aθ and X1 = Eg(θ), and set

⊕
c

Hom(Xu, Xc ⊗ Xk)⊗ Hom(Xc, Xi ⊗ X j )
Fi jk

u−→
⊕

d

Hom(Xu, Xi ⊗ Xd)⊗ Hom(Xd , X j ⊗ Xk), (4.14)

with Hom = HomAθ
and ⊗ = ⊗Aθ

. Then

Fi jk
u : Eh(θ)⊕ Eh(θ) → Eh(θ)⊕ Eh(θ), (4.15)
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for h = gk, where k is the difference between the number of upper indices equal to 1 and the number of lower
indices equal to 1 in Fi jk

u .

Proof All indices i, j, k, u take value either zero or one. All the sixteen resulting cases are checked similarly, using
the fact that

HomAθ
(Eg(θ), Eh(θ) � Ehg−1(g(θ)).

For instance, for F101
0 we have as source

Hom(X0, X0 ⊗ X1)⊗ Hom(X0, X1 ⊗ X0)⊕ Hom(X0, X1 ⊗ X1)⊗ Hom(X1, X1 ⊗ X0)

= Eg(θ)⊗Aθ
Eg(θ)⊕ Eg2(θ)⊗Aθ

Aθ = Eg2(θ)⊕ Eg2(θ)

and as target

Hom(X0, X1 ⊗ X0)⊗ Hom(X0, X0 ⊗ X1)⊕ Hom(X0, X1 ⊗ X1)⊗ Hom(X1, X1 ⊗ X0)

= Eg(θ)⊗Aθ
Eg(θ)⊕ Eg2(θ)⊗Aθ

Aθ = Eg2(θ)⊕ Eg2(θ).

The other cases are checked similarly. ��
We know by construction that, if g ∈ GL2(Z) is a matrix with nonnegative entries and with det(g) = −1 satisfying

g(θ) = θ , then the modules Eg2(θ) and Eg(θ)
⊕Tr(g) ⊕ Aθ both have the same class [Eg2(θ)] = Tr(g) [Eg(θ)] + 1

in K0(Aθ ). Thus, we can define F-matrices in a different way, by formally replacing the basic module Eg2(θ) with
Eg(θ)

⊕Tr(g) ⊕ Aθ . This leads to a definition of the F-matrices that is more similar to the usual setting for anyon

systems, where the F-matrix Fi jk
u is an m × m-matrix for m = N u

0k N 0
i j + N u

1k N 1
i j = N u

i0 N 0
jk + N u

i1 N 1
jk .

Proposition 4.10 Let θ be a quadratic irrationality and g ∈ GL2(Z) with nonnegative entries det(g) = −1, such
that g(θ) = θ . Let X0 = Aθ and X1 = Eg(θ), but with the modified fusion rule X1 ⊗ X1 = Eg(θ)

⊕Tr(g) ⊕ Aθ =
X⊕Tr(g)

1 ⊕ X0. Then the F-matrices are as in Proposition 4.9, except for the cases F110
0 , F101

0 , F011
0 , F111

1 , F111
0 ,

and F000
1 . The cases F110

0 , F101
0 , F011

0 , and F111
1 are endomorphisms of Eg(θ)

⊕2Tr(g) ⊕ A⊕2
θ , and the case F111

0 ,

which is an endomorphism of Eg(θ)
⊕2(Tr(g2)+1) ⊕ A⊕2Tr(g)

θ . However, the remaining case F111
0 is in general not

compatible with this formulation, though in the Fibonacci case it can be interpreted as an endomorphism of a finite
projective module with trace τ = (1 + √

5)/2.

Proof In the cases F110
0 , F101

0 , F011
0 , and F111

1 we have a term X1 ⊗ X1 that occurs on both sides of (4.14), so that
both sides are given by the direct sum of two copies of Eg(θ)

⊕Tr(g) ⊕ Aθ . In the case of F111
0 , which in the setting

of Proposition 4.9 has a term Eg3(θ) on both sides, which in this case gets replaced by a direct sum of copies of
Eg(θ) and Aθ with the same class in K0(Aθ ). The class is given by [Eg3(θ)] = c′θ + d ′, where

g3 =
(

a′ b′
c′ d ′

)
=

(
a3 + abc + bc(a + d) a2b + b2c + bd(a + d)
ac(a + d)+ d2c + bc2 bc(a + d)+ d3 + bcd

)
.

Thus we have

[Eg3(θ)] = (a2 + d2 + ad + bc)(cθ + d)+ abc + dbc − da2 − ad2

= (Tr(g2)− det(g))(cθ + d)− Tr(g) det(g).

Under the assumption that det(g) = −1 this gives that

[Eg3(θ)] = [Eg(θ)
⊕(Tr(g2)+1) ⊕ A⊕Tr(g)

θ ].
In the case of F111

0 we have a sum of two copies of Eg−1(θ) on both sides of (4.14). The K0-class is [Eg−1(θ)] =
cθ − a = [Eg(θ)] − Tr(g), which is not the class of a direct sum Eg(θ)

⊕a ⊕ A⊕b
θ for any a, b ∈ Z≥0. In the

Fibonacci case one has [Eg(τ )] = τ + 1 and [Eg−1(τ )] = τ . ��
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4.5.2 Pentagon Relations

The pentagon relations between the F-matrices arise from rearranging the fusion order in a fusion tree of five
anyons. The relations can be written in the form

(Fia j3k4
u5 )cb (F

i1 j2kc
u5 )da =

∑
e

(Fi1 j2k3
ub )ea (F

i1 jek4
u5 )db (F

i2 j3k4
ud )ce, (4.16)

where in a term of the form (Fi jk
u )ba the labels a and b denote the internal edges of the trees that are exchanged in

the rearranging of the fusion tree and the labels {i, j, k, u} are the anyons types (values 0 or 1) assigned to the three
inputs and one output of the edge labelled a in the first tree.

Similarly, there is a hexagon relation involving the F-matrix determined by the pentagon relation (4.16) and the
braiding R-matrix, with

∑
b

(Fi2 j3k1
u4 )da Ri1 jb

u4 (Fi1 j2k3
u4 )ba = Ri1 j3

uc (Fi2 j1k3
u4 )ca Ri1 j2

ua . (4.17)

Example 4.11 In the usual setting of Fibonacci anyons, one interprets the F-matrices and the pentagon relations as
equations for unitary matrices acting on a finite dimensional Hilbert space. The only two matrices that are possibly
nontrivial in the Fibonacci case are F111

0 = t and

F111
1 =

(
p q
r s

)
,

respectively of rank N 0
01 N 0

11 + N 0
11 N 1

11 = 1 and N 1
01 N 0

11 + N 1
11 N 1

11 = 2, and the pentagon equations are then given
by ([34], Example 6.4)

(
1 0
0 t

) (
1 0
0 t

)
=

(
p q
r s

) (
1 0
0 t

) (
p q
r s

)
⎛
⎝ 1 0 0

0 p q
0 r s

⎞
⎠

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0

0 p q
0 r s

⎞
⎠ =

⎛
⎝ p 0 q

0 t 0
r 0 s

⎞
⎠

⎛
⎝ 1 0 0

0 p q
0 r s

⎞
⎠

⎛
⎝ p 0 q

0 t 0
r 0 s

⎞
⎠ ,

which, together with the unitarity constraint, have solution F111
0 = 1 and

F111
1 =

(
τ−1 τ−1/2

τ−1/2 −τ−1

)
,

with τ = (1 + √
5)/2 the golden ratio. The R-matrix is then determined by the F-matrix and by (4.17) and it is

given by

R =
(

exp( 4π i
5 ) 0

0 − exp( 2π i
5 )

)
.

More generally, one expects matrix equations for matrices Fi jk
u of size N u

0k N 0
i j + N u

1k N 1
i j , with N k

0 j = N k
j0 = δ jk

and

N k
1 j =

(
Tr(g) 1

1 0

)
.
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4.6 Pentagon Relations in the Quantum Torus and Quantum Dilogarithm

When we interpret the F-matrices as homomorphisms between sums of basic modules as in (4.15), the matrix
elements (Fi jk

u )ba are homomorphisms

(Fi jk
u )ba ∈ HomAθ

(Eh(θ), Eh(θ)) � Aθ ,

hence we regard (4.16) as an equation in Aθ .
This means that, in principle, solutions to (4.16) in Aθ can be constructed from elements of the algebra that are

known to satisfy other types of pentagon relations. We make a proposal here for a family of approximate solutions,
related to the Faddeev–Kashaev quantum dilogarithm [12], through the approximation of the generators of the
quantum torus Aθ by elements of the AF algebra Aθ described in Sect. 4.4.

The quantum dilogarithm function was introduced in [12] (see also [1]) as a function that provides a quantized
version of the Rogers pentagon identity for the dilogarithm function, to which it reduces in the limit of the quanti-
zation parameter q → 1. The quantum dilogarithm is originally defined as an element in a completion of the Weyl
algebra generated by invertibles U and V with the relation U V = qV U , for a fixed q ∈ C

∗ with |q| < 1, as the
function

�q(x) = (x; q)∞ =
∞∏

k=0

(1 − qk x). (4.18)

It is shown in [12] that it satisfies the pentagon identity

�q(V )�q(U ) = �q(U )�q(−V U )�q(V ). (4.19)

The infinite product (4.18) is no longer convergent when the parameter q is on the unit circle |q| = 1. However,
there is a way to extend the quantum dilogarithm to the case where q is a root of unity, in such a way that it still
satisfies a pentagon relation [1,12]. For q = exp(2π i pn/qn) = ξn , we can consider the completion of the Weyl
algebra as being the rational quantum torus, with generators U = uUn and V = vVn , with Un and Vn the qn × qn

matrices as in Sect. 4.4, and with u, v ∈ S1.
For ζ a root of unity of order N , the quantum dilogarithm is then defined using the function �ζ (x) of the form

�ζ (x) = (1 − x N )(N−1)/2N
N−1∏
k=1

(1 − ζ k x)−k/N . (4.20)

and for ζ = ξn = exp(2π i pn/qn) one obtains the pentagon relation (see (3.18) of [12])

�ξn (vVn)�ξn (uUn)

= �ξn

(
u

(1 − vqn )1/qn
Un

)
�ξn

( −uv

(1 − uqn − vqn )1/qn
Un Vn

)
�ξn

(
v

(1 − uqn )1/qn
Vn

)
.

(4.21)

For a fixed choice of u, v, with uqn �= 1 and vqn �= 1, we can regard these as elements of the matrix algebra Mqn (C),
expressed in terms of the approximate generators of the quantum torus Aθ embedded in the AF algebra Aθ . As
elements of Aθ they can also be seen as operators acting on the Hilbert space of anyon fusion paths.

Thus, we propose to look for solutions of the Eq. (4.16) in Aθ , by setting the coefficients to be either zero or
functions�ξn (x) and construct approximate solutions given by elements in Aθ that are functions of the approximate
generators Un and Vn of the quantum torus, satisfying pentagon relations of the form (4.21).
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4.7 Dimension Functions and Braiding

In the original case of the Fibonacci anyons, where we have F and R-matrices as in Example 4.11, there are unitary
operators Bi,n describing the transformation the braid group element σi affects on the physical Hilbert space for
an n anyon system, known as the “braid matrix”; see [22,29]. If i > n − 1, let Bi,n = I . Note that {σi , | i ∈ N0}
generate B∞. It is shown in [22,29] that one can always determine Bi,n for any i, n ∈ N0 in terms of “rotation”
and “fusion” matrices, through the matrices R and F−1 RF . We now define the action of σi on some irreducible,
Fib(n + 1)-dimensional element M of the AF algebra Aτ as σi · M = Bi,n M B−1

i,n . The dimension of all finite
elements in Aτ is of the form Fib(m),m ∈ N0, and an n-anyon system corresponds to a Fib(n + 1) dimensional
Hilbert space. We then define the action of a braid group element σi on a reducible element N of Aτ to be the direct
sum of the actions of σi on the irreducible parts of N . One can check that this action satisfies the aforementioned
properties.

In the case of the Fibonacci anyons, we can then show how one can associate disconnected braidings of the
anyon system to elements of K0(Aτ ) = K0(Aτ ), by constructing a representation of the K0-group in the infinite
braid group B∞.

As we have seen (see [8,25]), for Aτ the K0 group, with its positive cone, is given by

(K0(Aτ ), K +
0 (Aτ )) = (Z2, {(n,m) ∈ Z

2 | n + τm ≥ 0}). (4.22)

The range of the trace on K0(Aτ ) is given by the subgroup (pseudolattice) Z + τZ ⊂ R. We use here a description
of the ordered K0-group in terms of dimension functions.

Definition 4.12 A dimension function on a Bratteli diagram 
 as defined in [16] is any Z-valued function which
is defined for almost all vertices of the graph and satisfies the equation

f (	) =
∑

λ: λ↗	

f (λ)�(λ,	), 	 ∈ 
 (4.23)

where � is the multiplicity of the edge from λ to	. Two functions f1, f2 are identified if they differ only on a finite
set of vertices. A function is virtually positive if it is nonnegative on almost all vertices.

Proposition 4.13 Let 
 be the Bratteli diagram describing the Fibonacci anyons system, as in Proposition 3.1. The
dimension functions on 
 are of the form

f = v1 ��

���
��

��
��

��
��

��
� v3 ��

���
��

��
��

��
��

��
� v5 ��

���
��

��
��

��
��

��
� v7 ��

���
��

��
��

��
��

��
� · · ·

v0

����������

���
��

��
��

�

v2

����������������
v4

����������������
v6

����������������
v8

���������������� · · ·
where the vi ∈ Z satisfy v2k+1 = v2k +v2k−1 and v2k+2 = v2k−1 for k > 0 and v2 = v0. Let B∞ denote the infinite
braid group. Setting

ϕ : dimension functions on 
 → B∞
ϕ( f ) = σ

v0
1 σ

v1
3 σ

v2
5 · · · σvn

2n+1 · · · (4.24)

determines a representation of K0(Aτ ) in B∞.

Proof It is proved in [16] that, for an AF algebra A determined by a Bratteli diagram 
, the group K0(A) is
isomorphic to the group of dimension functions on 
, and the cone K +

0 (A) is isomorphic to the group of virtually
positive elements.
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In the case of the Fibonacci AF algebra, since the edges in 
 all have multiplicity one, dimension functions
satisfy

f (	) =
∑

λ: λ↗	

f (λ), 	 ∈ 
,

hence they are given by functions as in the statement.
Note that, given the values at any two vertices of the dimension function, we can determine all of the values

of the dimension function up to some finite number of vertices (some of which may need to remain undefined
due to the requirement that vi ∈ Z). Given some dimension function f , let � f � denote the dimension function
equivalent to f that is defined on the maximal number of vertices, which can be uniquely constructed from f via
extrapolation.

We can now construct an embedding of the group of dimension functions on 
 as a subgroup of the infinite braid
group B∞. We define the map as in (4.24), with ϕ( f ) = ϕ(� f �), and with v j = 0 for each undefined vertex.

To see that this is an embedding, it suffices to check the map on the generators of K0(A). As shown in [16], the
dimension function corresponding to 1 ∈ K0(A) is

f1(
) = 1 ��

���
��

��
��

��
��

��
� 2 ��

���
��

��
��

��
��

��
� 3 ��

���
��

��
��

��
��

��
� 5 ��

��	
		

		
		

		
		

		
		

· · · ��
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2
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3



��������������� · · ·

������������������
Fib(n − 1)

������������������
· · ·

The corresponding element in B∞ is the product ϕ( f1) = σ = ∏
n σ

Fib(n)
2n+1 .

Using the expression for the generator f1 and the action of the shift of the continued fraction expansion, it can
be deduced that one also has

f1/τ (
) = 2 ��

��	
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��	
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���
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��
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3
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5

���������������� · · ·

�����������������
Fib(n)

�����������������
· · ·

so that the dimension function corresponding to τ is

fτ (
) = 3 ��

��	
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The subgroup of B∞ is then the abelian subgroup generated by ϕ( f1) and ϕ( fτ ). ��

4.8 Additional Questions

It is known that the Fibonacci anyon system is universal, that is, that the braiding of anyons suffices to approximate
arbitrary unitary operators on the Hilbert space of the system, see [13,22,29]. It is therefore natural to ask whether
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a similar universality property may hold for the anyon systems constructed in Theorem 4.3 from quantum tori with
real multiplication.

Quantum tori with real multiplication have additional structure, including a homogeneous coordinate ring [27],
constructed using the basic modules and holomorphic structures. This homogeneous ring is also related to quantum
theta functions [33]. Quantum theta function in turn have interesting relations to Gabor frames [20]. It would be
interesting to see if some of these additional structures on real multiplication quantum tori also admit interpretations
in terms of anyon systems constructed using the basic modules.

Quantum tori also play a prominent role in the study of quantum Hall systems and AF algebras occur in the
modeling of quasi crystals [2,3]. In view of their respective role in the construction of anyon systems described
above, it would be interesting to seek concrete realizations of the anyons in terms of some of the physical systems
related to the geometry quantum tori.

Acknowledgments J. Napp is supported by a Summer Undergraduate Research Fellowship at Caltech. M. Marcolli is supported by
NSF grants DMS-0901221, DMS-1007207, DMS-1201512, PHY-1205440.

References

1. Bazhanov, V., Reshetikhin, N.: Remarks on the quantum dilogarithm. J. Phys. A 28(8), 2217–2226 (1995)
2. Bellissard, J.: Noncommutative geometry and quantum Hall effect. In: Proceedings of the International Congress of Mathematicians,

vols. 1, 2 (Zürich, 1994), pp. 1238–1246. Birkhäuser, Basel (1995)
3. Bellissard, J.: The noncommutative geometry of aperiodic solids. In: Geometric and Topological Methods for Quantum Field

Theory. (Villa de Leyva, 2001), pp. 86–156. World Scientific, Singapore (2003)
4. Bratteli, O.: Inductive limits of finite-dimensional C∗-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)
5. Bratteli, O., Jorgensen, P., Kim, K., Roush, F.: Non-stationarity of isomorphism between AF algebras defined by stationary Bratteli

diagrams. Ergodic Theory Dyn. Syst. 20(6), 1639–1656 (2000)
6. Buffenoir, E., Coste, A., Lascoux, J., Degiovanni, P., Buhot, A.: Precise study of some number fields and Galois actions occurring

in conformal field theory. Ann. Inst. H. Poincaré Phys. Théor. 63(1), 41–79 (1995)
7. Connes, A.: C∗-algèbres et géométrie différentielle. Comptes Rendus de l’Académie Des Sciences 290, 599–604 (1980)
8. Davidson, K.: C∗-algebras by example Fields Institute Monographs, vol. 6. American Mathematical Society, Providence (1996)
9. Dugas, M.: Torsion-free abelian groups defined by an integral matrix. Int. J. Algebra 6(2), 85–99 (2012)

10. Elliott, G.A.: On the classication of inductive limits of sequences of semi-simple finite dimensional algebras. J. Algebra 38,
29–44 (1976)

11. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. http://ocw.mit.edu
12. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9(5), 427–434 (1994)
13. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Mathematical challenges of the 21st century

(Los Angeles, CA, 2000). Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003)
14. Hines, P.: Classical structures based on unitaries. arXiv:1305.4491
15. Hormozi, L., Zikos, G., Bonesteel, N., Simon, S.: Topological quantum compiling. Phys. Rev. B 75, 165310 (2007)
16. Kerov, S.: Asymptotic representation theory of the symmetric group and its applications in analysis. Translations of Mathematical

Monographs, vol. 219. American Mathematical Society, Providence (2003)
17. Kitaev, A.Y.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)
18. Landi, G., Lizzi, F., Szabo, R.J.: From large N matrices to the noncommutative torus. Commun. Math. Phys. 217(1), 181–201 (2001)
19. Lewis, J., Zagier, D.: Period functions and the Selberg zeta function for the modular group. In: The Mathematical Beauty of Physics,

Adv. Series in Math. Physics, vol. 24. World Scientific, Singapore, pp. 83–97 (1997)
20. Luef, F., Manin, Yu. I.: Quantum theta functions and Gabor frames for modulation spaces. Lett. Math. Phys. 88(1–3), 131–161 (2009)
21. Manin, Yu.I.: Real multiplication and noncommutative geometry. In: The legacy of Niels Henrik Abel, pp. 685–727. Springer,

Berlin (2004)
22. Nayak, C., Simon, S., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev.

Mod. Phys. 80(3), 1083–1159 (2008)
23. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press, Cambridge (2012)
24. Pimsner, M., Voiculescu, D.: Imbedding the irrational rotation C∗-algebra into an AF-algebra. J. Oper. Theory 4(2), 201–210 (1980)
25. Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext-groups of certain cross-product C∗-algebras. J. Oper. Theory

4(1), 93–118 (1980)
26. Plazas, J.: Arithmetic structures on noncommutative tori with real multiplication. Int. Math. Res. Not. IMRN 2008, no. 2, Art. ID

rnm147
27. Polishchuk, A.: Noncommutative two-tori with real multiplication as noncommutative projective varieties. J. Geom. Phys. 50(1–4),

162–187 (2004)

http://ocw.mit.edu
http://arxiv.org/abs/1305.4491


84 M. Marcolli, J. Napp

28. Polishchuk, A., Schwarz, A.: Categories of holomorphic vector bundles on noncommutative two-tori. Commun. Math. Phys. 236(1),
135–159 (2003)

29. Preskill, J.: Lecture notes for physics 219: Quantum computation, unpublished lecture notes. http://www.theory.caltech.edu/
~preskill/ph219/ph219_2004.html (2004)

30. Rowell, E.C.: Unitarizability of premodular categories. J. Pure Appl. Algebra 212(8), 1878–1887 (2008)
31. Rowell, E., Stong, R., Wang, Z.: On classification of modular tensor categories. Commun. Math. Phys. 292(2), 343–389 (2009)
32. Trebst, S., Troyer, M., Wang, Z., Ludwig, A.: A short introduction to Fibonacci anyon models. Prog. Theor. Phys. Supp. 176,

384 (2008)
33. Vlasenko, M.: The graded ring of quantum theta functions for noncommutative torus with real multiplication. Int. Math. Res. Not.

2006, Art. ID 15825
34. Wang, Z.: Topological quantum computation. CBMS Regional Conference Series in Mathematics, vol. 112. American Mathematical

Society, Providence (2010)
35. Williams, C.P.: Explorations in Quantum Computing. Springer, Berlin (2010)

http://www.theory.caltech.edu/~preskill/ph219/ph219_2004.html
http://www.theory.caltech.edu/~preskill/ph219/ph219_2004.html

	Quantum Computation and Real Multiplication
	Abstract
	1 Introduction
	2 Anyon Systems
	2.1 Fusion Rules
	2.2 Categorical Setting
	2.3 Fusion Rules and Categorification
	2.4 Fibonacci Anyons

	3 Anyon Systems and AF Algebras
	3.1 Bratteli Diagrams and AF Algebras
	3.2 Fibonacci AF Algebra and Fibonacci Anyons
	3.3 AF Algebras from Anyon Systems

	4 Anyon Systems and Quantum Tori with Real Multiplication
	4.1 AF Algebras and Quantum Tori
	4.2 Quantum Tori with Real Multiplication
	4.3 Bimodules and Quantum Tori with Real Multiplication
	4.4 Quantum Gates and Approximate Generators of the Quantum Torus
	4.5 F-Matrices and Pentagons
	4.5.1 F-Matrices and Basic Modules
	4.5.2 Pentagon Relations

	4.6 Pentagon Relations in the Quantum Torus and Quantum Dilogarithm
	4.7 Dimension Functions and Braiding
	4.8 Additional Questions

	Acknowledgments
	Acknowledgments
	References


