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Abstract We propose a construction of anyon systems associated to quantum tori with real multiplication and the
embedding of quantum tori in AF algebras. These systems generalize the Fibonacci anyons, with weaker categorical
properties, and are obtained from the basic modules and the real multiplication structure.
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1 Introduction

Quantum computation refers, broadly, to the use of quantum phenomena such as entanglement and superposition
to perform operations on data. It is believed that quantum computation is significantly more powerful than classical
computation in certain respects, and could lead to advances in many areas of computation such as quantum simu-
lation, cryptography, and database searching. In the quantum setting, one thinks of computation in terms of qubits
instead of classical bits. While classical bits take on precisely one of two possible states (e.g. 0 or 1), the state of a
qubit may be in a superposition of two orthonormal states:

[¥) = «|0) + BI1).

In the above expression, « and 8 are complex numbers, and |0) and |1) form an orthonormal basis for this vector
space. An example of an entangled state of two qubits is

1
= —(]00 11)).
Boo ﬁ(l )+ I11))

In the above state, measurement of one qubit results in a collapse of the wavefunction of the other qubit as well.
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Quantum gates, analogous to classical gates, are implemented by applying unitary operators to qubits. For
example, consider the single-qubit X and Z gates, defined by

() (%)

We see that X can be interpreted as a bit flip (since X|0) = |1)) and Z can be interpreted as a phase flip (since
Z|+) = |—), where |£) = %GO) =4 [1))). Similarly, one can construct quantum gates that act on two or more
qubits.

A set of quantum gates is universal if any operation possible on a quantum computer can be realized to arbitrary
accuracy by a finite sequence of gates in the set. A well known example of an anyon system that is universal for
quantum computation is known as the Fibonacci anyons [15,22,29].

In this paper, we make a proposal for a possible construction of anyon systems based on the geometry of quantum
tori with real multiplication. The Fibonacci anyons are recovered as a special case. Except in the Fibonacci case,
however, the systems described here have weaker properties from the categorical standpoint. In particular, they
do not arise from modular tensor categories. Nonetheless, they still exhibit some of the behavior of the Fibonacci
anyons.

Our construction is based on the embedding of quantum tori in AF algebras and on the description of AF algebras
in terms of Bratteli diagrams, and on the basic modules of the quantum torus that give the real multiplication structure
when the modulus is a quadratic irrationality.

We first describe how anyon systems in the usual sense (those arising from modular tensor categories and
the associated fusion rules) determine Bratteli diagrams describing the fusion paths and associated AF algebras
of operators acting on the Hilbert space of the system. In the Fibonacci case, we show that this gives the usual
description of the anyon system. We also show that, in general, the K¢-group of the AF algebra arising from an
anyon system can be described in terms of the eigenvalues of the fusion matrices and the number field generated
by them.

The opposite process, from AF algebras to anyon systems, cannot always be carried out, but we focus on only
those AF algebras Ay in which quantum tori Ag with real multiplication embed, with the embedding inducing
an isomorphism on Ky. In this setting we use the geometry of the quantum torus to provide a candidate for an
associated anyon system.

We first show that the AF algebra Ag can be equivalently described by a Bratteli diagram with incidence matrix
given by a matrix in GL; (Z) that fixes 6 (which exists because 6 is a quadratic irrationality), or by a Bratteli diagram
with incidence matrix given by the fusion matrix N of the anyon system, of the form

Tr(g) 1
Ny = ( | 0) ;
where xo = 1 and x| are the two anyon types in the system, with xo ® x; = x; ® xo = x; and x] @ x] = x @ xg.
The Fibonacci case corresponds to Tr(g) = 1. We compute explicitly the S-matrix of the resulting fusion rule.
The approximations in the AF algebra Ay to the generators U and V of the quantum torus are phase shifter and
downshift permutation quantum gates on the Hilbert space of the fusion paths of the anyon system.

We show that the fusion ring determined by the fusion rules of this anyon system is isomorphic to Ky(Ay) with
the product given by identifying it, via the range of the trace, with an order in the real quadratic field Q(6). We then
propose that a categorification of this fusion ring is obtained by considering basic modules E(6), k € Z, with
the tensor product Eq(0) ® 4, - - ®4, Eq(0) = Egk (0). Thus, the basic module X; = E4(0) with g(f) = 6 and
Xo = Ag have classes x; = [Eg(0)] and xo = 1 in Ko(Ap) that satisfy the fusion rules. From this perspective,
we describe the F-matrices as homomorphisms between sums of basic modules on the quantum torus, and we
formulate a version of the pentagon relation as an equation in the quantum torus Ay. We suggest a possible
approach to constructing solutions using elements in the algebra that satisfy a pentagon identity, related to the
quantum dilogarithm function.

In the original Fibonacci case, we reformulate the braiding action in terms of the AF algebra and we show that
elements of the Ko-group, seen as dimension functions, determine associated disconnected braidings of the anyons.

®Tr(g)
1
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A word of comment about the title of this paper: our focus is primarily on anyon systems, for which we propose
a construction based on noncommutative tori with real multiplication. Although other topics like quantum gates
are touched upon only briefly in Sect. 4.4, our title emphasizes the relation to quantum computing, because anyons
with their fusion rules lie at the heart of topological quantum computing, where quantum gates are given by anyon
braiding. The Fibonacci anyons, which are the prototype example of anyon system that we use to model our general
construction, are universal for quantum computation. As we show in this paper, for more general noncommutative
tori the resulting anyon systems have weaker categorical properties then the Fibonacci anyons. Nonetheless, our
emphasis in the title stresses the fact that, in our viewpoint, the main motivating question for this work is whether
noncommutative tori with real multiplication can be used to model quantum computation.

2 Anyon Systems

An anyon is a two-dimensional quasiparticle with nontrivial braiding statistics, that is, swapping two identical
anyons induces a nontrivial phase shift of the wavefunction. For anyons with abelian braiding statistics:

Vi % with 6 e R\Z. (2.1)

More generally, one may have anyons with non-abelian braiding statistics, corresponding to higher-dimensional
representations of the braid group:

Yo > Zpaﬁwﬂy
B

with p a unitary square matrix with dimension corresponding to the degeneracy of the system, see [22].

Note that this property is unique to two dimensions; in three spacial dimensions, swapping two particles results
in a phase shift of only 41 (bosons) or —1 (fermions). One performs computation by swapping these anyons in
various ways, which can be interpreted as acting on the system by the braid group. The result of a computation is
measured by fusing the anyons together in a certain order, and measuring the topological g-spin of the resulting
product at each step of the fusion. The set of possible fusion paths is the basis for the corresponding Hilbert space
of the system.

2.1 Fusion Rules

An anyon system is specified by a list of the different particle types and fusion rules that assign to a pair of anyons
a combination of resulting anyons,

X ®x; = @kNiijk, 2.2)

where the non-negative integers N l’j specify the admissible fusion channels.
One requires that one of the anyon types corresponds to the vacuum 1, the ground state of the system that satisfies

1®1=1 and 1Q®x;=x; 1 =x;

for all anyon types in the system. We will label the anyon types {xo, ..., xy} so that xo = 1.

One also assumes that each anyon x; has a dual x;*, which is also one of the anyons in the list. The vacuum 1 is
self-dual.

The fusion coefficients satisfy the identities

k _ o, 0 _ 5.
NOj =3k, Nij = 8;jr
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and

k _ nk _ nd K
Nijj=Nj =Ny = Ni’j”
where x;; = x;" denotes the dual anyon, so that, if N; is the matrix with (N;) jx = Nikj, then N; = Nl.’ , the transpose
matrix [30].

Let A; = diag(%;;) be the diagonal matrix with entries the eigenvalues A;; of the matrix N;, and let S; be the
matrix with columns the corresponding eigenvectors.

2.2 Categorical Setting

We recall briefly some categorical notions relevant to anyon based quantum computing. For more details, we refer
the reader to [11] and other references below.

Modular tensor categories provide the typical categorical setting considered to describe anyon systems (see
[17,34]). However, here we will be considering systems that satisfy weaker categorical structures, hence we review
here the simplest levels of categorical structure that we will be working with.

A category C is semi-monoidal if it is endowed with a functor ® : C x C — C, and with natural associativity
isomorphisms

xyz: XY R®Z) - (X®Y)®Z
for all X, Y, Z € Obj(C) satisfying the pentagon relation
(tx,v,z ® lw) otx,yezw o (1x ® Ty, z,w) = Txy,Z,W © TX,Y,ZQW-
It is braided semi-monoidal if it also has natural symmetry isomorphisms
oxy: X®Y —->YQ®X
for all X, Y € Obj(C) satisfying the hexagon relation

TX,v,Z 00xeY,Zz 0 Tx,v,z = (0x,7 ® ly) otx 7,y o (1x ® 0Y,7).

The braiding is symmetric if ox y o oy x = 1x forall X, Y € Obj(C).
A category C is monoidal (or tensor) if it is semi-monoidal and has a unit object 1 € Obj(C) with natural
isomorphisms Ay : 1 ® X — X and px : X ® 1 — X satisfying the triangle relation

Ix @Ay =(px ® ly) otx 1,Y.

Given a semi-monoidal category C, its unit augmentation C* is a monoidal category given by the coproduct
C LI I, where [ is the trivial group seen as a category with a single object 1 and morphism 11, and with the tensor
product ® on C extended by — ® 1 =1® — = Idcyy, see [14].

A category C is braided monoidal if it is monoidal and braided semi-monoidal, with the compatibility between
the braiding and the unit given by

Ax 00x 1= PX-

A category C is C-linear if Hom¢ (X, Y) are C-vector spaces, for all X, Y € Obj(C). It is semisimple if it is an
abelian category in which every object can be written as a direct sum of simple objects, and finite if there are only
finitely many simple objects up to isomorphism. If C is a monoidal category and it is C-linear finite semisimple,
one assumes also that the unit object 1 is a simple object. A fusion category is a C-linear finite semisimple rigid
tensor category where all the Hom spaces are finite dimensional.
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2.3 Fusion Rules and Categorification

Specifying anyon systems on the basis of the particle types and fusion rules leads to a set of discrete data, which
can be expressed algebraically in the form of a fusion ring. The underlying categorical setting can then be seen as
a categorification of the fusion rules and fusion ring.

We can formulate more precisely this procedure as in [31], in the form of modular data, which may or may not
come from a modular tensor category.

Definition 2.1 A modular fusion rule consists of

(1) aset{x;};=1,. ~ of anyon types,
(2) acharge conjugation matrix C;; = 8;;» where x;; = x is the dual,

(3) aset of N x N-matrices N; = (Nikj), fori = 1,..., N with entries in Z>¢ and with a common basis of
eigenvectors,
N =S§A; ST, (2.3)

where A; = diag(2;;) is the diagonal matrix with entries the eigenvalues of N; and the columns of S are the
corresponding eigenvectors.

Modular fusion data (see Definition 2.1 of [31]) satisfy the properties above and are additionally endowed with
a diagonal matrix T with T;; = §;;0; and 6; € U(1), satisfying (ST)3 = D4 Soo $2, where S = DS with
D= (Zi dl.z)l/ 2 with d; the Perron—Frobenius eigenvalue of N;, and D = Zi 0; dl.z. Not all modular fusion data
come from modular tensor categories, see the classification results of [31]. We will not be concerned with modular
tensor categories here, and we will only look at a weaker requirement for a categorification of fusion rules.

The fusion ring 'R associated to a modular fusion rule is obtained by considering the polynomial ring
Z[x1, ..., xn] modulo the ideal generated by the relations x;x; = > Nl.]}xk. The categorification problem then
consists of constructing a braided monoidal category C with Ko(C) = R.

2.4 Fibonacci Anyons

A simple but very interesting model of anyon system used in topological quantum computation is known as the
Fibonacci anyon model [15,22,29].
In this model we have two possible particles, denoted by xop = 1 and x; = 7. The fusion rules are

Xo®x0=Xx0, X0®x1 =x1®x0=x1, and x| ®x; =x0Dxy. (2.4)

The final fusion rule above implies that fusing two g-spin 1 quasiparticles results in a quasiparticle with g-spin
in a superposition of 0 and 1. This model is enticing because it is the simplest topological model that is universal,
in the sense that every unitary operation on the Hilbert space can be approximated to arbitrary accuracy by braiding
alone.

Our goal is to reformulate and study this system and some direct generalizations in noncommutative geometry
terms.

3 Anyon Systems and AF Algebras

We show that fusion rules for anyon systems determine the data of a stationary Bratteli diagram, which specifies
an AF (approximately finite dimensional) C*-algebra with a representation on a Hilbert space that is isomorphic
to the state space of the anyon system described in terms of fusion paths. We also show that the K group of the
AF algebra, which can be computed as a direct limit of abelian groups over the Bratteli diagram, has an explicit



68 M. Marcolli, J. Napp

expression in terms of the quantum dimensions of the anyon system and it is endowed with a product structure
induced by the fusion ring of the anyon system.

3.1 Bratteli Diagrams and AF Algebras

We recall here a few well known facts about Bratteli diagrams and AF algebras that we need to use in the following
(see [4,10]).

A Bratteli diagram is an infinite directed graph I' = (V, E) where the vertex set has a partitioning V = U,>o V),
and the edge set has a partitioning £ = U, >0E,, where E, is the set of oriented edges with source vertex in V,
and target vertex in V1. One further assumes that V() consists of a single vertex. The incidence matrices ¢, of the
Bratteli diagrams are given by (¢,);; = #{e € E; |s(e) =v; € Vy, t(e) =vj € Vyy1}.

Given a Bratteli diagram I" one can form new diagrams I'" by relescoping. Namely, given a sequence 0 < m| <

- < my < ---, the new diagram I'" has V, = V,, and edge set E,, given by all the possible directed paths in
the original diagram I' with source in V,,, and target in V,, The incidence matrices are given by the product
oy =TT " o

An AF algebra A is a C*-algebra given by a direct limit

n+1°

A =limA,
7

of finite dimensional C*-algebras A,. By Wedderburn’s theorem, the latter are direct sums of matrix algebras over
C,

Ny
Ay =P M, (C).

k=1

An AF algebra can therefore always be described in terms of a Bratteli diagram (see [4]), where one has #V,, = N,

with the vertices in V,, decorated by the direct summands M, (C). The embedding A,, < A, 1 of the direct system
of finite dimensional algebras is determined by the incidence matrix ¢,, namely, one embeds the matrix algebra
M, (C) attached to the vertex v; € V, in the matrix algebra Mrj (C) attached to the vertex v; € V, 41 with
multiplicity (¢,);;,
M,, (C)@((Pn)ij s Mrj (©).

Isomorphism of Bratteli diagrams I' = (V, E) and " = (V’, E’) is defined as a bijection of V and V' and E
and E’ preserving the grading, that intertwines the source and target maps.

One considers the set of Bratteli diagrams up to the equivalence relation generated by isomorphisms and telescop-
ing. It is shown in [4] that the equivalence class of the Bratteli diagram under this equivalence relation is a complete
isomorphism invariant of the AF algebra. A complete isomorphism invariant of AF algebras of K -theoretic nature
is given by the dimension group (see [10]), which is the ordered K-group of the AF algebra and can be obtained
as a direct limit of abelian groups associated to the Bratteli diagram.

A Bratteli diagram T is stationary if #V, = N and ¢, = ¢ for all n > 1. It is simple if there is a telescoping I/
such that all entries of the incidence matrices ¢), are positive.

Associated to a Bratteli I', we also consider a Hilbert space 7, obtained as a direct limit of the system of finite
dimensional Hilbert spaces

Ny

M, = P 3.1

k=1

with embeddings H,, < H, 4+ determined by the incidence matrices ¢, of I', with suitable normalization factors
so that the embeddings are isometries, as in (2.32)—(2.35) of [18].
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3.2 Fibonacci AF Algebra and Fibonacci Anyons

We reformulate the fusion properties of a system of Fibonacci anyons in terms of the data of an AF algebra,
determined via a Bratteli diagram.

Proposition 3.1 The fusion properties of a system of Fibonacci anyons with an arbitrarily large number of par-
ticles are encoded in the Fibonacci AF C* algebra given by the direct limit A = li_r)nn A, of matrix algebras
A, = MEipm) (C) & MFEipn—1)(C), with Fib(n) the n-th Fibonacci number, with embeddings ¢, : A, — A,
implemented by the matrix describing the basic fusion rules (2.4),

o= (1 é) (3.2)

Proof One can diagrammatically describe the fusion properties of configurations anyons via a Bratteli diagram,
which depicts the possible fusion paths in a system of an arbitrary number of particles. The Bratteli diagram for a
system of Fibonacci anyons is of the form

X1 X1 X1 X1 s
XI / >< >< >< ><

\xo X0 X0 X0 s
where x| represents a Fibonacci anyon and xo = 1 represents the particle with trivial braiding statistics. Note that
this diagram depicts how an x; particle fused with an x| particle can result in an xq or x; particle, respectively, with
probabilities p(xg) = 772 and p(x1) = =L witht = (1 + «/g) /2 the golden ratio (see [32]); while an xo fused
with an x; can result only in an x1. For such a system with N anyons, there will be N columns in the corresponding
Bratteli diagram.

More precisely, we check that the Hilbert space of the system, as defined by the Bratteli diagram, agrees with
the Hilbert space of the anyon system.

Recall that a basis of the Hilbert space of the system is given by the set of fusion paths. It is known that the fusion
tree basis for fusions of N Fibonacci anyons, that is the counting of all possible labelings of the fusion paths, has
cardinality Fib(N), see [32].

Thus, we can identify the Hilbert space Hy = CFHP™) of a system of N Fibonacci anyons system with the
Hilbert space CFPWV) ~ CFbWV =1 g CFbIN=2) constructed after N steps of the Bratteli diagram above, where we

replace the labeling x¢ and x; on the nodes with the dimensions of the corresponding Hilbert space at each level
and total g-spin. The diagram is given by

Fib(n) —

COAXK

Fib(n — 1)

We recognize this diagram as describing the direct system of Hilbert spaces Hy that give a representation of
the Fibonacci AF algebra (see [8]). This is the AF C*-algebra A given by A = U,>1A,, with A, = MFjp,,)(C) &
Meip(n—1)(C) where M,,(C) is the full matrix algebra of n x n matrices, and the embeddings of A, in A, are as
specified in the diagram. The AF algebra A is obtained as the direct limit over the stationary Bratteli diagram with
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(11
=1, o)

In terms of the anyons model, the Fibonacci AF algebra A = A; is the algebra of operators acting on the Hilbert
space of the anyon system given by a direct limit H = li_n>1n ‘H,, with dim H,, = Fib(n+1) = Fib(n) +Fib(n —1).0

Corollary 3.2 The Fibonacci AF algebra computed by the Bratteli diagram of Proposition 3.1 is isomorphic to the
AF algebra computed by the stationary Bratteli diagram with incidence matrix

<p=(? }) 3.3)

Proof The incidence matrices (3.2) and (3.3) are related by a unitary conjugation

(o) () 0)=(o)

3.3 AF Algebras from Anyon Systems

.....

For each i, form a stationary Bratteli diagram I'; with #V,, = N for all n > 1, with the singlé vertex of Vj labelled
by xo and the N vertices of V), labelled by {x;};—o,.... y—1. The incidence matrices are taken to be ¢, , = ¢; = N;.
These Bratteli diagrams define AF algebras A; = li_r)nn A; , acting on Hilbert spaces H; = h_rr)ln Hin,asin (3.1),

with A; , = My, (C)®N,

Lemma 3.3 The Hilbert space H = ®;H;, with the H; determined by the Bratteli diagram T'; as above, is
isomorphic to the Hilbert space of the anyon system.

Proof The embeddings H; , < H; n+1 are determined by the incidence matrices ¢; , = ¢; of I';, normalized so

as to obtain an isometry, see [18]. Thus, the Hilbert space H; , = 69?’:_01 H; ., has dimension

din =dimH;, = NP2 ND (3.4)
Jlseees Jn
with the individual component H; ,, ; of dimension
: J Jn—
d,‘,n’jzdlm'H,',n,j= Z Ni‘/‘Zl"'Nij '.
Jlseos, Jn—1
The total Hilbert space H is then given by the direct limit of the &;H; , of dimensions d,, = Zi di n. This

counting of dimensions agrees with the usual counting of dimensions for the Hilbert space of anyon fusion paths
(see for instance §4.1.3 of [23]). O

The AF algebra A = @; A; then acts as operators on the Hilbert space H of the anyon system.

Two torsion-free abelian groups of finite rank G| and G, are quasi-isomorphic if there exist morphisms fi :
G1 — Grand f> : G, — Gy with fio fo =nidg, and f> o fi = nidg, for some n € N.

For an algebraic integer A let K, = Q[1] with O, the ring of integers and set, as in [9],

L, = O:2"1. (3.5)
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We then obtain the following result relating the AF algebra to the number field generated by the eigenvalues of
the fusion matrices. For a detailed study of the role of this number field in the setting of modular tensor categories,
we refer the reader to [6].

Proposition 3.4 The Ko-group Ko(A;) of the AF algebra A; of the anyon system is quasi-isomorphic to

Ly, = @LAU, (3.6)
j

where A;; are the eigenvalues of the fusion matrix N;.

Proof The dimension group of an AF algebra A, that is, the Ko-group as a scaled ordered group, can be computed
as a direct limit over the Bratteli diagram, [10], with

(Ko(A), Ko(A)*, [1a]) = lim(Ko(An), Ko(An) ", [1a,])- (3.7)
Pn

For the stationary Bratteli diagram I'; with ¢; , = ¢;,and with A; , = 69?:01 Mdi,n,j (C),wehave Ko(A; ;) = N,
with the standard ordering and unit, and the limit is

(Ko(A)). Ko(ADT . [14,]) = li_r)nZN- (3.8)
Pi

We use the approach of Dugas [9] to evaluate direct limits of the form (3.8). Under the assumption that ¢ :
ZN — ZV is an injective homomorphism, let Spec(¢) the set of eigenvalues of ¢. These are algebraic integers. It
is shown in [9] that the direct limit is quasi-isomorphic to

G=lmz"= & L, (3.9)
¢ reSpec(p)

where n, is the dimension of the Jordan block J,, (1) in the Jordan normal form of ¢.

The matrix ¢; = N; is by construction equal to N; = S A; ST, as in (2.3) with A; = diag(A;;) the diagonal
matrix of eigenvalues. Thus, using the above, we can identify, up to quasi-isomorphism, the direct limit abelian
group Ko(A;) with @j L, O

Notice that Ly, = j L;; above is just considered as an abelian group. We now show that there is a ring

structure on &; L 5, coming from the fact that the eigenvalues A;; of the fusion matrices satisfy a Verlinde formula,
and we compare it with the fusion ring of the anyon system.

Lemma 3.5 Consider the abelian group Ly = ®; L, with Ly, asin (3.6). The Verlinde formula for the eigenvalues
Aij of the fusion matrices N; implies that Ly has a ring structure that recovers the fusion ring of the anyon system.

Proof The eigenvalues A;; of the fusion matrices N; satisfy the Verlinde formula (see in (8) of [6])
Aajrbj = Z Ngb)‘c,j-
-

For a fixed j, this is the same multiplicative structure as in the fusion ring of the anyon system Z[xo, ..., xny—1]/
(xixj — Zk Niijk)' m|

In general, one cannot conversely construct an anyon system from any arbitrary data of an AF algebra and its
Bratteli diagrams. However, we will see in the next section that there is a particular class of AF algebras in which
quantum tori with real multiplication embed with isomorphic Ko, for which one can use the additional structure of
the quantum torus with real multiplication to construct an anyon system. The Fibonacci anyons are recovered as a
particular case in this class.
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4 Anyon Systems and Quantum Tori with Real Multiplication

We now restrict our attention to AF algebras Ay associated to the continued fraction expansion of an irrational
number 6 that is a quadratic irrationality. It is well known [24] that the quantum torus Ay of modulus 6 can be
embedded in the AF algebra Ay in such a way as to induce an isomorphism on K. We use the geometry of quantum
tori with real multiplication to construct anyon systems associated to an arbitrary quadratic irrationality 6, which
generalize the case of the Fibonacci anyons, where & = t = (1 ++/5)/2 is the golden ratio. The real multiplication
structure determines the fusion rules for the resulting anyon system.

4.1 AF Algebras and Quantum Tori

The quantum torus of modulus 6 € R is the universal C*-algebra .4y generated by two unitaries U, V satisfying
the commutation relation

Uv =efvu. (4.1)

We will be concerned with the case where the modulus is irrational 6 € R \ Q, and in particular.

It was shown in [24,25] that the C*-algebra Ay of the quantum torus can always be embedded into an AF algebra
Ay so that the embedding determines an isomorphism on K preserving the positive cone. The AF algebra Ag of
[24] is obtained by considering the continued fraction expansion of 6 = [cy, c1, ¢2, .. .], with g, the denominators
of the successive convergents of the expansion. One considers the algebras

Ano = My, (©) & M, (C). 4.2)

The embeddings A, _1 9 — A, ¢ are given by

_ (0 1

On = 1 ¢, )’

Mq,171 ((c) @ M‘]n72 ((C) - qu71 (C) @ (qu72 ((C) 69 qu,1 (C)@C") C qu (C)’
where ¢, is the n-th digit of the continued fraction expansion, satisfying
qn = Cnqn—1+ qn-2-
As in Corollary 3.2, one can equivalently work (as in [18,24]) with embeddings of the form

_fen 1

m=\1 0)

Note that the AF algebra Ay is not the quantum torus itself. Rather, the quantum torus 4y is embedded into Ag.

4.2 Quantum Tori with Real Multiplication

We are especially interested here in the case of quantum tori .4y with irrational modulus 6 € R ~ Q that is a

quadratic irrationality, that is, a solution of a quadratic polynomial equation over Q, or equivalently 6 € K ~\ Q,

with K a real quadratic field. A theory of quantum tori with real multiplication was initiated by Manin [21], as

candidate geometric objects that may play, in the case of real quadratic field, a similar role as elliptic curves with

complex multiplication play in the imaginary quadratic case. The theory was further developed in [27] and [26,33].
As in [19], we denote by Red = U,;>Red,, the semigroup of reduced matrices in GL,(Z), with

0 1 0 1
M%:{(lh)m<lh)|hnwmeNl @3)
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All reduced matrices are hyperbolic and every conjugacy class g of hyperbolic matrices in GL; (Z) contains reduced
representatives, all of which have the same length £(g). The number of such representatives is £(g)/k(g) where
k(g) is the largest integer such that g = #*®) for some & [19].

Lemma 4.1 Let Ay be a quantum torus with real multiplication, namely 6 is a quadratic irrationality. Then the
AF algebra Ay in which Ay embeds is determined by a stationary Bratteli diagram with #V,, = 2 for alln > 1 and
with incidence matrix ¢, = ¢ € Red C GL2(Z) that fixes the modulus,

ab +b a b
<p(9)—ce+d—9, where go—(c d)'

Proof Let Ag be the AF algebra with A, = M, (C) & M, ,(C), as above, in which the quantum torus Ay
embeds. The AF algebra Ay is determined by a Bratteli diagram 'y of the form

c1 a
N gdN+1 cee

OOOOX

gN+1 -

where g_1 = qo = 1 and g, = ¢,qn—1 + qn—> are the ranks of the matrix algebras attached to the vertices.

If 6 € R is a quadratic irrationality, then there exists a matrix g € SL2(Z) such that g - 6 = 6 with g acting
by fractional linear transformations. Moreover, the continued fraction expansion of 6 is eventually periodic. Let
c1, ..., cy be the period of the continued fraction expansion of 6.

We telescope the Bratteli diagram I'y to a new I'y, that collapses together N successive steps from V; to Vi, and
then the next N steps and so on, so that in I', we have ¢} = H,ivzl ¢k, for all £ > 0. Then the resulting diagram
is isomorphic to the stationary diagram

q0 qN
q-1 gN—-1
with incidence matrix

g= (‘Cl Z) € Red C GL,(Z).

O

Example 4.2 In particular, in the case of with 6 = t, the golden ratio, we find a copy of the quantum torus A,
embedded in the Fibonacci AF algebra. The quantum torus A, with modulus the golden ratio T = (1 4+ +/5)/2
embeds in the Fibonacci AF C*-algebra A of Proposition 3.1, inducing an isomorphism on K. Indeed, the golden
ratio has continued fraction expansion t = [1, 1, 1, 1, 1, ...], hence we recognize the Fibonacci AF algebra A as
the AF algebra of [24] for the quantum torus A;.

4.3 Bimodules and Quantum Tori with Real Multiplication

As above, consider the action of GL2(Z) on P! (R) by fractional linear transformations

ab +b a b
g(G)_cg+d, for g_(c d)eGLz(Z).
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For6 € R\Q, animportant family of finite projective (right) modules over the quantum torus .4g was constructed
in [7]. They are defined as follows: given a matrix

g = (Z 2) € GL(Z) (4.4)

one considers the Schwartz space S(R x Z/cZ) = S(R)¢ with an action of the generators U and V given by

(fU)(t,s):f(t— c@:—d,s_ 1), (fV)(t,s):exp(Zm’ (t—%)) [, s).

This module is denoted by E () and is referred to as a basic module. It also carries a (left) action of A4, 4), with
generators U’ and V', given by

/ _ o / _ . rs
(Uf)(t,s)_f(t c,s a), (Vf)(t,s)_exp(ZTrl(CQ_i_d c))f(t,s).

Norm completion is taken with respect to || f|| = || Ag) (f, £)II'/2. The basic modules satisfy (Corollary 1.4 of
(28])
Hom 4, (E¢(0), En(0)) = Ejy-1(8(0)). 4.5)

In the real multiplication case, with 6 a quadratic irrationality, we have a g € GL,(Z) with g(f) = 6. We can
assume that c6 +d > 0, for g written as in (4.4). The basic module E, () is an .Ag—Ag bimodule and one can form
tensor products over Ay. The n-fold tensor product satisfies

Eg(0) ®uy Eg(0) ®u,y - ®uy Eg(0) = Egn(6). (4.6)

The bimodule E,(6) generates the nontrivial self Morita equivalences of the torus 4g that determine the real
multiplication structure [21].

Theorem 4.3 Let 6 be a quadratic irrationality and g € GL2(Z) a matrix with g(6) = 6. Assume that g has
non-negative entries and det(g) = —1. Let Ag be the quantum torus with real multiplication implemented by the
basic bimodule E4(0). Then the objects Ag and E4(0) in the category of finite projective (right) modules over Ag
form an anyon system, whose fusion ring is given by Z[xo, x1] modulo xjx; = >, Ni’}xk, with fusion matrices
N(I)‘j =8k = N;fo and Nll1 = Tr(g) and N?l = 1. The elements xq, x1 in the fusion ring correspond to the classes
x0 = [Ag]l and x; = [Eq(0)] in Ko(Ap).

Proof Consider the subcategory My of the category of finite projective (right) modules over A4y generated by
the basic module E,(#) and by Ay, seen as a module over itself. This category My is monoidal, with tensor
product ® 4,, with the object A9 = 1 as the unit. To see that this gives a categorification of the fusion ring
it suffices to check what the tensor product Eg(0) ® 4, E,(0) = E,2(0) corresponds to in Ko(Ap). We have
Ko(Ag) = Ko(Ag) = Z + Z6. The basic module E,(#) has dimension (given by the range of the trace on Ko)
¢ +d, [7], hence under the identification Ko(Ag) = Z+ 786, given by the von Neumann trace of the quantum torus,
we have [Eg(0)] = ¢ + d. The unit element satisfies [Ag] = [E1(0)] = 1. We then have [E,2(0)] = o +d,
where

» (d Y\ _(a*+bc ba+d)
§7\¢ @) " \ca+rd) &% +be
so that we get

[E@2(0)] =cla+d)b + d* + be = Tr(g) (cO + d) — det(g) = Tr(g) [Eg(0)] — det(g)[Ag].
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If all the entries of g are non-negative and det(g) = —1, we obtain
[Eq2(0)] =Tr(g) [Eg(0)] + [1].
Thus, we can form an anyon system with two anyon types xpand x1, where Xg = 1 and X = E4(0), with the
tensor product (4.6). The corresponding classes xo = [Xo] and x; = [X1] in K((Ay) generate a fusion ring with
xox; = xjxo = x; fori =0, 1, and x1x; = Tr(g) x1 + xo. m]

Corollary 4.4 Let 0 be a quadratic irrationality and

a b
g:(c d)GGLz(Z)

a matrix satisfying g(0) = 0 with non-negative entries and det(g) = —1. Then for the anyon system constructed in
Theorem 4.3 the matrix S of the modular fusion rules (2.3) is of the form

N 1 1 cd +d
= : 47
SR TENPTE e (c9 +d -1 ) @7

Proof We write the fusion matrix in the form

Ny = (Trfg) é) . 48)

The eigenvalues of Nj are the same as the eigenvalues of g, since they are solutions of the characteristic polynomials
det(g — A T) = A2 — Tr(g)A + det(g) = det(Ny — A 1) = 0.

The eigenvalues satisfy the relation AjA, = det(g) = —1, and the eigenvectors of N satisfy the conditions y = Ax
and x(1 + Tr(g)x — Az) = 0, hence we find that a unitary matrix of eigenvectors is of the form

. 1 1 A
S A+)2\a-1)

with A an eigenvalue of the matrix g. Observe then that
0 ab +b 0
«(1)=(552) = (1),
since g(0) = 60, hence A = cf + d is an eigenvalue of g. Thus, we obtain (4.7). O

In a similar way, we can show that the AF algebras associated to the incidence matrices g and (4.8) are the same.

Corollary 4.5 Let 0 be a quadratic irrationality with 0 > 1. Let Ag be the AF algebra computed by the stationary
Bratteli diagram with #V,, = 2 for all n > 1 and incidence matrix ¢, = ¢ = g with g(6) = 0, where g has non-

negative entries and det(g) = —1. Then Ay is isomorphic to the AF algebra computed by the stationary Bratteli
diagram with incidence matrix

[ Tr(g) 1
0= ( o) 4.9)

Proof Itsuffices to show that the ordered K¢-groups of the two AF algebras are isomorphic. They’re both isomorphic
to Z? as abelian groups, so we need to check that the order structure agrees. The order structure on the direct limit
of
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is obtained by describing the direct limit as Ko(Ag) = U, Gy, with G,, = g~1(Z%) with G}, = g~ '(Z2). An
element £ is in the positive cone Ko(Ag)+ ifitis in some G;,. Equivalently, the trace of 4 is positive, where the trace
on G, that induces the trace on Ko(Ay) is given in terms of Perron—Frobenius eigenvalue and eigenvector of g,
(see (11)—(13) of [5]) as A1 (v, h). As observed in Corollary 4.4 above, g has a positive eigenvalue A = c6 +d
with eigenvector (6, 1). Thus, we have h = (n, m) positive if 6n + m > 0. In the case of the stationary Bratteli
diagram

N N N
7?3723 72372 ...

with Np as in (4.8), we similarly have the condition that 2 = (n, m) is in the positive cone determined by the
positivity of (v, #). The matrix N has the same eigenvalues as g, hence the same positive eigenvalue A = c6 +d,
but with the corresponding eigenvector given by (1, c6 +d) as we saw in Corollary 4.4 above. Thus, & = (n, m) isin
the positive cone whenever n +m(c6 +d) > 0. To see that these two conditions are equivalent, if n +m(c6 +d) > 0
thenm +n/(c6 +d) > 0and n < abn + bn since 6 > 1 and a, b > 0 (not both zero), hence using g(6) = 6 we
obtain n6 +m > 0. Conversely, if n6 +m > 0, then n6 + (a6 + b)m > 0, hence m +n/(c0 4+ d) > 0 which gives
that % is in the positive cone n + m(c6 +d) > 0. O

Corollary 4.5 ensures that the Hilbert space determined by the Bratteli diagram of the AF algebra Ay is indeed
isomorphic to the Hilbert space of the fusion paths of the anyon system constructed in Theorem 4.3 above.

Corollary 4.6 Theorem 4.3 applied to the case of the golden ratio ® = t = (1 + ~/5)/2 recovers the Fibonacci
anyon system.

Proof 1In this case we have g(t) = 7 with

(11
£=\1 o
with Tr(g) = 1 and det(g) = —1. The basic bimodule E () satisfies [Egz(r)] = [E(1)®u4, Eg(T)] = [Eg(D)]+
[1]. Thus, the fusion ring generated by xo = [A;] = [1] and x| = [E(7)] satisfies the fusion rules of the Fibonacci

anyons xox; = x;x9 = x; and x1x; = x1 + x¢. This ring structure agrees with the product on Ko(A;) = Z + Zt
seen as algebraic integers in K = Q/53), with [Eg(t)] =7 and [1] =1 and [Ep(M]=1+1= 72, m|

Thus, we can view the construction above for more general quadratic irrationalities 6 as a direct generalization
of the Fibonacci anyons.

Remark 4.7 By Corollary 4.4 and the classification of the modular tensor categories of §3 of [31], we see that the
modular fusion rules of the real multiplication anyons of Theorem 4.3 arise from a modular tensor category only in
the case of the Fibonacci anyons, with @ = 7 = (1 + \/5) /2. In all the other cases one has modular fusion rules,
but the corresponding categorification has weaker properties than the modular tensor case.

4.4 Quantum Gates and Approximate Generators of the Quantum Torus

One can realize the generators of a quantum torus Ay, through the embedding into the AF algebra Ay, as limits of
a sequence of matrices, which give approximate generators. We show that the natural choice of an approximating
sequence (see [18,24]) can be interpreted as quantum gates.

Proposition 4.8 Let 0 be a quadratic irrationality and Ag the AF algebra constructed from its continued fraction
expansion as above. Then Ag contains unitary operators U, and V,, that approximate the generators U and V of
the quantum torus Ag and that act on the Hilbert space CI of fusion paths of length n as phase shifter gates with
phase exp(2mi 3—:) and downshift permutation gates on q, elements, respectively.
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Proof As shown in [24], the generators U and V of the quantum torus are approximated by elements U, and V), in
My, (C) satisfying the relation

Uy Vy = exp (2m‘ﬂ) V,y Uy, (4.10)
n

with p,/q, the successive quotients of the continued fraction expansion approximation of the modulus of the
quantum torus. The elements U,, and V,, are explicitly given by ¢, X g,-matrices

1
&n ,
U, = & . with & = expri 2, @.11)
. qn
qn_l
n
010 00
00 1 00
ve=|: : (4.12)
000 01
100 0 0

Thus, the approximate generators U, and V,, act on the Hilbert space C% of the system as (compositions of)
phase shifter gates with phase &,, and downshift permutation gates on ¢, elements (see e.g. §3.3.3 of [35]). O

4.5 F-Matrices and Pentagons

We consider the problem of computing the F-matrix for our real multiplication anyon systems.
Recall that the F-matrices are determined by the natural transformations

i
P Hom(x,.. xe ® x¢) ® Hom(x,, x; ® x;) ——> @) Hom(x,., x; ® x4) ® Hom(xq, x; ® xz), (4.13)
c d

where the left-hand-side is Hom(x,, (x; ® x;) ® x¢) and the right-hand-side is Hom (x,, x; ® (x; ® xx)).

4.5.1 F-Matrices and Basic Modules

In our setting, we can view the transformation (4.13) at different levels. If we view as in Theorem 4.3 the fusion of
anyons as the tensor product over Ay of basic modules, we obtain the following description of the F-matrices.

Proposition 4.9 Let 0 be a quadratic irrationality and g € GLy(Z) with nonnegative entries det(g) = —1, such
that g(8) = 6. Let Xo = Ag and X1 = E4(0), and set
Fik
P Hom(X,, X. ® Xx) ® Hom(X,, X; ® X ;) —> @) Hom(X,, X; ® X4) ® Hom (X4, X; ® Xp), (4.14)
c d

with Hom = Hom 4, and ® = ® 4,. Then

Fi/* En6) ® En(0) — En(6) @ Ein(6), (4.15)
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for h = gk, where k is the difference between the number of upper indices equal to 1 and the number of lower
indices equal to 1 in F,;]k.

Proof Allindices i, j, k, u take value either zero or one. All the sixteen resulting cases are checked similarly, using
the fact that

Hom 4, (Eg(6), En(6) =~ Ejo-1(8(0)).
For instance, for FOIO1 we have as source

Hom(Xp, Xo ® X1) ® Hom(Xo, X1 ® Xo) @ Hom(Xo, X1 ® X1) ® Hom(X{, X1 ® Xo)
=Eg(0) @, Eg(0) ® E2(0) @4, Ag = Ep2(0) © E2(0)

and as target

Hom(Xo, X1 ® Xo) ® Hom(Xp, Xo ® X1) & Hom(Xp, X1 ® X1) ® Hom(X1, X1 ® Xo)
= Eg(0) @uy Eg(0) ® Ep2(0) @4, Ag = Ep2(0) ® E2(0).

The other cases are checked similarly. O

We know by construction that, if g € GL,(Z) is amatrix with nonnegative entries and with det(g) = —1 satisfying
g(6) = 6, then the modules E 2 (6) and E, (6)®Tr(®) @ Ay both have the same class [E,2(0)] =Tr(g) [Eg(0)] + 1
in Ko(Ag). Thus, we can define F-matrices in a different way, by formally replacing the basic module E g2(0) with

E, (6)®Tr® @ Ay. This leads to a definition of the F-matrices that is more similar to the usual setting for anyon
systems, where the F-matrix F./* is an m x m-matrix for m = Né‘kNin + N{‘kNilj = Nl.’f)N;)k + N N}k.

Proposition 4.10 Let 6 be a quadratic irrationality and g € GL,(Z) with nonnegative entries det(g) = —1, such
that g(0) = 6. Let Xo = Ag and X\ = E4(0), but with the modified fusion rule X1 ® X1 = Eg(O)EBTr(g) D Ay =
X?Tr(g) ® Xo. Then the F-matrices are as in Proposition 4.9, except for the cases FOHO, FOIOI, Fg“, Fllll, Folll,
and FIOOO. The cases FOUO, F01017 F(?“, and Fllll are endomorphisms of E, (9)®2Tr(g) ® .Agaz, and the case FOUI,

which is an endomorphism of Eg, (6’)@2(“(3’2)“) @ A;GZTr(g). However, the remaining case FOlll is in general not
compatible with this formulation, though in the Fibonacci case it can be interpreted as an endomorphism of a finite
projective module with trace T = (1 + «/g)/Z.

Proof In the cases F(} 10, FO]Ol , Fgl 1 and F1] 11 e have a term X1 ® X that occurs on both sides of (4.14), so that

both sides are given by the direct sum of two copies of E, (0)®Tr®) @ Ag. In the case of FO1 11 which in the setting

of Proposition 4.9 has a term E 3 (¢) on both sides, which in this case gets replaced by a direct sum of copies of
E¢(0) and A with the same class in K(Ap). The class is given by [E,3(6)] = c'9 +d’, where

3 (d b\ _ a’ +abc +bcla+d) a*b+ b*c+bd(a+d)
§=\¢ a)~ acla+d)+d*c+bc® bea+d)+d>+bed )

Thus we have
[E,3(0)] = (@ +d* + ad + be)(cO + d) + abe + dbc — da® — ad*
= (Tr(g%) — det(g))(cO + d) — Tr(g) det(g).
Under the assumption that det(g) = —1 this gives that
[Eg2(0)] = [Eg(0)®TE+D @ ATTE),

In the case of FO111 we have a sum of two copies of Eg_u (6) on both sides of (4.14). The Ky-class is [Eg_u )] =

cd —a = [E4(0)] — Tr(g), which is not the class of a direct sum Eg(Q)EB“ @ .Agah for any a, b € Z>¢. In the
Fibonacci case one has [Eg(7)] = v + 1 and [E,-1(7)] = 7. O
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4.5.2 Pentagon Relations

The pentagon relations between the F-matrices arise from rearranging the fusion order in a fusion tree of five
anyons. The relations can be written in the form

e i i )
(Fus™5 (FasP5yd = D7 (R (R ()5, (4.16)

where in a term of the form (F}, v k)b the labels a and b denote the internal edges of the trees that are exchanged in
the rearranging of the fusion tree and the labels {i, j, k, u} are the anyons types (values O or 1) assigned to the three
inputs and one output of the edge labelled a in the first tree.

Similarly, there is a hexagon relation involving the F-matrix determined by the pentagon relation (4.16) and the

braiding R-matrix, with

Z(Flznkl 11]b (Fll]2k"i) _ Ritl[h (Fiijlks)c 1112' (4.17)

Example 4.11 1In the usual setting of Fibonacci anyons, one interprets the F-matrices and the pentagon relations as
equations for unitary matrices acting on a finite dimensional Hilbert space. The only two matrices that are possibly
nontrivial in the Fibonacci case are F| M — ¢ and

111 P q
Fi :(r s)’

respectively of rank NO,N{; + NO,N|, = L and N}, N{, + N}, N]| = 2, and the pentagon equations are then given

by ([34], Example 6.4)
g\ (1 O\ (pr g
s 0 ¢ ros

(HIRE

~—
ST

1 00 01 1 00 p 0 ¢ 1 00 p 0 g
0 p g 10 0 pgl=(101r0 0 p g 0+ 0],
0 r s 00 0 r s r 0 s 0 r s r 0 s

which, together with the unitarity constraint, have solution FO1 ' — 1 and

-1 -1/2
111 T T
Fy (1.—1 2 -1 ) ;
with 7 = (1 4+ /5) /2 the golden ratio. The R-matrix is then determined by the F-matrix and by (4.17) and it is
given by

_ (e (EH) 0
R_( 0 —GXP(%))'

More generally, one expects matrix equations for matrices F,j/ of size N N 0 i TNy ” N 1, with Ny, k = N k= =k
and

T 1
NY; =( rig) ())'
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4.6 Pentagon Relations in the Quantum Torus and Quantum Dilogarithm

When we interpret the F-matrices as homomorphisms between sums of basic modules as in (4.15), the matrix

ijk .
elements (F,,/ )Z are homomorphisms

(Fi")b € Hom 4, (En(6), En(6)) ~ Ay,

hence we regard (4.16) as an equation in Ajg.

This means that, in principle, solutions to (4.16) in Ag can be constructed from elements of the algebra that are
known to satisfy other types of pentagon relations. We make a proposal here for a family of approximate solutions,
related to the Faddeev—Kashaev quantum dilogarithm [12], through the approximation of the generators of the
quantum torus Ag by elements of the AF algebra Ay described in Sect. 4.4.

The quantum dilogarithm function was introduced in [12] (see also [1]) as a function that provides a quantized
version of the Rogers pentagon identity for the dilogarithm function, to which it reduces in the limit of the quanti-
zation parameter ¢ — 1. The quantum dilogarithm is originally defined as an element in a completion of the Weyl
algebra generated by invertibles U and V with the relation UV = gV U, for a fixed ¢ € C* with |g| < 1, as the
function

W, (x) = (x: @)oo = [ [(1 = ¢*5). (4.18)
k=0

It is shown in [12] that it satisfies the pentagon identity
Y, (V)W (U) =V, (U)Y,(=VU) ¥, (V). (4.19)

The infinite product (4.18) is no longer convergent when the parameter ¢ is on the unit circle |g| = 1. However,
there is a way to extend the quantum dilogarithm to the case where ¢ is a root of unity, in such a way that it still
satisfies a pentagon relation [1,12]. For ¢ = exp(2nwip,/qn) = &, we can consider the completion of the Weyl
algebra as being the rational quantum torus, with generators U = uU, and V = vV,,, with U, and V,, the ¢, X gn
matrices as in Sect. 4.4, and with u, v € S!.

For ¢ aroot of unity of order N, the quantum dilogarithm is then defined using the function @, (x) of the form

N—1
D (x) = (1 —xM)N=DEVTT (1 = ghoy /N, (4.20)
k=1

and for ¢ = &, = exp(2mip,/q,) one obtains the pentagon relation (see (3.18) of [12])

P, (WVn) g, (uUy)
= : i v 421)
= @, (m[]) P, ((1 i U,,Vn) o, (m‘,ﬂ) _

For a fixed choice of u, v, with u?" # 1 and v9* # 1, we can regard these as elements of the matrix algebra M, (C),
expressed in terms of the approximate generators of the quantum torus 4y embedded in the AF algebra Ay. As
elements of Ay they can also be seen as operators acting on the Hilbert space of anyon fusion paths.

Thus, we propose to look for solutions of the Eq. (4.16) in Ag, by setting the coefficients to be either zero or
functions ®¢, (x) and construct approximate solutions given by elements in A that are functions of the approximate
generators U, and V,, of the quantum torus, satisfying pentagon relations of the form (4.21).
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4.7 Dimension Functions and Braiding

In the original case of the Fibonacci anyons, where we have F and R-matrices as in Example 4.11, there are unitary
operators B; , describing the transformation the braid group element o; affects on the physical Hilbert space for
an n anyon system, known as the “braid matrix”; see [22,29]. If i > n — 1, let B; , = I. Note that {o;, |i € Np}
generate Bo. It is shown in [22,29] that one can always determine B; , for any i, n € Ny in terms of “rotation”
and “fusion” matrices, through the matrices R and F ~lRF. We now define the action of o; on some irreducible,
Fib(n + 1)-dimensional element M of the AF algebra A; aso; - M = B; ,M Blfn]. The dimension of all finite
elements in A; is of the form Fib(m), m € Ny, and an n-anyon system correspond’s toa Fib(n + 1) dimensional
Hilbert space. We then define the action of a braid group element o; on a reducible element N of A to be the direct
sum of the actions of o; on the irreducible parts of N. One can check that this action satisfies the aforementioned
properties.

In the case of the Fibonacci anyons, we can then show how one can associate disconnected braidings of the
anyon system to elements of Ko(A;) = Ko(A;), by constructing a representation of the Ko-group in the infinite
braid group Bso.

As we have seen (see [8,25]), for A; the K group, with its positive cone, is given by

(Ko(Ao), Ky (A0) = (2%, {(n.m) € Z* |n + tm = 0}). (4.22)
The range of the trace on Ko(A;) is given by the subgroup (pseudolattice) Z + tZ C R. We use here a description

of the ordered Ko-group in terms of dimension functions.

Definition 4.12 A dimension function on a Bratteli diagram I" as defined in [16] is any Z-valued function which
is defined for almost all vertices of the graph and satisfies the equation

f)y= D> fOx(,A), AET (4.23)

AASA

where x is the multiplicity of the edge from A to A. Two functions fi, f> are identified if they differ only on a finite
set of vertices. A function is virtually positive if it is nonnegative on almost all vertices.

Proposition 4.13 Let " be the Bratteli diagram describing the Fibonacci anyons system, as in Proposition 3.1. The
dimension functions on I" are of the form

f= (1 VU3 V5 v7 cee

v2 Vg V6 vg v
where the v; € 7 satisfy Vog+1 = V2k + Vak—1 and vag4+2 = vog—1 fork > 0 and vo = vy. Let B, denote the infinite
braid group. Setting

¢ : dimension functions on I’ — By
Uy v v v,
@(f) =01"03'05% -0y (4.24)
determines a representation of Ko(Az) in Bxo.

Proof 1t is proved in [16] that, for an AF algebra A determined by a Bratteli diagram I', the group Ko(A) is
isomorphic to the group of dimension functions on I', and the cone K, g‘ (A) is isomorphic to the group of virtually
positive elements.
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In the case of the Fibonacci AF algebra, since the edges in I' all have multiplicity one, dimension functions
satisfy

fM)= D fO), AeT,

AASA

hence they are given by functions as in the statement.

Note that, given the values at any two vertices of the dimension function, we can determine all of the values
of the dimension function up to some finite number of vertices (some of which may need to remain undefined
due to the requirement that v; € Z). Given some dimension function f, let [ f7] denote the dimension function
equivalent to f that is defined on the maximal number of vertices, which can be uniquely constructed from f via
extrapolation.

We can now construct an embedding of the group of dimension functions on I' as a subgroup of the infinite braid
group Bo. We define the map as in (4.24), with ¢ (f) = ¢([ 1), and with v; = 0 for each undefined vertex.

To see that this is an embedding, it suffices to check the map on the generators of Ky(A). As shown in [16], the
dimension function corresponding to 1 € Ko(A) is

H@) = Fib(n) ——

XX

Fib(n — 1)

The corresponding element in By is the product ¢(f1) = o =[], 02}23('11) .

Using the expression for the generator f] and the action of the shift of the continued fraction expansion, it can
be deduced that one also has

Sic(I) = Fib(n 4+ 1) ——

CROOOKX

Fib(n)

so that the dimension function corresponding to T is

Fib(n +2) —— -

OO X

Fib(n +
The subgroup of By, is then the abelian subgroup generated by ¢( f1) and ¢ (f7). O

4.8 Additional Questions

It is known that the Fibonacci anyon system is universal, that is, that the braiding of anyons suffices to approximate
arbitrary unitary operators on the Hilbert space of the system, see [13,22,29]. It is therefore natural to ask whether
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a similar universality property may hold for the anyon systems constructed in Theorem 4.3 from quantum tori with
real multiplication.

Quantum tori with real multiplication have additional structure, including a homogeneous coordinate ring [27],
constructed using the basic modules and holomorphic structures. This homogeneous ring is also related to quantum
theta functions [33]. Quantum theta function in turn have interesting relations to Gabor frames [20]. It would be
interesting to see if some of these additional structures on real multiplication quantum tori also admit interpretations
in terms of anyon systems constructed using the basic modules.

Quantum tori also play a prominent role in the study of quantum Hall systems and AF algebras occur in the
modeling of quasi crystals [2,3]. In view of their respective role in the construction of anyon systems described
above, it would be interesting to seek concrete realizations of the anyons in terms of some of the physical systems
related to the geometry quantum tori.
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