A motivic approach to Potts models

Matilde Marcolli (Caltech)

Evans Lecture, Berkeley, April 2013

Matilde Marcolli (Caltech) Post Modern Potts Models

Based on joint work with Paolo Aluffi

Some references:

- P. Aluffi, M.M., A motivic approach to phase transitions in Potts models, J. Geom. Phys., Vol.63 (2013) 6-31
- M.M. Feynman motives, World Scientific, 2010.
- + other references listed later

Potts Models: Statistical Mechanics

G = finite graph

- $\mathfrak{A}=\mathsf{set}$ of possible spin states at a vertex, $\#\mathfrak{A}=q$
- State: assignment of a spin state to each vertex of G
- Energy: sum over edges, zero if endpoint spins not aligned,
- $-J_e$ if aligned (same) spins
- Edge variables: $t_e = e^{\beta J_e} 1$, with β thermodynamic parameter (inverse temperature)
- Physical values: $t_e \ge 0$ ferromagnetic case $(J_e \ge 0)$ and 1 $\le t_e \le 0$ and $t_e \le 0$

 $-1 \le t_e \le 0$ antiferromagnetic case $-\infty \le J_e \le 0$. Partition function

$$Z_G(q,t) = \sum_{\sigma: V(G)
ightarrow \mathfrak{A}} \prod_{e \in E(G)} (1 + t_e \delta_{\sigma(v), \sigma(w)})$$

sum over all maps of vertices to spin states, and $\partial(e) = \{v, w\}$

□→ ★ ●→ ★ ●→ ● ●

Example: 2D lattice, with q = 4, near critical temperature

< ロ > < 回 > < 回 > < 回 > < 回 > <

Multivariable Tutte polynomial (Fortuin–Kasteleyn)

$$Z_G(q,t) = \sum_{G' \subseteq G} q^{k(G')} \prod_{e \in E(G')} t_e$$

 $k(G') = b_0(G')$ connected components, sum over all subgraphs $G' \subseteq G$ with V(G') = V(G). Now q a variable.

Deletion-contraction

$$Z_G(q,t) = Z_{G \smallsetminus e}(q,\hat{t}) + t_e Z_{G/e}(q,\hat{t})$$

 $\hat{t} =$ edge variables with t_e removed (includes case of bridges and looping edges)

• • = • • = •

The problem of phase transitions

Zeros of the partition function \Rightarrow Phase transitions

- Ferromagnetic case: finite graphs have no physical phase transitions $t_e \ge 0$, only virtual phase transitions $t_e < 0$
- Antiferromagnetic case: $-1 \le t_e \le 0$, results on zero-free regions for certain graphs (Jackson–Sokal)

Families of graphs $G_{\infty} = \bigcup_n G_n$, ferromagnetic case, no phase transitions for fixed G_n , but in the limit?

Complex zeros of $Z_{G_n}(q, t)$ approaching points in the positive quadrant: estimate how the locus of (complex/real) zeros of $Z_{G_n}(q, t)$ changes in a family G_n

There is an extensive literature using analytic methods why a motivic approach?

同 と く ヨ と く ヨ と

A parallel story: Quantum Field Theory Euclidean scalar field theory on a *D*-dimensional spacetime

$$\mathcal{L}(\phi) = rac{1}{2} (\partial \phi)^2 + rac{m^2}{2} \phi^2 + \mathcal{L}_{int}(\phi)$$

with polynomial interaction term $\mathcal{L}_{int}(\phi)$: action functional

$$S(\phi) = \int \mathcal{L}(\phi) d^D x$$

Path integrals (expectation values of observables $\mathcal{O}(\phi)$)

$$\langle \mathcal{O} \rangle = rac{\int \mathcal{O}(\phi) \, e^{rac{i}{\hbar} S(\phi)} \, D[\phi]}{\int e^{rac{i}{\hbar} S(\phi)} \, D[\phi]}$$

ill defined infinite dimensional integrals ... but computed by perturbative expansion in Feynman graphs

Feynman graphs and Feynman rules (Euclidean)

• Internal lines \Rightarrow propagator = quadratic form q_i

$$\frac{1}{q_1\cdots q_n}, \quad q_i(k_i)=k_i^2+m^2$$

• Vertices: conservation (valences = monomials in \mathcal{L})

$$\sum_{e_i \in E(G): s(e_i) = v} k_i = 0$$

• Integration over k_i , internal edges

$$U(G) = \int \frac{\delta(\sum_{i=1}^{n} \epsilon_{v,i} k_i + \sum_{j=1}^{N} \epsilon_{v,j} p_j)}{q_1 \cdots q_n} d^D k_1 \cdots d^D k_n$$
$$n = \#E_{int}(G), N = \#E_{ext}(G)$$
$$\epsilon_{e,v} = \begin{cases} +1 & t(e) = v \\ -1 & s(e) = v \\ 0 & \text{otherwise,} \end{cases}$$

Parametric form of Feynman integrals (Schwinger parameters)

$$U(G) = \frac{\Gamma(n - D\ell/2)}{(4\pi)^{\ell D/2}} \int_{\sigma_n} \frac{P_G(t, p)^{-n + D\ell/2} \omega_n}{\Psi_G(t)^{-n + D(\ell+1)/2}}$$

massless case: polynomial P_G (cut sets and external momenta), polynomial Ψ_G

$$\Psi_G(t) = \sum_T \prod_{e \notin T} t_e$$

sum over spanning trees (connected G) integral over simplex $\sigma_n = \{t \in \mathbb{R}^n_+ | \sum_i t_i = 1\}$ with vol form ω_n

• • = • • = •

Observations

• Modulo regularization and renormalization, U(G) is a period of the algebraic variety $\mathbb{A}^n \setminus X_G$, complement of the hypersurface

$$X_G = \{t = (t_e) \in \mathbb{A}^n \,|\, \Psi_G(t) = 0\}$$

• The polynomial $\Psi_G(t)$ satisfies deletion-contraction

$$\Psi_G(t) = t_e \Psi_{G \smallsetminus e}(\hat{t}) + \Psi_{G/e}(\hat{t})$$

(e neither bridge nor looping edge)

• Related polynomial

$$\Phi_G(t) = \sum_T \prod_{e \in T} t_e$$

T = spanning trees (maximal spanning forests); Ψ_G obtained dividing by $\prod_{e \in E(G)} t_e$ and changing variables $t_e \mapsto 1/t_e$ (Cremona transformation)

Motivic complexity and the Grothendieck ring

 \circ What kind of numbers are the residues of Feynman graphs? periods of motives, depend on what kind of motives: mixed Tate motives \Rightarrow multiple zeta values

 \circ Estimate the "motivic complexity" through classes $[X_G]$ in the Grothendieck ring

 $K_0(\mathcal{V})$ generated by isomorphism classes [X] of smooth (quasi)projective varieties with relations

- $[X] = [Y] + [X \setminus Y]$: inclusion-exclusion, $Y \subset X$ closed
- $[X \times Y] = [X][Y]$: product structure

• (Belkale–Brosnan): [X_G] generate localization of $K_0(\mathcal{V})$ at $\mathbb{L}^n - \mathbb{L}$

白 と く ヨ と く ヨ と …

Deletion-contraction for $[X_G]$

$$[\mathbb{A}^n \setminus X_G] = \mathbb{L}\left[\mathbb{A}^{n-1} \setminus (X_{G \setminus e} \cap X_{G/e})\right] - [\mathbb{A}^{n-1} \setminus X_{G \setminus e}]$$

e neither bridge nor looping edge;

$$\begin{split} [\mathbb{A}^n \smallsetminus X_G] &= \mathbb{L} \left[\mathbb{A}^{n-1} \smallsetminus X_{G/e} \right] = \mathbb{L} \left[\mathbb{A}^{n-1} \smallsetminus X_{G \smallsetminus e} \right] \text{ for bridges;} \\ [\mathbb{A}^n \smallsetminus X_G] &= (\mathbb{L} - 1) [\mathbb{A}^{n-1} \smallsetminus X_{G/e}] = (\mathbb{L} - 1) [\mathbb{A}^{n-1} \smallsetminus X_{G \smallsetminus e}] \text{ for looping edges} \\ \mathbb{L} &= [\mathbb{A}^1] \text{ Lefschetz motive} \end{split}$$

Note: algebro-geometric term $X_{G \setminus e} \cap X_{G/e}$ difficult to control: can be motivically more complicated than $X_{G \setminus e}$ and $X_{G/e}$

Some Consequences

P. Aluffi, M. Marcolli, *Feynman motives and deletion-contraction relations*, arXiv:0907.3225

Some operations that enlarge the graph have a "controlled effect" on the Grothendieck class $[X_G]$

• splitting edges

doubling edges

Obtain generating series for the classes $[X_{G_n}]$ in such families

Key: cancellations of "difficult term" in deletion-contraction in $K_0(\mathcal{V})$ in good cases Notation: $\mathbb{U}(G) = [\mathbb{A}^n \smallsetminus X_G]$

doubling edges

$$\mathbb{U}(G_{2e}) = (\mathbb{T}-1)\mathbb{U}(G) + \mathbb{T}\mathbb{U}(G \smallsetminus e) + (\mathbb{T}+1)\mathbb{U}(G/e)$$

neither bridge nor looping edge; $\mathbb{U}(G_{2e}) = \mathbb{T}^2 \mathbb{U}(G \setminus e)$ looping edge; $\mathbb{U}(G_{2e}) = \mathbb{T}(\mathbb{T}+1)\mathbb{U}(G \setminus e)$ bridge $\mathbb{T} = \mathbb{L} - 1 = [\mathbb{G}_m]$ class of the multiplicative group

 \bullet splitting an edge \Rightarrow multiply the class by $\mathbb{T}+1$

Example: can control classes $[X_G]$ of G chains of polygons, in mixed Tate part $\mathbb{Z}[\mathbb{L}]$ of $\mathcal{K}_0(\mathcal{V})$.

▲□→ ▲ 国 → ▲ 国 →

A lot more is now known for classes $[X_G]$ of graph hypersurfaces Incomplete list of some recent results:

- P. Aluffi, M.M., *Algebro-geometric Feynman rules*, arXiv:0811.2514
- P. Aluffi, M.M., *Feynman motives and deletion-contraction relations*, arXiv:0907.3225
- O. Schnetz, Quantum field theory over \mathbb{F}_q , arXiv:0909.0905
- D. Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces, arXiv:1006.3533
- F. Brown, O. Schnetz, A K3 in ϕ^4 , arXiv:1006.4064
- P. Aluffi, Chern classes of graph hypersurfaces and deletion-contraction, arXiv:1106.1447
- F. Brown, D. Doryn, *Framings for graph hypersurfaces*, arXiv:1301.3056

(4) (5) (4) (5) (4)

Graph polynomials and Potts models

 Φ_G is a limiting case of the Multivariable Tutte polynomial:

• Take $\mathcal{P}_G(q, t)$ the homogeneous polynomial leading term of $Z_G(q, t)$ (in $(q, t) \in \mathbb{A}^{n+1}$ variables)

• This is the contribution of subgraphs that are forests with V(G') = V(G) (spanning)

$$\mathcal{P}_G(q,t) = \sum_{G' \subseteq G, \ b_1(G')=0, \ \#V(G')=N} q^{k(G')} \prod_{e \in E(G')} t_e$$

• The locus $\mathcal{P}_G(q, t) = 0$ is the *tangent cone* at zero of the affine hypersurface defined by $Z_G(q, t) = 0$

• $\mathcal{P}_G(q, t) = 0$ has a component $H = \{q = 0\}$ with multiplicity $b_0(G)$ and another component $\mathcal{Q}_G(q, t) = 0$ that intersects H in the locus $\Phi_G(t) = 0$

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

Extending to Potts models the motivic approach: Some goals

- Measure topological complexity of locus of real zeros of $Z_{G_n}(q, t)$ in terms of Hodge numbers (motivic): Petrovsky–Oleinik inequality
- Interpret some Gibbs averages (like local magnetization)

$$\langle \mathcal{O} \rangle = \frac{\sum_{\sigma} \mathcal{O}(\sigma) e^{-\beta H_{\sigma}}}{\sum_{\sigma} e^{-\beta H_{\sigma}}} = \frac{\sum_{\sigma} \mathcal{O}(\sigma) p(q, t, \sigma)}{Z_G(q, t)}$$

as periods of motives (when averaging over some sets parameters), control the behavior over family G_n of graphs

• Behavior of zeros of $Z_{G_n}(q, t)$, over families of graphs G_n with some "construction method"

Families of graphs: polygons, linked polygons, banana graphs, trees, chains of polygons

Difficulty: easily lose control of the algebro-geometric term in the deletion-contraction and recursion formula for more complicated graphs (lattices, zig-zag graphs)

Notation:

• \mathcal{Z}_G hypersurface in $\mathbb{A}^{\# E(G)+1}$ defined by $Z_G(q, t) = 0$ (Potts model hypersurface)

- $\bullet \; [\mathcal{Z}_G]$ class in the Grothendieck ring
- $\{\mathcal{Z}_G\} = \mathbb{L}^{\#\mathcal{E}(G)+1} [\mathcal{Z}_G] = [\mathbb{A}^{\#\mathcal{E}(G)+1} \smallsetminus \mathcal{Z}_G]$ class of the complement

Algebro-geometric deletion-contraction for Potts models:

$$\{\mathcal{Z}_{\mathcal{G}}\} = \mathbb{L}\{\mathcal{Z}_{\mathcal{G}/e} \cap \mathcal{Z}_{\mathcal{G} \smallsetminus e}\} - \{\mathcal{Z}_{\mathcal{G}/e}\}$$

(includes cases of bridges and looping edges)

通 と く ヨ と く ヨ と

By checking cases: from deletion-contraction of $Z_G(q, t)$

$$Z_G(q,t) = Z_{G \setminus e}(q,\hat{t}) + t_e Z_{G/e}(q,\hat{t})$$

• If
$$Z_{G/e}(q, \hat{t}) \neq 0$$
 then $Z_G(q, t) \neq 0$ if
 $t_e \neq -Z_{G \setminus e}(q, \hat{t})/Z_{G/e}(q, \hat{t})$: a \mathbb{G}_m of t_e 's gives class
 $(\mathbb{L}-1)\{\mathcal{Z}_{G/e}\}$

• If $Z_{G/e}(q, \hat{t}) = 0$ then $Z_G(q, t) \neq 0$ means $Z_{G \setminus e}(q, \hat{t}) \neq 0$: gives \mathbb{A}^1 of t_e 's for each (q, \hat{t}) with $Z_{G/e}(q, \hat{t}) = 0$ and $Z_{G \setminus e}(q, \hat{t}) \neq 0$, so class

$$\mathbb{L}\left[\mathcal{Z}_{G/e} \smallsetminus \left(\mathcal{Z}_{G/e} \cap \mathcal{Z}_{G \smallsetminus e}\right)\right]$$

Adding these

$$\begin{split} \{\mathcal{Z}_G\} &= (\mathbb{L}-1)\{\mathcal{Z}_{G/e}\} + \mathbb{L}(\{\mathcal{Z}_{G/e} \cap \mathcal{Z}_{G \smallsetminus e}\} - \{\mathcal{Z}_{G/e}\}) \\ &= \mathbb{L}\{\mathcal{Z}_{G/e} \cap \mathcal{Z}_{G \smallsetminus e}\} - \{\mathcal{Z}_{G/e}\} \end{split}$$

where by inclusion-exclusion

$$[\mathcal{Z}_{G/e}] - [\mathcal{Z}_{G/e} \cap \mathcal{Z}_{G \smallsetminus e}] = \{\mathcal{Z}_{G/e} \cap \mathcal{Z}_{G \smallsetminus e}\} - \{\mathcal{Z}_{G/e}\} \in \mathbb{R}$$

Simple properties of $\{Z_G\}$

- $G = \text{single vertex: } \{\mathcal{Z}_G\} = \mathbb{L} 1$
- $G = \text{single edge, one or two vertices: } \{\mathcal{Z}_G\} = (\mathbb{L} 1)^2$
- $G' = G_1 \cup_{v} G_2$ (two graphs joined at a vertex) and G'' disjoint union

$$Z_{G'} = \frac{1}{q} Z_{G_1} Z_{G_2} \Rightarrow \{ \mathcal{Z}_{G'} \} = \{ \mathcal{Z}_{G''} \}$$

but $\{Z_{G''}\}$ not simply product because one variable q in common • joining to graphs with an edge: $(\mathbb{L} - 1)\{Z_{G''}\}$

(《圖》 《문》 《문》 - 문

Splitting edges: generating function graph G with chose edge e: ${}^{0}G = G/e$, ${}^{1}G = G$, ${}^{k}G$ egde e replaced by chain of k edges

• First step: case of 2G

$$\{\mathcal{Z}_{^2G}\} = \mathbb{L}((\mathbb{L}-2)\{\mathcal{Z}_{G\smallsetminus e}\cap \mathcal{Z}_{G/e}\} + \{\mathcal{Z}_{G\smallsetminus e}\} + \{Y_G^e\}) - \{\mathcal{Z}_{^1G}\}$$

where Y^e_G ideal of $(1+t_e)Z'$ with Z'

$$\sum_{A\subseteq E(G)}q^{k(A)}\prod_{a\in A}t_a$$

sum on all subgraphs connecting the endpoints of e in some way other than e

• Description of $\{\mathcal{Z}_{G \smallsetminus e} \cap \mathcal{Z}_{G/e}\}$

$$\mathbb{L}\left\{\mathcal{Z}_{G\smallsetminus e}\cap\mathcal{Z}_{G/e}\right\}=\left\{\mathcal{Z}_{G/e}\right\}+\left\{\mathcal{Z}_{G}\right\}=\left\{\mathcal{Z}_{^{0}G}\right\}+\left\{Z_{^{1}G}\right\}$$

• This gives

 $\{\mathcal{Z}_{^2G}\} = (\mathbb{T}-2)\{\mathcal{Z}_{^1G}\} + (\mathbb{T}-1)\{\mathcal{Z}_{^0G}\} + (\mathbb{T}+1)(\{\mathcal{Z}_{G \smallsetminus e}\} + \{Y_G^e\})$

• multiple splitting (*e* last added edge)

$$\{\mathcal{Z}_{m_{G \smallsetminus e}}\} + \{Y_{m_{G}}^{e}\} = \mathbb{T}^{m-1}(\{\mathcal{Z}_{G \smallsetminus e}\} + \{Y_{G}^{e}\})$$

• Then recursion relation controls Y_G^e : $m \ge 0$

 $\{\mathcal{Z}_{m+3_G}\} = (2\mathbb{T}-2)\{\mathcal{Z}_{m+2_G}\} - (\mathbb{T}^2 - 3\mathbb{T}+1)\{\mathcal{Z}_{m+1_G}\} - \mathbb{T}(\mathbb{T}-1)\{\mathcal{Z}_{m_G}\}$

• Generating function

$$\begin{split} \sum_{m \ge 0} \{ \mathcal{Z}_{mG} \} \frac{s^{m}}{m!} &= \left(e^{(\mathbb{T}-1)s} - (\mathbb{T}-1) \cdot \frac{e^{\mathbb{T}s} - e^{-s}}{\mathbb{T}+1} \right) \{ Z_{0G} \} \\ &+ \left((\mathbb{T}-1) \cdot \frac{e^{(\mathbb{T}-1)s} - e^{-s}}{\mathbb{T}} - (\mathbb{T}-2) \cdot \frac{e^{\mathbb{T}s} - e^{-s}}{\mathbb{T}+1} \right) \{ Z_{1G} \} \\ &+ \left(- \frac{e^{(\mathbb{T}-1)s} - e^{-s}}{\mathbb{T}} + \frac{e^{\mathbb{T}s} - e^{-s}}{\mathbb{T}+1} \right) \{ Z_{2G} \} \end{split}$$

御 と く ヨ と く ヨ と … ヨ

Doubling edges: generating function (dual to edge splitting)

$$Z_{G \smallsetminus e} + (t_e + t_f + t_e t_f) Z_{G/e} = Z_{G \smallsetminus e} + (u_e u_f - 1) Z_{G/e}$$

with
$$u_e = 1 + t_e$$
, $u_f = 1 + t_f$
• If $Z_{G/e} = 0$, then $Z_{G \setminus e} \neq 0$ (u_e and u_f free):
 $(\mathbb{T} + 1)^2 \cdot [\mathcal{Z}_{G/e} \smallsetminus (\mathcal{Z}_{G \setminus e} \cap \mathcal{Z}_{G/e})]$

•
$$Z_{G/e} \neq 0$$
 then $u_1 u_2 \neq 1 - \frac{Z_{G \sim e}}{Z_{G/e}}$ two possibilities:
1) $\frac{Z_{G \sim e}}{Z_{G/e}} = 1$ (then $u_1 u_2 \neq 0$): $\mathbb{L}^2 - 2\mathbb{L} + 1 = \mathbb{T}^2$
2) $\frac{Z_{G \sim e}}{Z_{G/e}} \neq 1$ (then $u_1 u_2 \neq c$ for some $c \neq 0$) For $c \neq 0$: $u_2 \neq 0$,
 $u_1 = c/u_2 \Rightarrow \mathbb{L} - 1$, then class of $u_1 u_2 \neq c$ is
 $\mathbb{L}^2 - \mathbb{L} + 1 = \mathbb{T}^2 + \mathbb{T} + 1$

回 と く ヨ と く ヨ と

æ

So doubling an edge gives for class of the complement

$$egin{aligned} &(\mathbb{T}+1)^2 \cdot [\mathcal{Z}_{G/e} \smallsetminus (\mathcal{Z}_{G\smallsetminus e} \cap \mathcal{Z}_{G/e})] + \mathbb{T}^2[(\mathbb{A}^{|E|} \smallsetminus \mathcal{Z}_{G/e}) \cap (\mathcal{Z}_{G\smallsetminus e} = \mathcal{Z}_{G/e})] \ &+ (\mathbb{T}^2 + \mathbb{T} + 1)[(\mathbb{A}^{|E|} \smallsetminus \mathcal{Z}_{G/e}) \smallsetminus (\mathcal{Z}_{G\smallsetminus e} = \mathcal{Z}_{G/e})] \end{aligned}$$

which simplifies to

$$\mathbb{T} \cdot \{\mathcal{Z}_{\mathcal{G}}\} - (\mathbb{T}+1) \cdot \{\mathcal{Z}_{\mathcal{G} \smallsetminus e} = \mathcal{Z}_{\mathcal{G}/e}\}$$

So need class of complement of $Z_{G \setminus e} - Z_{G/e} = 0$ G' doubling edge e in G:

$$\{\mathcal{Z}_{G'}\} = \mathbb{T} \cdot \{\mathcal{Z}_G\} + (\mathbb{T}+1) \cdot \{W_G^e\}$$

with W_G^e summing over subgraphs of G/e which acquire an additional connected component in $G \smallsetminus e$

Multiple parallel edges $G^{(m)}$ with *m* edges parallel to *e* in *G*

$$\{\mathcal{Z}_{\mathcal{G}^{(m+2)}}\} = (2\mathbb{T}+1)\{\mathcal{Z}_{\mathcal{G}^{(m+1)}}\} - \mathbb{T}(\mathbb{T}+1)\{\mathcal{Z}_{\mathcal{G}^{(m)}}\}$$

using $\{W_{G'}^e\} = (\mathbb{T}+1)\{W_{G}^e\} = \{Z_{G'}\} - \mathbb{T}\{Z_G\}$

• Generating function:

$$\sum_{m\geq 0} \{\mathcal{Z}_{G^{(m)}}\} \frac{s^m}{m!} = ((\mathbb{T}+1)\{\mathcal{Z}_G\} - \{\mathcal{Z}_{G'}\}) e^{\mathbb{T}s} + (\{\mathcal{Z}_{G'}\} - \mathbb{T}\{\mathcal{Z}_G\}) e^{(\mathbb{T}+1)s}$$

同 ト く ヨ ト く ヨ ト

æ

Simple examples of applications:

• Polygons

$$G_m = \text{polygon with } m + 1 \text{ sides}$$

 $\{\mathcal{Z}_{G_m}\} = \mathbb{T}^{m+2} + \mathbb{T}(\mathbb{T}-1)(\mathbb{T}^m - (\mathbb{T}-1)^m) + (\mathbb{T}-1)\frac{(\mathbb{T}-1)^m - (-1)^m}{\mathbb{T}}$

from the edge splitting recursion and generating function

• Banana graphs

 $G^{(m)} =$ banana graph with m + 1 edges

$$\{\mathcal{Z}_{\mathcal{G}^{(m)}}\} = \mathbb{T}^m + (\mathbb{T}-1)(\mathbb{T}+1)^{m+1}$$

from the multiple edges recursion and generating function

Note: so far q variable: will then need q fixed

Special values of q

• q = 0: Z_G has a component $H = \{q = 0\}$ with multiplicity $b_0(G)$; remaning component, at q = 0 is (dual of) graph hypersurface $\Phi_G(t) = 0$

• *q* = 1:

$$Z_G(1,t) = \prod_{e \in E(G)} (1+t_e)$$

normal crossings divisors: coordinate hyperplanes in \mathbb{A}^n , complement $\mathbb{T}^n = [\mathbb{G}_m]^n$

白 と く ヨ と く ヨ と

General values of q

$$\{\mathcal{Z}_{\mathcal{G},q}\} = (\mathbb{T}+1)\{\mathcal{Z}_{\mathcal{G}/e,q} \cap \mathcal{Z}_{\mathcal{G}\smallsetminus e,q}\} - \{\mathcal{Z}_{\mathcal{G}/e,q}\}$$

• Recursions for multiple edges and splitting edges same (change initial conditions)

• Examples: polygons ${}^{m}G$ and bananas $G^{(m)}$

$$\{Z_{^mG,q}\}=\mathbb{T}^{m+1}+\mathbb{T}(\mathbb{T}^m-(\mathbb{T}-1)^m)+rac{(\mathbb{T}-1)^m-(-1)^m}{\mathbb{T}}$$

$$\{Z_{G^{(m)},q}\} = (\mathbb{T}+1)^{m+1} - \mathbb{T}^m$$

• Behaves like a fibration $\mathcal{Z}_{G,q}$ over q with special fibers at q = 0, 1

• ... but, not a locally trivial fibration (explicit examples in M.M., Jessica Su, *Arithmetic of Potts model hypersurfaces*, arXiv:1112.5667)

Thermodynamic averages and periods

$$\langle F \rangle = \frac{\sum_{A \subseteq E} q^{k(A)} F(t_A) \prod_{e \in A} t_e}{\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} t_e} = \frac{1}{Z_G(q, t)} \sum_{A \subseteq E} q^{k(A)} F(t_A) \prod_{e \in A} t_e$$

 $F(t_A) = F(t)|_{t_e=0, \forall e \notin A}$ observables: polynomial functions of edge variables

$$\frac{1}{Vol(\Delta)}\int_{\Delta}\langle F\rangle \, dv = \frac{1}{Vol(\Delta)}\int_{\Delta}\frac{P_{G,F}(q,t)}{Z_G(q,t)} \, dv(t)$$

with $P_{G,F}(q,t) = \sum_{A \subseteq E} q^{k(A)} F(t_A) \prod_{e \in A} t_e$

• The numbers

$$\int_{\Delta} \frac{P_{G,F}(q,t)}{Z_G(q,t)} \, dv(t)$$

are periods of motives: what kinds of periods?

白 と く ヨ と く ヨ と …

Polygon polymer chains

 $(m,k)G^N =$ joining N polygons, each m + 1 sides by chains of $k \ge 0$ edges.

Class $\{\mathcal{Z}_{(m,k)}{}_{G^N,q}\}$ with $q \neq 0, 1$:

$$\left(\mathbb{T}^{m+1}+\mathbb{T}(\mathbb{T}^m-(\mathbb{T}-1)^m)+rac{(\mathbb{T}-1)^m-(-1)^m}{\mathbb{T}}
ight)^N\mathbb{T}^{k(N-1)}$$

in mixed Tate part $\mathbb{Z}[\mathbb{L}] \subset {\it K}_0(\mathcal{V})$

< 注 → < 注 →

A similar case: chains of banana graphs

• ${}^{k}G^{(m),N}$ = connecting N banana graphs each with m parallel edges by a chain of $k \ge 0$ edges

$$\{\mathcal{Z}_{k_{G}(m),N,q}\} = ((\mathbb{T}+1)^{m+1} - \mathbb{T}^{m})^{N}\mathbb{T}^{k(N-1)}$$

again in mixed Tate part $\mathbb{Z}[\mathbb{L}] \subset {\mathcal K}_0({\mathcal V})$

Conclusion on thermodynamic averages:

- $[X] \in \mathbb{Z}[\mathbb{L}] \subset \mathcal{K}_0(\mathcal{V}) \Leftarrow X$ mixed Tate motive (conditionally \Leftrightarrow)
- (F.Brown) Periods of mixed Tate motives over $\mathbb{Z} \Leftrightarrow \mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of multiple zeta values

$$\zeta(n_1,\ldots,n_r)=\sum_{0< k_1<\ldots< k_r}\frac{1}{k_1^{n_1}\cdots k_r^{n_r}},$$

with integers $n_i \ge 1$ and $n_r \ge 2$

• Periods from thermodynamic averages are combinations of multiple zeta values for polygon chains and chains of banana graphs

直 とう きょう うちょう

• Polynomial countability fails already for tetrahedron graph (\Rightarrow not in $\mathbb{Z}[\mathbb{L}]$) (M.M., Jessica Su, Arithmetic of Potts model hypersurfaces, arXiv:1112.5667)

• Periods from thermodynamic averages can be more complicated for tetrahedral chains

Estimate topological complexity of set of virtual phase transitions

- Virtual phase transitions $\mathcal{Z}_G(\mathbb{R})$ real locus
- Physical phase transitions $\mathcal{Z}_{\mathcal{G}}(\mathbb{R}) \cap \mathcal{I}$: ferromagnetic
- $\mathcal{I} = \{t_e \geq 0\}$, antiferromagnetic $\mathcal{I} = \{-1 \leq t_e \leq 0\}$
- Good indicators of "topological complexity": homology and cohomology, Euler characteristic
- Estimate how these behave over families of finite graphs growing to infinite graphs
- Estimates on the real locus from information on the complex geometry

通 と く き と く き と

Hodge numbers and the class in $K_0(\mathcal{V})$

virtual Hodge polynomial

$$e(X)(x,y) = \sum_{p,q=0}^{d} e^{p,q}(X) x^{p} y^{q}$$

where

$$e^{p,q}(X) = \sum_{k=0}^{2d} (-1)^k h^{p,q}(H^k_c(X))$$

 $h^{p,q}(H^k_c(X)) =$ Hodge numbers of MHS on compact supp cohom • ring homomorphism $e : K_0(\mathcal{V}) \to \mathbb{Z}[x, y]$ • so can read Hodge numbers of \mathcal{Z}_G and $\mathbb{A}^{\#E(G)+1} \smallsetminus \mathcal{Z}_G$ from

• so can read Hodge numbers of \mathcal{Z}_G and $\mathbb{A}^n \subset \mathcal{I} \subset \mathcal{Z}_G$ from explicit formulae for $\{\mathcal{Z}_G\}$

通 と く き と く き と

Petrovsky–Oleinik inequalities

• original case: X complex smooth projective, dim X = 2p, $X(\mathbb{R})$ real locus

$$|\chi(X(\mathbb{R}))-1|\leq h^{p,p}(X)-1$$

Hodge numbers control topology of real locus

• further cases with isolated singularities, dim X = 2p

$$|\chi(X(\mathbb{R}))-1| \leq \sum_{0\leq q\leq p} h^{q,q}(H_0^n(X))$$

mixed Hodge structure on primitive cohomology

• more general cases: $X(\mathbb{R})$ algebraic set in \mathbb{R}^n zeros of nonnegative polynomial even deg d: an estimate for $|\chi(X(\mathbb{R})) - 1|$ in terms of counting integral points in a polytope (related to Hodge numbers)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Other invariants of *real* algebraic varieties

• unique *motivic* invariant that agrees with topological Euler characteristic on compact smooth real algebraic varieties and homeomorphism invariant (not homotopy invariant)

$$\chi_c(S) = \sum_k (-1)^k b_k^{BM}(S)$$

S = semi-algebraic set; $b_k^{BM} =$ Borel–Moore Betti numbers (equivalently, ranks of $H_c^*(S)$)

• motivic = factor through Grothendieck ring $K_0(\mathcal{V}_{\mathbb{R}})$

• Note: topological Euler characteristic $\chi(\mathbb{L}) = 1$ and $\chi(\mathbb{T}) = 0$ in $\mathcal{K}_0(\mathcal{V}_{\mathbb{C}})$, but $\chi_c(\mathbb{L}) = -1$ and $\chi_c(\mathbb{T}) = -2$ in $\mathcal{K}_0(\mathcal{V}_{\mathbb{R}})$

- (日) (日) (日) (日) 日

Virtual Betti numbers:

• virtual Betti numbers: $b_k(X) = \dim H_k(X, \mathbb{Z}/2\mathbb{Z})$ of smooth real alg varieties extend uniquely to $K_0(\mathcal{V}_{\mathbb{R}})$ as ring homomorphism

$$\beta: \mathsf{K}_0(\mathcal{V}_{\mathbb{R}}) \to \mathbb{Z}[t]$$

so that for X smooth compact

$$\beta(X,t) = \sum_{k} b_k(X) t^k$$

and with $\beta(X,-1) = \chi_c(X)$

• $\beta_k(X) \neq b_k^{BM}(X)$ (can be negative) but alternating sum is $\chi_c(X)$

(E) < E)</p>

Complex case: virtual Betti numbers and virtual Hodge polynomials

• weight k Euler characteristic

$$w_j^k(X(\mathbb{C})) = \sum_{p+q=j} h^{p,q}(H^k_c(X(\mathbb{C})))$$

• virtual Betti numbers (McCrory-Parusiński)

$$\beta_j(X(\mathbb{C})) = (-1)^j \sum_k (-1)^k w_j^k(X(\mathbb{C})).$$

- ... but in general don't have good Petrovskiĩ–Oleĭnik type estimates for $\chi_c(X(\mathbb{R}))$ in real case
- ... but can get explicit information about $\chi_c(X(\mathbb{R}))$ from explicit knowledge of class [X] in the Grothendieck ring

白 と く ヨ と く ヨ と …

An estimate of algorithmic complexity

• Why interested in estimating $\chi_c(X(\mathbb{R}))$?

• $\chi_c(S)$ is a lower bound for the algorithmic complexity of the (semi)algebraic set S

$$C(S) \geq \frac{1}{3}(\log_3 \chi_c(S) - n - 4)$$

for a (semi)algebraic set $S \subset \mathbb{R}^n$

▶ < 문 ▶ < 문 ▶</p>

Potts model: polygon chains $(m,k)G^N$

• Euler characteristic with compact support

$$\chi_{c}(\mathcal{Z}_{(m,k)}G^{N},q(\mathbb{R})) =$$

$$(-1)^{mN+kN-k}\left((-1)^N-2^{kN-k-N}\left(3^{m+1}+1-2^{m+3}\right)^N\right)$$

• virtual Hodge polynomial

$$e(\mathcal{Z}_{(m,k)}_{G^N,q})(\mathbb{C})(x,y) =$$

$$(xy-1)^{k(N-1)}\left(2(xy-1)^{m+1}-\frac{(-1)^m+(xy-2)^{m+1}xy}{xy-1}\right)^N$$

Potts model: chains of banana graphs ${}^{k}G^{(m),N}$

• Euler characteristic with compact support

$$\chi_{c}(\mathcal{Z}_{k_{G}(m),N}(\mathbb{R})) = (-1)^{mN+kN+N-k} \left(1 - 2^{k(N-1)} \left(2^{m}+1\right)^{N}\right)$$

• virtual Hodge polynomial

$$e(\mathcal{Z}_{k_{G}(m),N}(\mathbb{C}))(x,y) = (xy-1)^{k(N-1)}(xy^{m+1} - (xy-1)^{m})^{N}$$

- E - N

Other algebro-geometric aspects of Potts models

Free energy of *N*-state chiral Potts model from the star-triangle relations: function of "rapidity variables" on a hyperelliptic curve of genus N - 1 (rapidity curves):

- V.B. Matveev, A.O. Smirnov, Star-triangle equations and some properties of algebraic curves that are connected with the integrable chiral Potts model, Mat. Zametki 46 (1989), no. 3, 31–39, 126
- R.J. Baxter, *Hyperelliptic function parametrization for the chiral Potts model*, Proceedings ICM (Kyoto, 1990), Springer 1991, pp. 1305–1317.
- S.S. Roan, A characterization of "rapidity" curve in the Chiral Potts Model, Comm. Math. Phys. 145, 605–634 (1992).
- B. Davies, A. Neeman, *Algebraic geometry of the three-state chiral Potts model*, Israel J. Math. 125 (2001), 253–292.
- M. Romagny, *The stack of Potts curves and its fibre at a prime of wild ramification*, J. Algebra 274 (2004), no. 2, 772–803.

Questions and directions

- Algebraic geometry of Potts curves: motivic aspects?
- Potts models with magnetic field; arithmetic mutivariate Tutte polynomials?
- Partition function in terms of transfer matrix: motivic aspects?
- Poincaré residues, Leray coboundaries and location of zeros?