# A motivic approach to Potts models 

Matilde Marcolli (Caltech)

Evans Lecture, Berkeley, April 2013

Based on joint work with Paolo Aluffi
Some references:

- P. Aluffi, M.M., A motivic approach to phase transitions in Potts models, J. Geom. Phys., Vol. 63 (2013) 6-31
- M.M. Feynman motives, World Scientific, 2010.
+ other references listed later


## Potts Models: Statistical Mechanics

$G=$ finite graph
$\mathfrak{A}=$ set of possible spin states at a vertex, $\# \mathfrak{A}=q$

- State: assignment of a spin state to each vertex of $G$
- Energy: sum over edges, zero if endpoint spins not aligned,
$-J_{e}$ if aligned (same) spins
- Edge variables: $t_{e}=e^{\beta J_{e}}-1$, with $\beta$ thermodynamic parameter (inverse temperature)
- Physical values: $t_{e} \geq 0$ ferromagnetic case $\left(J_{e} \geq 0\right)$ and
$-1 \leq t_{e} \leq 0$ antiferromagnetic case $-\infty \leq J_{e} \leq 0$.
Partition function

$$
Z_{G}(q, t)=\sum_{\sigma: V(G) \rightarrow \mathfrak{A}} \prod_{e \in E(G)}\left(1+t_{e} \delta_{\sigma(v), \sigma(w)}\right)
$$

sum over all maps of vertices to spin states, and $\partial(e)=\{v, w\}$

Example: 2D lattice, with $q=4$, near critical temperature


Multivariable Tutte polynomial (Fortuin-Kasteleyn)

$$
Z_{G}(q, t)=\sum_{G^{\prime} \subseteq G} q^{k\left(G^{\prime}\right)} \prod_{e \in E\left(G^{\prime}\right)} t_{e}
$$

$k\left(G^{\prime}\right)=b_{0}\left(G^{\prime}\right)$ connected components, sum over all subgraphs $G^{\prime} \subseteq G$ with $V\left(G^{\prime}\right)=V(G)$. Now $q$ a variable.
Deletion-contraction

$$
Z_{G}(q, t)=Z_{G \backslash e}(q, \hat{t})+t_{e} Z_{G / e}(q, \hat{t})
$$

$\hat{t}=$ edge variables with $t_{e}$ removed (includes case of bridges and looping edges)

## The problem of phase transitions

Zeros of the partition function $\Rightarrow$ Phase transitions

- Ferromagnetic case: finite graphs have no physical phase transitions $t_{e} \geq 0$, only virtual phase transitions $t_{e}<0$
- Antiferromagnetic case: $-1 \leq t_{e} \leq 0$, results on zero-free regions for certain graphs (Jackson-Sokal)

Families of graphs $G_{\infty}=\cup_{n} G_{n}$, ferromagnetic case, no phase transitions for fixed $G_{n}$, but in the limit?
Complex zeros of $Z_{G_{n}}(q, t)$ approaching points in the positive quadrant: estimate how the locus of (complex/real) zeros of $Z_{G_{n}}(q, t)$ changes in a family $G_{n}$
There is an extensive literature using analytic methods ...
... why a motivic approach?

A parallel story: Quantum Field Theory
Euclidean scalar field theory on a $D$-dimensional spacetime

$$
\mathcal{L}(\phi)=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\mathcal{L}_{i n t}(\phi)
$$

with polynomial interaction term $\mathcal{L}_{\text {int }}(\phi)$ : action functional

$$
S(\phi)=\int \mathcal{L}(\phi) d^{D} x
$$

Path integrals (expectation values of observables $\mathcal{O}(\phi)$ )

$$
\langle\mathcal{O}\rangle=\frac{\int \mathcal{O}(\phi) e^{\frac{i}{\hbar} S(\phi)} D[\phi]}{\int e^{\frac{i}{\hbar} S(\phi)} D[\phi]}
$$

ill defined infinite dimensional integrals ... but computed by perturbative expansion in Feynman graphs

## Feynman graphs and Feynman rules (Euclidean)

- Internal lines $\Rightarrow$ propagator $=$ quadratic form $q_{i}$

$$
\frac{1}{q_{1} \cdots q_{n}}, \quad q_{i}\left(k_{i}\right)=k_{i}^{2}+m^{2}
$$

- Vertices: conservation (valences $=$ monomials in $\mathcal{L}$ )

$$
k_{i}=0
$$

- Integration over $k_{i}$, internal edges

$$
\begin{aligned}
& \quad U(G)=\int \frac{\delta\left(\sum_{i=1}^{n} \epsilon_{v, i} k_{i}+\sum_{j=1}^{N} \epsilon_{v, j} p_{j}\right)}{q_{1} \cdots q_{n}} d^{D} k_{1} \cdots d^{D} k_{n} \\
& n=\# E_{i n t}(G), N=\# E_{e x t}(G)
\end{aligned}
$$

$$
\epsilon_{e, v}=\left\{\begin{array}{rl}
+1 & t(e)=v \\
-1 & s(e)=v \\
0 & \text { otherwise }
\end{array}\right.
$$

Parametric form of Feynman integrals (Schwinger parameters)

$$
U(G)=\frac{\Gamma(n-D \ell / 2)}{(4 \pi)^{\ell D / 2}} \int_{\sigma_{n}} \frac{P_{G}(t, p)^{-n+D \ell / 2} \omega_{n}}{\Psi_{G}(t)^{-n+D(\ell+1) / 2}}
$$

massless case: polynomial $P_{G}$ (cut sets and external momenta), polynomial $\Psi_{G}$

$$
\Psi_{G}(t)=\sum_{T} \prod_{e \notin T} t_{e}
$$

sum over spanning trees (connected $G$ ) integral over simplex $\sigma_{n}=\left\{t \in \mathbb{R}_{+}^{n} \mid \sum_{i} t_{i}=1\right\}$ with vol form $\omega_{n}$

## Observations

- Modulo regularization and renormalization, $U(G)$ is a period of the algebraic variety $\mathbb{A}^{n} \backslash X_{G}$, complement of the hypersurface

$$
X_{G}=\left\{t=\left(t_{e}\right) \in \mathbb{A}^{n} \mid \Psi_{G}(t)=0\right\}
$$

- The polynomial $\Psi_{G}(t)$ satisfies deletion-contraction

$$
\Psi_{G}(t)=t_{e} \Psi_{G \backslash e}(\hat{t})+\Psi_{G / e}(\hat{t})
$$

(e neither bridge nor looping edge)

- Related polynomial

$$
\Phi_{G}(t)=\sum_{T} \prod_{e \in T} t_{e}
$$

$T=$ spanning trees (maximal spanning forests); $\Psi_{G}$ obtained dividing by $\prod_{e \in E(G)} t_{e}$ and changing variables $t_{e} \mapsto 1 / t_{e}$ (Cremona transformation)

## Motivic complexity and the Grothendieck ring

- What kind of numbers are the residues of Feynman graphs? periods of motives, depend on what kind of motives: mixed Tate motives $\Rightarrow$ multiple zeta values
- Estimate the "motivic complexity" through classes $\left[X_{G}\right]$ in the Grothendieck ring
$K_{0}(\mathcal{V})$ generated by isomorphism classes [ $X$ ] of smooth (quasi)projective varieties with relations
- $[X]=[Y]+[X \backslash Y]$ : inclusion-exclusion, $Y \subset X$ closed
- $[X \times Y]=[X][Y]$ : product structure
- (Belkale-Brosnan):
[ $X_{G}$ ] generate localization of $K_{0}(\mathcal{V})$ at $\mathbb{L}^{n}-\mathbb{L}$

Deletion-contraction for $\left[X_{G}\right]$

$$
\left[\mathbb{A}^{n} \backslash X_{G}\right]=\mathbb{L}\left[\mathbb{A}^{n-1} \backslash\left(X_{G \backslash e} \cap X_{G / e}\right)\right]-\left[\mathbb{A}^{n-1} \backslash X_{G \backslash e}\right]
$$

e neither bridge nor looping edge;
$\left[\mathbb{A}^{n} \backslash X_{G}\right]=\mathbb{L}\left[\mathbb{A}^{n-1} \backslash X_{G / e}\right]=\mathbb{L}\left[\mathbb{A}^{n-1} \backslash X_{G \backslash e}\right]$ for bridges;
$\left[\mathbb{A}^{n} \backslash X_{G}\right]=(\mathbb{L}-1)\left[\mathbb{A}^{n-1} \backslash X_{G / e}\right]=(\mathbb{L}-1)\left[\mathbb{A}^{n-1} \backslash X_{G \backslash e}\right]$ for
looping edges
$\mathbb{L}=\left[\mathbb{A}^{1}\right]$ Lefschetz motive
Note: algebro-geometric term $X_{G \backslash e} \cap X_{G / e}$ difficult to control: can be motivically more complicated than $X_{G \backslash e}$ and $X_{G / e}$

## Some Consequences

P. Aluffi, M. Marcolli, Feynman motives and deletion-contraction relations, arXiv:0907.3225
Some operations that enlarge the graph have a "controlled effect" on the Grothendieck class $\left[X_{G}\right]$

- splitting edges

- doubling edges


Obtain generating series for the classes $\left[X_{G_{n}}\right]$ in such families

Key: cancellations of "difficult term" in deletion-contraction in $K_{0}(\mathcal{V})$ in good cases
Notation: $\mathbb{U}(G)=\left[\mathbb{A}^{n} \backslash X_{G}\right]$

- doubling edges

$$
\mathbb{U}\left(G_{2 e}\right)=(\mathbb{T}-1) \mathbb{U}(G)+\mathbb{T} \mathbb{U}(G \backslash e)+(\mathbb{T}+1) \mathbb{U}(G / e)
$$

neither bridge nor looping edge; $\mathbb{U}\left(G_{2 e}\right)=\mathbb{T}^{2} \mathbb{U}(G \backslash e)$ looping edge; $\mathbb{U}\left(G_{2 e}\right)=\mathbb{T}(\mathbb{T}+1) \mathbb{U}(G \backslash e)$ bridge $\mathbb{T}=\mathbb{L}-1=\left[\mathbb{G}_{m}\right]$ class of the multiplicative group

- splitting an edge $\Rightarrow$ multiply the class by $\mathbb{T}+1$

Example: can control classes $\left[X_{G}\right]$ of $G$ chains of polygons, in mixed Tate part $\mathbb{Z}[\mathbb{L}]$ of $K_{0}(\mathcal{V})$.

A lot more is now known for classes $\left[X_{G}\right]$ of graph hypersurfaces Incomplete list of some recent results:

- P. Aluffi, M.M., Algebro-geometric Feynman rules, arXiv:0811.2514
- P. Aluffi, M.M., Feynman motives and deletion-contraction relations, arXiv:0907.3225
- O. Schnetz, Quantum field theory over $\mathbb{F}_{q}$, arXiv:0909.0905
- D. Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces, arXiv:1006. 3533
- F. Brown, O. Schnetz, A K3 in $\phi^{4}$, arXiv:1006.4064
- P. Aluffi, Chern classes of graph hypersurfaces and deletion-contraction, arXiv:1106.1447
- F. Brown, D. Doryn, Framings for graph hypersurfaces, arXiv:1301.3056


## Graph polynomials and Potts models

$\Phi_{G}$ is a limiting case of the Multivariable Tutte polynomial:

- Take $\mathcal{P}_{G}(q, t)$ the homogeneous polynomial leading term of $Z_{G}(q, t)$ (in $(q, t) \in \mathbb{A}^{n+1}$ variables)
- This is the contribution of subgraphs that are forests with $V\left(G^{\prime}\right)=V(G)$ (spanning)

$$
\mathcal{P}_{G}(q, t)=\sum_{G^{\prime} \subseteq G, b_{1}\left(G^{\prime}\right)=0, \# V\left(G^{\prime}\right)=N} q^{k\left(G^{\prime}\right)} \prod_{e \in E\left(G^{\prime}\right)} t_{e}
$$

- The locus $\mathcal{P}_{G}(q, t)=0$ is the tangent cone at zero of the affine hypersurface defined by $Z_{G}(q, t)=0$
- $\mathcal{P}_{G}(q, t)=0$ has a component $H=\{q=0\}$ with multiplicity $b_{0}(G)$ and another component $\mathcal{Q}_{G}(q, t)=0$ that intersects $H$ in the locus $\Phi_{G}(t)=0$

Extending to Potts models the motivic approach: Some goals

- Measure topological complexity of locus of real zeros of $Z_{G_{n}}(q, t)$ in terms of Hodge numbers (motivic): Petrovsky-Oleinik inequality
- Interpret some Gibbs averages (like local magnetization)

$$
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} \mathcal{O}(\sigma) e^{-\beta H_{\sigma}}}{\sum_{\sigma} e^{-\beta H_{\sigma}}}=\frac{\sum_{\sigma} \mathcal{O}(\sigma) p(q, t, \sigma)}{Z_{G}(q, t)}
$$

as periods of motives (when averaging over some sets parameters), control the behavior over family $G_{n}$ of graphs

- Behavior of zeros of $Z_{G_{n}}(q, t)$, over families of graphs $G_{n}$ with some "construction method"

Families of graphs: polygons, linked polygons, banana graphs, trees, chains of polygons

Difficulty: easily lose control of the algebro-geometric term in the deletion-contraction and recursion formula for more complicated graphs (lattices, zig-zag graphs)

Notation:

- $\mathcal{Z}_{G}$ hypersurface in $\mathbb{A}^{\# E(G)+1}$ defined by $Z_{G}(q, t)=0$ (Potts model hypersurface)
- $\left[\mathcal{Z}_{G}\right]$ class in the Grothendieck ring
- $\left\{\mathcal{Z}_{G}\right\}=\mathbb{L}^{\# E(G)+1}-\left[\mathcal{Z}_{G}\right]=\left[\mathbb{A}^{\# E(G)+1} \backslash \mathcal{Z}_{G}\right]$ class of the complement

Algebro-geometric deletion-contraction for Potts models:

$$
\left\{\mathcal{Z}_{G}\right\}=\mathbb{L}\left\{\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right\}-\left\{\mathcal{Z}_{G / e}\right\}
$$

(includes cases of bridges and looping edges)

By checking cases: from deletion-contraction of $Z_{G}(q, t)$

$$
Z_{G}(q, t)=Z_{G \backslash e}(q, \hat{t})+t_{e} Z_{G / e}(q, \hat{t})
$$

- If $Z_{G / e}(q, \hat{t}) \neq 0$ then $Z_{G}(q, t) \neq 0$ if $t_{e} \neq-Z_{G \backslash e}(q, \hat{t}) / Z_{G / e}(q, \hat{t}):$ a $\mathbb{G}_{m}$ of $t_{e}$ 's gives class

$$
(\mathbb{L}-1)\left\{\mathcal{Z}_{G / e}\right\}
$$

- If $Z_{G / e}(q, \hat{t})=0$ then $Z_{G}(q, t) \neq 0$ means $Z_{G \backslash e}(q, \hat{t}) \neq 0$ : gives $\mathbb{A}^{1}$ of $t_{e}$ 's for each $(q, \hat{t})$ with $Z_{G / e}(q, \hat{t})=0$ and $Z_{G \backslash e}(q, \hat{t}) \neq 0$, so class

$$
\mathbb{L}\left[\mathcal{Z}_{G / e} \backslash\left(\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right)\right]
$$

- Adding these

$$
\begin{gathered}
\left\{\mathcal{Z}_{G}\right\}=(\mathbb{L}-1)\left\{\mathcal{Z}_{G / e}\right\}+\mathbb{L}\left(\left\{\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right\}-\left\{\mathcal{Z}_{G / e}\right\}\right) \\
=\mathbb{L}\left\{\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right\}-\left\{\mathcal{Z}_{G / e}\right\}
\end{gathered}
$$

where by inclusion-exclusion

$$
\left[\mathcal{Z}_{G / e}\right]-\left[\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right]=\left\{\mathcal{Z}_{G / e} \cap \mathcal{Z}_{G \backslash e}\right\}-\left\{\mathcal{Z}_{G / e}\right\}
$$

Simple properties of $\left\{\mathcal{Z}_{G}\right\}$

- $G=$ single vertex: $\left\{\mathcal{Z}_{G}\right\}=\mathbb{L}-1$
- $G=$ single edge, one or two vertices: $\left\{\mathcal{Z}_{G}\right\}=(\mathbb{L}-1)^{2}$
- $G^{\prime}=G_{1} \cup_{v} G_{2}$ (two graphs joined at a vertex) and $G^{\prime \prime}$ disjoint union

$$
Z_{G^{\prime}}=\frac{1}{q} Z_{G_{1}} Z_{G_{2}} \Rightarrow\left\{\mathcal{Z}_{G^{\prime}}\right\}=\left\{\mathcal{Z}_{G^{\prime \prime}}\right\}
$$

but $\left\{\mathcal{Z}_{G^{\prime \prime}}\right\}$ not simply product because one variable $q$ in common
$\bullet$ joining to graphs with an edge: $(\mathbb{L}-1)\left\{\mathcal{Z}_{G^{\prime \prime}}\right\}$

Splitting edges: generating function graph $G$ with chose edge $e:{ }^{0} G=G / e,{ }^{1} G=G,{ }^{k} G$ egde e replaced by chain of $k$ edges

- First step: case of ${ }^{2} G$

$$
\left\{\mathcal{Z}_{2}\right\}=\mathbb{L}\left((\mathbb{L}-2)\left\{\mathcal{Z}_{G \backslash e} \cap \mathcal{Z}_{G / e}\right\}+\left\{\mathcal{Z}_{G \backslash e}\right\}+\left\{Y_{G}^{e}\right\}\right)-\left\{\mathcal{Z}_{1_{G}}\right\}
$$

where $Y_{G}^{e}$ ideal of $\left(1+t_{e}\right) Z^{\prime}$ with $Z^{\prime}$

$$
\sum_{A \subseteq E(G)} q^{k(A)} \prod_{a \in A} t_{a}
$$

sum on all subgraphs connecting the endpoints of $e$ in some way other than $e$

- Description of $\left\{\mathcal{Z}_{G \backslash e} \cap \mathcal{Z}_{G / e}\right\}$

$$
\mathbb{L}\left\{\mathcal{Z}_{G \backslash e} \cap \mathcal{Z}_{G / e}\right\}=\left\{\mathcal{Z}_{G / e}\right\}+\left\{\mathcal{Z}_{G}\right\}=\left\{\mathcal{Z}_{0}\right\}+\left\{Z_{1}\right\}
$$

- This gives

$$
\left.\left\{\mathcal{Z}_{2}\right\}=(\mathbb{T}-2)\left\{\mathcal{Z}_{1}\right\}\right\}+(\mathbb{T}-1)\left\{\mathcal{Z}_{0} G\right\}+(\mathbb{T}+1)\left(\left\{\mathcal{Z}_{G \backslash e}\right\}+\left\{Y_{G}^{e}\right\}\right)
$$

- multiple splitting (e last added edge)

$$
\left\{\mathcal{Z}_{m_{G \backslash e}}\right\}+\left\{Y_{m}^{e}\right\}=\mathbb{T}^{m-1}\left(\left\{\mathcal{Z}_{G \backslash e}\right\}+\left\{Y_{G}^{e}\right\}\right)
$$

- Then recursion relation controls $Y_{G}^{e}: m \geq 0$

$$
\left\{\mathcal{Z}_{m+3}\right\}=(2 \mathbb{T}-2)\left\{\mathcal{Z}_{m+2} G\right\}-\left(\mathbb{T}^{2}-3 \mathbb{T}+1\right)\left\{\mathcal{Z}_{m+1} G\right\}-\mathbb{T}(\mathbb{T}-1)\left\{\mathcal{Z}_{m G}\right\}
$$

- Generating function

$$
\begin{aligned}
& \sum_{m \geq 0}\left\{\mathcal{Z}_{m}\right\} \frac{s^{m}}{m!}=\left(e^{(\mathbb{T}-1) s}-(\mathbb{T}-1) \cdot \frac{e^{\mathbb{T} s}-e^{-s}}{\mathbb{T}+1}\right)\left\{Z_{0_{G}}\right\} \\
& +\left((\mathbb{T}-1) \cdot \frac{e^{(\mathbb{T}-1) s}-e^{-s}}{\mathbb{T}}-(\mathbb{T}-2) \cdot \frac{e^{\mathbb{T} s}-e^{-s}}{\mathbb{T}+1}\right)\left\{Z_{1_{G}}\right\} \\
& \quad+\left(-\frac{e^{(\mathbb{T}-1) s}-e^{-s}}{\mathbb{T}}+\frac{e^{\mathbb{T} s}-e^{-s}}{\mathbb{T}+1}\right)\left\{Z_{2}\right\}
\end{aligned}
$$

Doubling edges: generating function (dual to edge splitting)

$$
Z_{G \backslash e}+\left(t_{e}+t_{f}+t_{e} t_{f}\right) Z_{G / e}=Z_{G \backslash e}+\left(u_{e} u_{f}-1\right) Z_{G / e}
$$

with $u_{e}=1+t_{e}, u_{f}=1+t_{f}$

- If $Z_{G / e}=0$, then $Z_{G \backslash e} \neq 0$ ( $u_{e}$ and $u_{f}$ free):

$$
(\mathbb{T}+1)^{2} \cdot\left[\mathcal{Z}_{G / e} \backslash\left(\mathcal{Z}_{G \backslash e} \cap \mathcal{Z}_{G / e}\right)\right]
$$

- $Z_{G / e} \neq 0$ then $u_{1} u_{2} \neq 1-\frac{Z_{G \backslash e}}{Z_{G / e}}$ two possibilities:

1) $\frac{Z_{G \backslash e}}{Z_{G / e}}=1\left(\right.$ then $\left.u_{1} u_{2} \neq 0\right): \mathbb{L}^{2}-2 \mathbb{L}+1=\mathbb{T}^{2}$
2) $\frac{Z_{G \backslash e}}{Z_{G / e}} \neq 1$ (then $u_{1} u_{2} \neq c$ for some $c \neq 0$ ) For $c \neq 0: u_{2} \neq 0$, $u_{1}=c / u_{2} \Rightarrow \mathbb{L}-1$, then class of $u_{1} u_{2} \neq c$ is
$\mathbb{L}^{2}-\mathbb{L}+1=\mathbb{T}^{2}+\mathbb{T}+1$

So doubling an edge gives for class of the complement

$$
\begin{aligned}
(\mathbb{T}+1)^{2} \cdot\left[\mathcal{Z}_{G / e}\right. & \left.\backslash\left(\mathcal{Z}_{G \backslash e} \cap \mathcal{Z}_{G / e}\right)\right]+\mathbb{T}^{2}\left[\left(\mathbb{A}^{|E|} \backslash \mathcal{Z}_{G / e}\right) \cap\left(\mathcal{Z}_{G \backslash e}=\mathcal{Z}_{G / e}\right)\right] \\
& +\left(\mathbb{T}^{2}+\mathbb{T}+1\right)\left[\left(\mathbb{A}^{|E|} \backslash \mathcal{Z}_{G / e}\right) \backslash\left(\mathcal{Z}_{G \backslash e}=\mathcal{Z}_{G / e}\right)\right]
\end{aligned}
$$

which simplifies to

$$
\mathbb{T} \cdot\left\{\mathcal{Z}_{G}\right\}-(\mathbb{T}+1) \cdot\left\{\mathcal{Z}_{G \backslash e}=\mathcal{Z}_{G / e}\right\}
$$

So need class of complement of $Z_{G \backslash e}-Z_{G / e}=0$ $G^{\prime}$ doubling edge $e$ in $G$ :

$$
\left\{\mathcal{Z}_{G^{\prime}}\right\}=\mathbb{T} \cdot\left\{\mathcal{Z}_{G}\right\}+(\mathbb{T}+1) \cdot\left\{W_{G}^{e}\right\}
$$

with $W_{G}^{e}$ summing over subgraphs of $G / e$ which acquire an additional connected component in $G \backslash e$

Multiple parallel edges
$G^{(m)}$ with $m$ edges parallel to $e$ in $G$

$$
\left\{\mathcal{Z}_{G^{(m+2)}}\right\}=(2 \mathbb{T}+1)\left\{\mathcal{Z}_{G^{(m+1)}}\right\}-\mathbb{T}(\mathbb{T}+1)\left\{\mathcal{Z}_{G^{(m)}}\right\}
$$

using $\left\{W_{G^{\prime}}^{e}\right\}=(\mathbb{T}+1)\left\{W_{G}^{e}\right\}=\left\{\mathcal{Z}_{G^{\prime}}\right\}-\mathbb{T}\left\{\mathcal{Z}_{G}\right\}$

- Generating function:

$$
\begin{aligned}
\sum_{m \geq 0}\left\{\mathcal{Z}_{G^{(m)}}\right\} \frac{s^{m}}{m!}=\left((\mathbb{T}+1)\left\{\mathcal{Z}_{G}\right\}\right. & \left.-\left\{\mathcal{Z}_{G^{\prime}}\right\}\right) e^{\mathbb{T} s} \\
& +\left(\left\{\mathcal{Z}_{G^{\prime}}\right\}-\mathbb{T}\left\{\mathcal{Z}_{G}\right\}\right) e^{(\mathbb{T}+1) s}
\end{aligned}
$$

Simple examples of applications:

- Polygons
$G_{m}=$ polygon with $m+1$ sides
$\left\{\mathcal{Z}_{G_{m}}\right\}=\mathbb{T}^{m+2}+\mathbb{T}(\mathbb{T}-1)\left(\mathbb{T}^{m}-(\mathbb{T}-1)^{m}\right)+(\mathbb{T}-1) \frac{(\mathbb{T}-1)^{m}-(-1)^{m}}{\mathbb{T}}$
from the edge splitting recursion and generating function
- Banana graphs

$G^{(m)}=$ banana graph with $m+1$ edges

$$
\left\{\mathcal{Z}_{G^{(m)}}\right\}=\mathbb{T}^{m}+(\mathbb{T}-1)(\mathbb{T}+1)^{m+1}
$$

from the multiple edges recursion and generating function

Note: so far $q$ variable: will then need $q$ fixed
Special values of $q$

- $q=0: \mathcal{Z}_{G}$ has a component $H=\{q=0\}$ with multiplicity $b_{0}(G)$; remaning component, at $q=0$ is (dual of) graph hypersurface $\Phi_{G}(t)=0$
- $q=1$ :

$$
Z_{G}(1, t)=\prod_{e \in E(G)}\left(1+t_{e}\right)
$$

normal crossings divisors: coordinate hyperplanes in $\mathbb{A}^{n}$, complement $\mathbb{T}^{n}=\left[\mathbb{G}_{m}\right]^{n}$

## General values of $q$

$$
\left\{\mathcal{Z}_{G, q}\right\}=(\mathbb{T}+1)\left\{\mathcal{Z}_{G / e, q} \cap \mathcal{Z}_{G \backslash e, q}\right\}-\left\{\mathcal{Z}_{G / e, q}\right\}
$$

- Recursions for multiple edges and splitting edges same (change initial conditions)
- Examples: polygons ${ }^{m} G$ and bananas $G^{(m)}$

$$
\begin{gathered}
\left\{Z_{m}{ }_{G, q}\right\}=\mathbb{T}^{m+1}+\mathbb{T}\left(\mathbb{T}^{m}-(\mathbb{T}-1)^{m}\right)+\frac{(\mathbb{T}-1)^{m}-(-1)^{m}}{\mathbb{T}} \\
\left\{Z_{G^{(m)}, q}\right\}=(\mathbb{T}+1)^{m+1}-\mathbb{T}^{m}
\end{gathered}
$$

- Behaves like a fibration $\mathcal{Z}_{G, q}$ over $q$ with special fibers at $q=0,1$
- ... but, not a locally trivial fibration (explicit examples in M.M., Jessica Su, Arithmetic of Potts model hypersurfaces, arXiv:1112.5667)

Thermodynamic averages and periods
$\langle F\rangle=\frac{\sum_{A \subseteq E} q^{k(A)} F\left(t_{A}\right) \prod_{e \in A} t_{e}}{\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} t_{e}}=\frac{1}{Z_{G}(q, t)} \sum_{A \subseteq E} q^{k(A)} F\left(t_{A}\right) \prod_{e \in A} t_{e}$
$F\left(t_{A}\right)=\left.F(t)\right|_{t_{e}=0, \forall e \notin A}$ observables: polynomial functions of edge variables

$$
\frac{1}{\operatorname{Vol}(\Delta)} \int_{\Delta}\langle F\rangle d v=\frac{1}{\operatorname{Vol}(\Delta)} \int_{\Delta} \frac{P_{G, F}(q, t)}{Z_{G}(q, t)} d v(t)
$$

with $P_{G, F}(q, t)=\sum_{A \subseteq E} q^{k(A)} F\left(t_{A}\right) \prod_{e \in A} t_{e}$

- The numbers

$$
\int_{\Delta} \frac{P_{G, F}(q, t)}{Z_{G}(q, t)} d v(t)
$$

are periods of motives: what kinds of periods?

Polygon polymer chains
${ }^{(m, k)} G^{N}=$ joining $N$ polygons, each $m+1$ sides by chains of $k \geq 0$ edges.


Class $\left\{\mathcal{Z}_{(m, k)} G^{N}, q\right\}$ with $q \neq 0,1$ :

$$
\left(\mathbb{T}^{m+1}+\mathbb{T}\left(\mathbb{T}^{m}-(\mathbb{T}-1)^{m}\right)+\frac{(\mathbb{T}-1)^{m}-(-1)^{m}}{\mathbb{T}}\right)^{N} \mathbb{T}^{k(N-1)}
$$

in mixed Tate part $\mathbb{Z}[\mathbb{L}] \subset K_{0}(\mathcal{V})$

A similar case: chains of banana graphs


- ${ }^{k} G^{(m), N}=$ connecting $N$ banana graphs each with $m$ parallel edges by a chain of $k \geq 0$ edges

$$
\left\{\mathcal{Z}_{k G(m), N, q}\right\}=\left((\mathbb{T}+1)^{m+1}-\mathbb{T}^{m}\right)^{N} \mathbb{T}^{k(N-1)}
$$

again in mixed Tate part $\mathbb{Z}[\mathbb{L}] \subset K_{0}(\mathcal{V})$

Conclusion on thermodynamic averages:

- $[X] \in \mathbb{Z}[\mathbb{L}] \subset K_{0}(\mathcal{V}) \Leftarrow X$ mixed Tate motive (conditionally $\Leftrightarrow$ )
- (F.Brown) Periods of mixed Tate motives over $\mathbb{Z} \Leftrightarrow$
$\mathbb{Q}\left[(2 \pi i)^{-1}\right]$-linear combinations of multiple zeta values

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{0<k_{1}<\ldots<k_{r}} \frac{1}{k_{1}^{n_{1}} \cdots k_{r}^{n_{r}}},
$$

with integers $n_{i} \geq 1$ and $n_{r} \geq 2$

- Periods from thermodynamic averages are combinations of multiple zeta values for polygon chains and chains of banana graphs

Tetrahedral chains inosilicates: $\mathrm{Si} \mathrm{O}_{3}$ silicate tetrahedra Tetrahedra in a single-chain configuration:


- Polynomial countability fails already for tetrahedron graph $(\Rightarrow$ not in $\mathbb{Z}[\mathbb{L}]$ ) (M.M., Jessica Su, Arithmetic of Potts model hypersurfaces, arXiv:1112.5667)
- Periods from thermodynamic averages can be more complicated for tetrahedral chains

Estimate topological complexity of set of virtual phase transitions

- Virtual phase transitions $\mathcal{Z}_{G}(\mathbb{R})$ real locus
- Physical phase transitions $\mathcal{Z}_{G}(\mathbb{R}) \cap \mathcal{I}$ : ferromagnetic
$\mathcal{I}=\left\{t_{e} \geq 0\right\}$, antiferromagnetic $\mathcal{I}=\left\{-1 \leq t_{e} \leq 0\right\}$
- Good indicators of "topological complexity": homology and cohomology, Euler characteristic
- Estimate how these behave over families of finite graphs growing to infinite graphs
- Estimates on the real locus from information on the complex geometry

Hodge numbers and the class in $K_{0}(\mathcal{V})$

- virtual Hodge polynomial

$$
e(X)(x, y)=\sum_{p, q=0}^{d} e^{p, q}(X) x^{p} y^{q}
$$

where

$$
e^{p, q}(X)=\sum_{k=0}^{2 d}(-1)^{k} h^{p, q}\left(H_{c}^{k}(X)\right)
$$

$h^{p, q}\left(H_{c}^{k}(X)\right)=$ Hodge numbers of MHS on compact supp cohom

- ring homomorphism $e: K_{0}(\mathcal{V}) \rightarrow \mathbb{Z}[x, y]$
- so can read Hodge numbers of $\mathcal{Z}_{G}$ and $\mathbb{A} \# E(G)+1 \backslash \mathcal{Z}_{G}$ from explicit formulae for $\left\{\mathcal{Z}_{G}\right\}$


## Petrovsky-Oleinik inequalities

- original case: $X$ complex smooth projective, $\operatorname{dim} X=2 p, X(\mathbb{R})$ real locus

$$
|\chi(X(\mathbb{R}))-1| \leq h^{p, p}(X)-1
$$

Hodge numbers control topology of real locus

- further cases with isolated singularities, $\operatorname{dim} X=2 p$

$$
|\chi(X(\mathbb{R}))-1| \leq \sum_{0 \leq q \leq p} h^{q, q}\left(H_{0}^{n}(X)\right)
$$

mixed Hodge structure on primitive cohomology

- more general cases: $X(\mathbb{R})$ algebraic set in $\mathbb{R}^{n}$ zeros of nonnegative polynomial even deg $d$ : an estimate for $|\chi(X(\mathbb{R}))-1|$ in terms of counting integral points in a polytope (related to Hodge numbers)

Other invariants of real algebraic varieties

- unique motivic invariant that agrees with topological Euler characteristic on compact smooth real algebraic varieties and homeomorphism invariant (not homotopy invariant)

$$
\chi_{c}(S)=\sum_{k}(-1)^{k} b_{k}^{B M}(S)
$$

$S=$ semi-algebraic set; $b_{k}^{B M}=$ Borel-Moore Betti numbers
(equivalently, ranks of $H_{c}^{*}(S)$ )

- motivic $=$ factor through Grothendieck ring $K_{0}\left(\mathcal{V}_{\mathbb{R}}\right)$
- Note: topological Euler characteristic $\chi(\mathbb{L})=1$ and $\chi(\mathbb{T})=0$ in $K_{0}\left(\mathcal{V}_{\mathbb{C}}\right)$, but $\chi_{c}(\mathbb{L})=-1$ and $\chi_{c}(\mathbb{T})=-2$ in $K_{0}\left(\mathcal{V}_{\mathbb{R}}\right)$


## Virtual Betti numbers:

- virtual Betti numbers: $b_{k}(X)=\operatorname{dim} H_{k}(X, \mathbb{Z} / 2 \mathbb{Z})$ of smooth real alg varieties extend uniquely to $K_{0}\left(\mathcal{V}_{\mathbb{R}}\right)$ as ring homomorphism

$$
\beta: K_{0}\left(\mathcal{V}_{\mathbb{R}}\right) \rightarrow \mathbb{Z}[t]
$$

so that for $X$ smooth compact

$$
\beta(X, t)=\sum_{k} b_{k}(X) t^{k}
$$

and with $\beta(X,-1)=\chi_{c}(X)$

- $\beta_{k}(X) \neq b_{k}^{B M}(X)$ (can be negative) but alternating sum is $\chi_{c}(X)$

Complex case: virtual Betti numbers and virtual Hodge polynomials

- weight $k$ Euler characteristic

$$
w_{j}^{k}(X(\mathbb{C}))=\sum_{p+q=j} h^{p, q}\left(H_{c}^{k}(X(\mathbb{C}))\right)
$$

- virtual Betti numbers (McCrory-Parusiński)

$$
\beta_{j}(X(\mathbb{C}))=(-1)^{j} \sum_{k}(-1)^{k} w_{j}^{k}(X(\mathbb{C}))
$$

- ... but in general don't have good Petrovskiĭ-Oleĕnik type estimates for $\chi_{c}(X(\mathbb{R}))$ in real case
- ... but can get explicit information about $\chi_{c}(X(\mathbb{R}))$ from explicit knowledge of class $[X]$ in the Grothendieck ring

An estimate of algorithmic complexity

- Why interested in estimating $\chi_{c}(X(\mathbb{R}))$ ?
- $\chi_{c}(S)$ is a lower bound for the algorithmic complexity of the (semi)algebraic set $S$

$$
C(S) \geq \frac{1}{3}\left(\log _{3} \chi_{c}(S)-n-4\right)
$$

for a (semi)algebraic set $S \subset \mathbb{R}^{n}$

Potts model: polygon chains ${ }^{(m, k)} G^{N}$

- Euler characteristic with compact support

$$
\begin{gathered}
\chi_{c}\left(\mathcal{Z}_{(m, k)} G^{N}, q\right. \\
(\mathbb{R}))= \\
(-1)^{m N+k N-k}\left((-1)^{N}-2^{k N-k-N}\left(3^{m+1}+1-2^{m+3}\right)^{N}\right)
\end{gathered}
$$

- virtual Hodge polynomial

$$
\begin{gathered}
e\left(\mathcal{Z}_{(m, k)} G^{N}, q\right. \\
)(\mathbb{C})(x, y)= \\
(x y-1)^{k(N-1)}\left(2(x y-1)^{m+1}-\frac{(-1)^{m}+(x y-2)^{m+1} x y}{x y-1}\right)^{N}
\end{gathered}
$$

Potts model: chains of banana graphs ${ }^{k} G(m), N$

- Euler characteristic with compact support

$$
\chi_{c}\left(\mathcal{Z}_{k G(m), N}(\mathbb{R})\right)=(-1)^{m N+k N+N-k}\left(1-2^{k(N-1)}\left(2^{m}+1\right)^{N}\right)
$$

- virtual Hodge polynomial

$$
e\left(\mathcal{Z}_{k_{G}(m), N}(\mathbb{C})\right)(x, y)=(x y-1)^{k(N-1)}\left(x y^{m+1}-(x y-1)^{m}\right)^{N}
$$

## Other algebro-geometric aspects of Potts models

Free energy of $N$-state chiral Potts model from the star-triangle relations: function of "rapidity variables" on a hyperelliptic curve of genus $N-1$ (rapidity curves):

- V.B. Matveev, A.O. Smirnov, Star-triangle equations and some properties of algebraic curves that are connected with the integrable chiral Potts model, Mat. Zametki 46 (1989), no. 3, 31-39, 126
- R.J. Baxter, Hyperelliptic function parametrization for the chiral Potts model, Proceedings ICM (Kyoto, 1990), Springer 1991, pp. 1305-1317.
- S.S. Roan, A characterization of "rapidity" curve in the Chiral Potts Model, Comm. Math. Phys. 145, 605-634 (1992).
- B. Davies, A. Neeman, Algebraic geometry of the three-state chiral Potts model, Israel J. Math. 125 (2001), 253-292.
- M. Romagny, The stack of Potts curves and its fibre at a prime of wild ramification, J. Algebra 274 (2004), no. 2, 772-803.


## Questions and directions

- Algebraic geometry of Potts curves: motivic aspects?
- Potts models with magnetic field; arithmetic mutivariate Tutte polynomials?
- Partition function in terms of transfer matrix: motivic aspects?
- Poincaré residues, Leray coboundaries and location of zeros?

