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Abstract

The conceptual parallels between linguistic and biological evolution are striking; languages, like genes are
subject to mutation, replication, inheritance and selection. In this study, we explore the possibility of applying
phylogenetic techniques established in biology to linguistic data. Three common phylogenetic reconstruction
methods are tested: (1) distance-based network reconstruction, (2) maximum parsimony and (3) Bayesian
inference. We use network analysis as a preliminary test to inspect degree of horizontal transmission prior to
the use of the other methods. We test each method for applicability and accuracy, and compare their results
with those from traditional classification. We find that the maximum parsimony and Bayesian inference
methods are both very powerful and accurate in their phylogeny reconstruction. The maximum parsimony
method recovered 8 out of a possible 13 clades identically, while the Bayesian inference recovered 7 out of 13.
This match improved when we considered only fully resolved clades for the traditional classification, with
maximum parsimony scoring 8 out of 9 possible matches, and Bayesian 7 out of 9 matches.

Introduction

“The formation of different languages and of distinct
species, and the proofs that both have been developed
through a gradual process, are curiously parallel... We find
in distinct languages striking homologies due to community
of descent, and analogies due to a similar process of
formation... We see variability in every tongue, and new
words are continually cropping up; but as there is a limit to
the powers of the memory, single words, like whole
languages, gradually become extinct ... To these more
important causes of the survival of certain words, mere
novelty and fashion may be added; for there is in the mind
of man a strong love for slight changes in all things. The
survival or preservation of certain favoured words in the
struggle for existence is natural selection” (Darwin, 1871).
The conceptual parallels between biological evolution and
linguistic evolution have been noticed since the advent of
modern (Darwinian) evolutionary theory itself, nearly a
century and a half ago. Languages, like species, are a
product of change and evolution. They chronicle their
evolutionary history in a similar way to how genes record
our own evolutionary past. Just as genes are replicated and
inherited, so too are the sounds, grammar and lexicon of a
language learnt and passed on. Just as mutations and
natural selection lead to variable populations and species, so
too do shifts, innovation and societal trends lead to

different dialects and languages. And just as phylogenetic
inference may be muddied by horizontal transmission, so
too may borrowing and imposition cloud true linguistic
relations. These fundamental similarities in biological and
language evolution are obvious, but do they imply that tools
and methods developed in one field are truly transferable to
the other? Or are they merely clever and coincidental
analogies paraded by those attempting to Darwinize
language and culture?

Recently, there has been a flux of studies applying
phylogenetic  methods to non-biological entities,
particularly languages (see Gray & Jordan 2000; Holden
2002; Rexovi et al 2002, 2006; Forster & Troth 2003; Gray
& Atkinson 2003; Nakhleh et al 2005; Holden & Gray
2006; Atkinson et al 2008; Gray et al 2009; Kitchen et al
2009). This employment of computational statistics to infer
evolutionary relatedness is standard in its home field of
biology, but relatively new to historical linguistics.
Somewhat surprising, given that similarities in their two
respective processes of evolutionary change have been noted
as far back as Darwin; but the conservativeness in applying
such (phylogenetic) approaches to linguistic data is
justifiable. According to critics (Gould 1987, 1991;
Bateman et al 1990; Moore 1994; Belwood 1996;
Borgerhoff Mulder 2001; Holden & Shennan 2005;
Temkin & Eldredge 2007), phylogenetic methods based on



tree-building algorithms may not be truly applicable to
linguistic data. In particular, it is frequently argued that
horizontal transmission of traits is relatively common in
language evolution and that this violates the assumptions of
traditional (tree-building) phylogenetic methods (Gould
1987; Terrell 1998; Moore 1994; Terrell et al 2001).
Instead of a tree model of languages, a network model or
wave model may be more appropriate. This is a valid
argument and has to be addressed before any further
advance on cross method application can be made.

(1) Conceptually, a general theory of evolutionary change,
one that encompasses biological evolution, language
evolution, cultural evolution and any other phenomena
indicative of evolutionary change, is needed (Croft 2008).
Several models attempting to do so have been developed,
most notably those by Dawkins (1989, 1982), and Hull
(1988, 2001). The key features to these generalized theories
of evolution are that they generalize and incorporate the
three most fundamental processes; that of (a) cumulative
and iterative replication (leading to inheritance), (b) the
generation of variation during replication, and (c) the
selection of variants via some selective mechanism. The
encompassing quality of such a model serves to clarify and
standardize the analogies present in the constituent fields,
allowing for a clearer framework for comparison and
interdisciplinary method application.

(2) Analytically, the degree of horizontal transfer should be
determined using network visualisation tools, such as
SplitsTree (Huson & Byrant 2006), which do not assume a
tree-like model of evolution. Only on the condition of no
significant reticulation should further phylogenetic methods
(based on tree-building) be considered.

Following these two criteria should support in determining
both the applicability and validity of using phylogenetic
methods on linguistic data. In this study, we will be testing
such an approach on a subset of languages from Borneo.
Given that no significant reticulation is seen, we will be
testing the applicability and accuracy of three common
phylogenetic methods on our linguistic data set: 1) Split
Decomposition and Neighbor Net distance-based network
algorithms, 2) weighted and unweighted Maximum
Parsimony and 3) Bayesian Inference. The accuracy of the
methods will be tested by comparing their results with
those established from traditional methods.

There do of course exist some other differences between
biological and linguistic evolution; for example, languages
change much faster than genes and selection of favoured
variants is determined by societal trends rather than fitness
difference among alleles; however none of these differences
are fundamental to a general theory of evolutionary change
(e.g. of Dawkins 1982, 1989; Hull 1988, 2001). For
instance, the former merely entails a restriction of
(phylogenetic) inferences to more recent timeframes, while
the latter, a superficial difference function-wise.

Table 1. Biological versus language evolution

Biological evolution Linguistic

evolution

Discrete Nucleotides, genes, Semantic categories
(homologous) codons, morphological ~ (word cognates),
- characters grammar®,
phonology*
Replication Transcription, Learning, imitation
replication
Mutation Sequence mutations via  Innovations,
mutagens, transposons,  phonological shifts,
radiation, viruses, faulty ~ vowel shifts,
replication, etc mistakes
Selection Ecological selection, Social
mechanism sexual selection, fitness trends/pressures
differences among
alleles
Horizontal Horizontal gene Borrowing, contact,
transmission transfer via transduction  imposition.
(viruses), conjugation Pidgin/Creole
(bacterial), languages
transformations,
transposons.
Hybridisation

*referrin g 10 the discrete structural/typological aspects of these feature classes

Traditional Methods

In the traditional comparative method, languages are
classified under a system not too unlike that of cladistics;
the chief feature being that languages are grouped
according to exclusively shared linguistic innovations
(synapomorphies) (Hoenigswald 1960). Additional key
aspects to this approach are the reconstruction of a proto-
language (ancestor) and a restriction on homoplasies (both
back mutations and parallel innovations). This method is
extremely powerful and well supported (the procedural
norm in comparative linguistics), but qualitative (e.g. no
explicit optimality criterion) and time consuming. An
alternative and more quantitative method appeared in the
1950s, coined lexicostatistics. It employs an approach more
closely related to that of phenetics in biology, in that
languages are correlated based on the percentage of their
sample lexicon subset being cognate - a distance measure.
This technique is relatively much quicker to perform but
comes with its fair share of critics; its major weakness, as
with phenetics, is that it relies upon derived (pair-wise
distances) rather than real (character) data, which inevitably
results in a loss of information. Additionally, many (e.g.
Hoijer 1956; Gudchinsky 1956) have shown that it is often
difficult to consistently find equivalents to the semantic
items across varying sets of languages, confounding the
validity of a universal lexicostatistic list (such as the
Swadesh list).



Methods & Materials

In this study, we attempt to merge the fundamental
concepts of the traditional comparative method with the
quantitative character (but not procedure) of lexicostatistics,
primarily via the methods of maximum parsimony and
Bayesian inference (which are character-based and
quantitative). We seek to find out how applicable and
accurate such methods can be when applied to an example
linguistic data set.

1. Characters

Our study uses lexical characters to characterise linguistic
information. Lexical characters here are represented by
word cognates (literally blood relatives —Latin). These are
words  that demonstrably, via systematic sound
correspondences, historical records and the Comparative
Method derive from a common ancestor, and thus
represent homologous characters akin to those in biology.
The use of lexical characters has been well supported and
established in comparative linguistics, and given that we
adhere firmly to the criterion of using only basic vocabulary,
is well suited in determining relationships that are genetic
rather than due to chance or contact and borrowing. As
they are relatively fast changing (Greenhill et al 2010), they
also represent the most suitable unit of linguistic change for
our dataset; which is one of fairly close relation (Western
Malayo-Polynesian  subfamily). Two other types of
characters, phonological and morphological (grammatical)
were also considered, but later discarded due to lack of datal
for our set of languages. Ideally they should be included;
they represent different and additional aspects of language
change and can thus provide additional resolution and
information at different time depths than can lexical
characters, but the lack of available data and time precluded
this measure.

2. Cognate Judgment

As cognates represent the characters of our data set, their
correct judgement is fundamental to acquiring good results.
The process of cognate judgment is thus not a trivial one.
Judgement can be subjective and dependent on good
historical records; for cognates do not necessarily look
similar’. Consequently, cognate judgement was left to the
linguists — we opted to source data only from language
databases with present and good cognate judgements.

! The World Atlas of Language Structures (WALS), the most comprehensive
database for structural characters, unfortunately had incomplete data for many of
our subject languages and feature classes.

2 For example the English ‘wheel’ and Hindi ‘cakra’ are cognates even though
they appear entirely different; they are only identifiable as such due to good

historical records.

3. Data Set & Source

For our study, we selected a subset of 26 languages from
Borneo®. Approximately 150 languages are currently spoken
in Borneo (Lewis 2009)*% but the lack of research and
sufficient data in many (the remaining number) prohibited
(their) inclusion into our analysis. Additionally, a language
outgroup from the Formosan language family was included
to facilitate tree/network rooting where applicable. A
Formosan (Taiwanese) ancestry for Austronesian languages
has been firmly established through linguistic evidence
(Blust 1999), archaeological evidence (Belwood 1997) and
genetic evidence (Trejaut et al 2005).

All language data was sourced from the Austronesian Basic
Vocabulary Database (ABVD) (Greenhill et al 2008). This
was selected as it is currently the most complete and
comprehensive database for Austronesian languages, and
includes the lexical and cognate data for 667 languages. For
each language, the database lists 210 word items of basic
vocabulary (see Wordlist in Appendix A2), along with their
cognate judgements. We advise you to refer to their paper
(Greenhill et al 2008, The Austronesian Basic Vocabulary
Database: From Bioinformatics to Lexomics) for any inquires
into data sources, collection methodology, cognate
identification procedures, database content and structure.

4. Word list

The original 210 basic word list sourced from the ABVD
was reduced to 64 words after careful consideration. After
examining each language wordlist side by side, we found
that a fair number of the words, for our collection of
languages, were not fulfilling some fundamental and
requisite criteria. We have listed these criteria below:

1. Words have to be items of basic vocabulary and thus
ones least prone to replacement with loan words. E.g.
body parts, close kinship terms, numbers and basic
verbs.

2. Words should have a firm, distinct meaning. Plasticity
and homonymy, given lack of consideration, may lead to
false cognate judgements.

3. Words should have all synonym forms considered and
present in database. Having only one representative
word per semantic category (or less than in reality) may
lead to false cognate judgements.

4. Words should be transferrable. In other words, its
meaning should be conceptually present across all
subject languages/cultures. For example, having ‘snow’
as a basic semantic item across localities/languages that
lack such an entity is incorrect.

5. Words should occupy conceptually basic semantic
categories, and not culturally/scientifically derived
categories (similar to 1). For example, a local culture

3 See Appendix A1 for selected language list
4 See Appendix for full language list and map



may not necessarily recognize the scientifically derived
distinctions between midges, flies and mosquitoes, and
only have one term for all three, “small biting flying
thing”, so having three separate semantic categories
(words) for each of them would be misleading.

6. The word should belong to a distinct and absolute
semantic category, rather than one situated on a relative
and continuous scale (such as temperature, colour, size
etc). This is because different cultures may perceive
categories differently, and divide continuous scales at
different resolutions. For example, blue and green are
shades of the same colour in some Chinese
cultures/languages (%, ¢ing - Mandarin) while
perceived as different colours/words under the English

language.

These criteria were put together in order to filter out words
that may lead to false cognate judgements and consequently
false historical inferences. It is true that reducing the
number of words (characters) potentially reduces the
accuracy and support of inferred topologies (Hillis 1998;
Page & Holmes 1998; Scotland et al 2003; Scotland &
Wortley 2006), but this is so only if the characters removed
are good and representative of evolutionary history.

Quite a few of the words removed from the original 210
were those that failed criteria 2 and 3; i.e. words whose
various forms and meanings were deemed inadequately
researched/considered at the time of data sourcing®, and
thus likely prone to false cognate judgements. This was a
necessary step as the ABVD is still a relatively new and thus
incomplete database, with entries still constantly being
updated.

5. Coding

We code our lexical data similar to how we code any
character data in biology; by allocating a unique number or
symbol to each unique form present. An example of this
process is shown below.

Table 2. Encoding methodology

‘hand’ Cognacy Cognacy
(ABVD) (renumbered)
Iranun lima 1 1
Melayu tangan 18 2
Singhi tonan 18 2
Bintulu agem 20 4

This data representation is typically lossless with discrete
and fixed character states (as with molecular data) but

5 . .
Word synonyms, homonyms and various forms/meanings were cross referenced

with local dictionaries and speakers, for a measure of term completeness.

potentially lossy with continuous and variable ones; like
morphological data and here, lexical data. For example, a
lexical unit may change in a variety of ways:

replacement with a loan;

replacement with a novel morpheme;

loss with no replacement;

semantic change or addition;

morphological change (e.g. suffixed, derived,
reanalysed);

e deconstruction
derivatives;

e unlinked changes (e.g. phonological change

into two or more separate

occurring with no simultaneous morphological
or semantic change)
e  creation of homophones

Of the above, only absolute loss and gain/replacement
events are typically represented encoded. The more partial
and nuance changes are less easily captured by discrete
character encoding, yet they are evolutionary informative.
Consequently, their exclusion through coding does lead to
loss of some valuable information.

It would be interesting to see how much of an effect this
lossy encoding process has on our results, but at present, it
is outside the scope of our study. We can only assume, like
in many other lexicostatistic and morphological (biology)
studies, that their affects are relatively minor compared to
the stronger loss/gain events, and that their exclusion only
has minimum bearing on the topology of inferred

phylogenies.

Note: Ldeally, we would want a coding system that manages to
accommodate both the absolute loss/gain events with the more
subtle, partial changes described above — but we found this too
impractical and prohibitive to realize.®

6. Multistate vs. Binary

In our study, we code lexical character data in two ways: (1)
Multistate and (2) Binary.

For (1), the character states are the various cognate forms;
for (2) the character states indicate the presence or absence

& Tt s theoretically possible to construct a hierarchical and
characterstate-numerous multistate matrix to accommodate each
and every different mechanism and degree of change. However,
this was found to probibitively complicated, impractical and
resource intensive. For instance, you would likely end up with
more than 64 character states per character (semantic mz‘egary)
to accommodate every different cognate form, morphology,
change mechanism, etc — which is above the bit manipu[az‘ion
capacity of most (e.g. 32-bit, 64-bit) programmes and computers
— and each character state transition would also have to be

modelled (potentially) differently.



of a cognate form. Binary characters here are merely
deconstructions of the more inclusive multistate characters

(see Figure 1 for example).

There are several important differences between the two
coding methods that need to be taken note off prior to
analysis.

1. The parsimony-informativeness of a character is
dependent on the method of coding. Take for instance, the
tollowing example. In our dataset, the word ‘tongue’ can be
represented by 4 different cognate forms. Let us label them
1, 2, 3 and 4 respectively. Coded, they look like:

Figure 1. Multistate versus binary coding

For Multistate;
Mouth Tongue Teeth

Language; 1/2/3/4
Language 1/2/3/4
Language, 1/2/3/4
For Binary;

Mouth Tongue Teeth

1 2 3 4
L, 0/1 01 0/1 0/1
L, 0/1 0/1 0/1 0/1
L. 0/1 01 0/1 0/1

For our set of languages, form 1 is exhibited by 23 of the
languages, whilst forms 2, 3 and 4 are only exhibited by one
of the languages each, thus they are autapomorphs. Under
parsimony, a (unordered) character is informative only if at
least two character states each occur in more than one
taxon; otherwise, the singleton (autapomorphic) states can
always be explained as single changes on terminal branches,
regardless of tree topology (Swofford & Begle 1993). Thus,
for our multistate example, which exhibits only one
character state (1) with multiple occurrences and three
autapomorphic states, the character ‘tongue’ is parsimony
uninformative. However under the binary example,
character 1 has both character states (0 and 1) as multiple-
occurring (since the character state ‘0’ in this case
encompasses all non-1 character states, i.e. states 2, 3 and
4), and is thus parsimony informative; while characters 2, 3
and 4 remain parsimony uninformative.

This exposes a crucial difference in the coding methods; a
character that is parsimony uninformative in multistate may
be (partly) informative in binary. For our set of languages,
we discovered 17 words that were uninformative under
multistate encoding but informative under binary encoding.

2. The number and weighting of characters is dependent on
coding method. As binary characters are constructed via the

breakdown of multistate characters, there will inevitably be
more of them. Additionally, if we assume default equal
weighting for all characters, a disparity arises in the
weighting of same words across coding methods. Take the
following example: the word ‘bone’ in our dataset is
represented by two cognate forms while the word ‘blood’ by
four. Under multistate coding and the assumptions of
unordered characters (as is appropriate for our data) and
default weighting, each character, and thus both words
“blood” and “bone”, would have an equal weight of 1. Once
split into multiple binary characters however, the word
‘bone’ would have a weight of 2 and ‘blood’ a weight of 4; as
the number of binary characters representing a word is
directly proportional to the number of cognate forms
exhibited by the word (see Figure 1), and default equal
weighting is applied on the characters (not the words).

This issue however, may be easily corrected; one only has to
rescale the weights of the component (binary) characters by
the reciprocal of the number of cognate forms per each
respective word.”

3. There is a difference in the conceptual treatment of
‘characters’ in multistate coding versus binary coding.
Specifically, the fundamental units of linguistic change in
multistate coding are the semantic categories, while they are
the cognate forms in binary coding. It has been argued that
the latter representation is not an appropriate one for
linguistic change (Evans et al 2006); though Atkinson &
Gray (2006) have countered saying that since cognate sets
do themselves constitute discrete, relatively unambiguous
heritable units with a birth and death, there is no reason to
suppose they are any more or less fundamental to language
evolution than semantic categories.

For our dataset, we end up with a 26x64 multistate data
matrix and a 26x155 binary data matrix (See A3 and A4 in
Appendix). Hereon, choice of matrix format in our analyses
will be dependent on phylogenetic technique used, as one
coding method may be more appropriate to one
phylogenetic approach than the other.

Analyses

We test three general statistical methods for phylogeny
reconstruction: (1) distance-based network analysis, (2)
maximum parsimony and (3) Bayesian inference.

Network Analysis

The main reason for running network analyses here is to
establish the amount of reticulation present in our dataset

’ Note: this rescaling procedure is not operating on the assumption that all
characters (words) should be equally weighted; rather it is purely a
standardizing procedure to correct the bias of character-state (cognate) richness
on weighting.



preliminary to further tree-based phylogenetic approaches.
Only on condition of little or insignificant reticulation will
these latter techniques be considered. A secondary reason is
for the reconstructed phylogeny.

For network visualization, we employ two separate
distance-based algorithms: (1) Neighbor-Net and (2) Split
Decomposition. Both algorithms were run under

SplitsTree4 V4.11.3 (Huson & Byrant 2006).

The Split Decomposition method canonically decomposes
a distance matrix into simple components based on
weighted splits (bipartitions of the taxa set), subsequently
representing these splits in a splits graph. Neighbor-Net is
similar in that it also constructs and visually represents
weighted splits, but differs in producing circular (rather
than weakly compatible) splits and in using an
agglomeration method based on the Neighbour-Joining
(NJ) algorithm.

We use our data encoded in the multistate format for the
network analyses. We do so in light of (a) there is no
difference in informativeness between coding methods as
described in (6.1) above, as these distance-based phenetic
approaches operate outside the premise of cladistics. More
specifically, autapomorphic characters here are informative
as they are capable of defining splits; (b) for distance-based
approaches, the multistate format is a more accurate
representation of the data. This reason (b) is justified
through the observation that binary encoding of data
introduces an error whereby the absence of a character is
treated as character identity (zero-distance), which skews
distance measures. To highlight this problem, we observe
the following example:

We have a character X, with character states 1, 2 and 3.
Coded, it looks like:

Multistate Binary
X
X 1 2 3
L, 1 L: 1 0 0
L, 1 L, 1 0 0
L; 2 Ls 0 1 0
L, 3 L, 0 0 1

A transformation of the multistate character matrix to a
distance one gives (assuming equal transition probabilities
and unordered characters):

Ly L, Ls |
L 0 0 1 1
L, 0 0 1 1
L; 1 1 0 1
L, 1 1 1 0

While a transformation from the binary character matrix to
a distance one gives8 (with same assumptions):

Ly L, L3 T.
L: 0 0 2 2
L, 0 0 2 2
Ls 2 2 0 3
L, 2 2 3 0

We see here how the treatment of absence as identity skews
the distance matrix under binary coding, thus giving us
justified preference for the use of the multistate format.

Programme settings used for the network analyses are as
follows: distance: UncorrectedP; draw: EqualAngle; network:
NeighborNet/SplitDecomposition. A bootstrap analysis of
10,000 runs followed the network constructions to estimate
support of the splits.

Results

Figure 2. Split Decomposition Network
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taking the cumulative value for pair-wise distances across all three characters.



Punan_kelai
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Figure 3. NeighborNet Network
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Interpretation

Both the Split Decomposition (SD) and the NeighborNet
(NN) representations show clean, relatively unreticulated
networks. The NN network is more resolved than the SD
network, which is as expected from the algorithm used
(Byrant & Moulton 2004), but it is also more reticulated. It
is important to note that these split graphs are not explicit
representations of evolutionary scenario; and that webbing
does not exclusively nor necessarily imply contact
(borrowing). Rather, they are the representations of all
compatible and incompatible splits, and represent a
combination of tree-like signal and the noise in the data.
This noise (webbing), may represent contact events, but
also homoplasy and/or deviation due to
insufficient/misrepresentative characters. For our data, the
webbing (reticulation) is minimal in SD and moderate in
NN. The only occurrence of (strongly supported) webbing
in SD is between Malay (Bahasa Melayu) and Bahasa
Indonesia, which is unsurprising as the latter language is in
fact a standardized variety (Riau dialect) of Malay. All splits
are strongly supported in the SD network (all but one are
>90% supported). For NN however, the picture is a little
less clear. Removing all splits below 50% of the bootstrap
replicates helps remove the weakly supported splits and
clarify interpretation.

Figure 4. 50% Confidence NeighborNet Network
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Here, we have the 50% confidence network for the NN
bootstrap analyses. We see that much of the reticulation is
removed after applying a 50% confidence threshold. This
means that much of the incompatible splits (reticulations)
are only weakly supported. The only instances of webbing
that remain are the ones connecting (2) Babasa Melayu with
Bahasa Indonesia and (b) Iranun with Ida'an. A stricter
confidence network (95% confidence) was also carried out,
to visualize the most strongly supported splits. This resulted
in an almost identical confidence network to the 50% one;
indicating that the remaining reticulations (a and ) are very
strongly supported, and likely real signals indicative of some
contact or common/parallel evolutionary path.

As a whole, the instances of reticulation as suggested by SD
and NN are minor; most are either very weakly supported
or expected and few. This result consequently opens the
door to further tree-building phylogenetic analyses.

Groups

The inferred phylogeny of both SD and NN
reconstructions are fairly unresolved. The only groups
evidently present are the {Modang, Punan Kelai}; {Katingan,
Dayak Ngaju}; {Belait, Berawan} and {Banjarese Malay,
Bahbasa Melayu, Bahasa Indonesia, Than} groups. All other
languages remain unresolved. Note however that we have
used the network analyses here primarily for reticulation
inspection and not for phylogeny reconstruction. The
methods mentioned hereafter are much more preferable
and powerful in that regards.



Parsimony Analysis

Parsimony is a non-parametric statistical method that
operates within the premise of cladistics and according to
the explicit optimality criterion of simplest (least amount
of) evolutionary change. It differs from the former method
in its use of character data (rather than distance data), and
its principle to form trees (rather than networks); and from
the later Bayesian method by being non-parametric and of
the optimality criterion of simplest (rather than most likely)
evolutionary change.

Here we test maximum parsimony with our binary coded
dataset under the programme Paup* V4.0b10 (Swofford
2002). We chose binary rather than multistate as this
format provided more parsimony-informative characters
(see 6.1). Additionally, characters (cognate forms) were
grouped into character sets (semantic categories) and had
their weights rescaled; to standardize weights across words
rather than cognate forms (see 6.2). Differential a posteriori
character weighting will be considered later, following
preliminary analyses.

Parsimony searches were conducted using the heuristic
search with addition sequence selected as random (10,000
repetitions) and branch swapping algorithm selected as tree
bisection-reconnection (I'BR). All other search settings
were kept as the default. Heuristic search was selected over
the branch and bound and exhaustive methods as these two
methods were found to prohibitively slow and impractical;
as the amount of possible topologies for our dataset of 26
languages was approximately 1.19x10*. The random
addition sequence and TBR swapping algorithm were
selected as they were empirically found to produce the
shortest and best fitting trees.

Character type was defined as either unordered (Fitch) or
Dollo. An unordered approach assumes the simplest model
of language change, where gain and loss of a cognate class
are equally likely (see Figure 7); while a Dollo one assumes
that every cognate class be uniquely derived (Farris 1977)
and that all homoplasy takes the form of reversal to a more
ancestral condition (rather than through parallel gain)
(Swofford & Begle 1993). A Dollo or Dollo-like (easy loss)
model of language change has been proposed (Nicholls &
Gray 2006) as a more realistic representation of lexical
change, as it satisfies the standard assumption that cognate
classes are born only once (but may be lost multiple times).
However, the standard assumptions of language evolution
(see Warnow et al 2004) place a restriction not only on
parallel gains, but also back mutations, i.e. all homoplasies.
Of course, an absence of homoplasies would require a
perfect phylogeny (where all characters are compatible on
the tree); an idealistic and improbable expectation for real
data. Since such a prospect is unlikely and unworkable, we
settle here on the simplest (unordered) and next best
workable (Dollo) models. A bootstrap support analysis (of
10,000 replicates) followed the parsimony searches to
approximate support of clades in the resulting trees.

Subsequent to these searches, successive character
weighting (SCW) was considered and applied. It is
incorrect to assume that all characters (or words) should
deserve equal weighting’ (Farris 1983); so we consider the
weighting scheme most appropriate for our data. SCW
based on the rescaled consistency index (RC) successively
approximates and rescales the weight of a character
according to its overall fit on a tree. This index, RC, is a
product of the consistency index (CI) and retention index
(RI); and thus represents a good indication of both the
measure of homoplasy and synapomorphy in a character.
SCW thus reduces the affect of homoplastic characters
(possible borrowing, homoplasies) while strengthening the
affect of the synapomorphic (compatible) ones.

Results

Both Dollo and unordered optimised searches produced
one most parsimonious (shortest) tree (IMPC) each. The
topologies of the two trees can be seen below (Figures 5
and 6). Support values measured from the bootstrap
analyses are indicated above the clade branches. Topologies
for the reweighted analyses were found to be identical to
those of the original, and have their bootstrap values
superimposed on the same cladograms (in brackets, Figures
5 and 6). The scores and ensemble indices for the trees can
be seen below in Table 2.

Table 2. Maximum parsimony tree score and indices

Unordered Dollo Unordered  Dollo
Reweighted Reweighted
# of MPCs 1 1 1 1
Score of MPC 173 231 80.75 110.66
CI 0.357 0.269 0.674 0.563
HI 0.643 0.731 0.326 0.437
RI 0.508 0.786 0.779 0.960
RC 0.182 0.211 0.525 0.540

We find that the Dollo optimised runs typically exhibit a
higher fraction of synapomorphy (RI), but also homoplasy
(CI, HI), in their characters. The RC indices are more
comparable between the two; though with a slight edge
towards the Dollo optimised run. We prefer and use RC as
the measure of overall character fit here as it does not suffer

from some of the drawbacks of CI and RI!° and as it
combines both measures of synapomorphy and homoplasy.

° Our a priori weighting of the characters done initially was not operating
on the assumption that all characters (words) should be weighted equally;
rather it was purely a standardizing procedure to correct the bias of
character-state (cognate) richness on weighting.

10 For example, CI is dependent (inversely proportional) on number of
taxa, inflates with uninformative characters and does not scale down fo 0.

Additionally, CI only measures homaplasy while RI only synapomorphy.
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We find that posterior weighting dramatically improves the
indices of fit across both searches, which is as expected from
a character fit based weighting approach. While overall fit
(RC) is fairly similar between the unordered and Dollo
optimised approaches, tree score is not; Dollo consistently
exhibited higher tree scores. However, tree scores are not
comparable between the unordered and Dollo methods as
they operate (in Paup® 4.0) under differently weighted
(transition) stepmatrices (see below, Figure 7).

Figure 7. Unordered versus Dollo transition matrices

Unordered (Fitch) Dollo
to 0 1 2 3 0o 1 2 3
f 0 |- 1 1 1 - M 2M 3M
r 1 1 - 1 1 1 M 2M
o 2 1 1 - 1 2 1 - M
m 3 1 1 1 - 32 1 -
Where M>1

Similarly, tree scores between the original and reweighted
searches are also incomparable as they are directly
dependent on the weights that are in place.

Groups

We find that 10 (11)* of the inferred 24 clades are strongly
supported (i.e. present in more than 50% of the bootstrap
replicates) under the unordered optimised search; while 8
(15) of 24 clades are strongly supported under the Dollo
optimised search. The groups that are strongly supported by
both weighting approaches are:

for unordered,

o the clade of Maloh, Banjarese Malay, Ihan, Bahasa
Melayu and Bahasa Indonesia; and all its subclades.

o the clade of Tunjung, Dayak Ngaju and Katingan,
and all its subclades.

e the clade of Modang and Punan Kelai
o the clade of Dayak Bakatig-Sara and Singhi.
e the clade of Iranun and Ida’an.
e the clade of Belait and Berawan
for Dollo,

o the clade of Maloh, 1ban, Banjarese Malay, Bahasa
Melayu and Bahasa Indonesia; and all its subclades.

e the clade of Tunjung, Dayak Ngaju and Katingan,
and all its subclades.

e the clade of Modang and Punan Kelai

o the clade of Belait and Berawan

n All things being equal, a higher tree score is expected for the Dollo
optimized approach as its gain transition (see Figure 7) is weighted higher
than that of the unordered approach, while their loss transitions are equal.
© The number to the left (no brackets) indicates the originally weighted
approach; the number on the right (in brackets) indicates the reweighted
approach.
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These collections of clades are identical between the two
optimisations with exceptions of the presence of the
{Iranun, Ida’an} clade in the unordered run and the switch
in position between Iban and Banjarese Malay.

Additionally, the following clades were inferred as strongly
supported in at least one of the employed weighting
schemes (typically the reweighted):

for Fitch,
e the clade of Bukat, Modang and Punan Kelai.
and for Dollo,

the clade of Bukat, Modang and Punan Kelai.
the clade of Maloh, Iban, Banjarese Malay, Bahasa
Indonesia, Bahasa Melayu, Tunjung, Dayak Ngaju
and Katingan.

e the clade of Bintulu and Lahanan.

o the clade of Kelabit and Timugon.

e the basal clade comprising all languages outside
Paiwan and Iranun.

e the basal clade comprising all languages outside
Paiwan, Iranun and Ida’an.

We find that the reweighted searches (especially the Dollo
model) typically recover a higher number of clades than the
unweighted searches.

We will examine the classifications inferred here with that
of traditional methods later in the Discussion section,
along with the results from the two other methods (network
reconstruction and Bayesian inference). Note however that
many of the groupings inferred here do match that of
traditional classification (see Discussion section below).

Bayesian Inference

Bayesian inference is a parametric, statistical inference
method that calculates the probability of the model (tree)
given the data. This probability, known as the posterior
probability, is related to the likelihood, prior probability
and data probability through Bayes’ theorem:

Pr(8)Pr(D|86)

Pr(8|D)= PrD)

where  Pr(0|D)=posterior  probability; Pr(0)=prior
probability (of the parameters); Pr(D)= probability of the
data; and Pr(D|6)=likelihood value.

The requirement to define the prior probabilities
beforehand allows us to explicitly define a specific model of
evolution. This explicit modelling allows Bayesian inference
to be much more powerful and accurate than parsimony or
network analyses, on condition that the referred model of



evolution is known with confidence to reflect that of reality
(for the set of characters). If not, the whole inference
process will be misleading due to being based on unsound
assumptions. This ability to vary the model parameters
allows many different models to be compared easily (Page
and Holmes 1998; Pagel 2000).

Additionally, the resulting inference in Bayesian analysis is
much more explicit and representative than parsimony
analysis, as it draws a probability distribution of trees rather
than discrete ‘optimal trees’. Specifically, uncertainties in
topology and branch lengths, which will always be present
in single ‘optimal’ trees, are explicit and present in the
Bayesian inference results; whereas would require additional
support analysis (e.g. bootstrapping, jackknifing, Bremer
support) in parsimony analysis.

A direct analysis of this function however was found to be
too impractical and time-consuming to run, especially with
more than 20 languages, so we use an approach based on
random sampling instead. We use a Markov Chain Monte
Carlo (MCMC) approach (via the Metropolis Hasting
algorithm - Metropolis et al 1953) to generate a sample of
trees, whereby the frequency distribution of the sample is
an approximation of the posterior probability distribution of
the trees (Huelsenbeck et al 2001). Scouting and selection
of trees in the MCMC is done by moving via random walks
through model tree space, converging to some stationary
distribution (of highest likelihood) after a certain (long
enough) time. When this happens, the maximum posterior
probability tree produced will be implied to be the correct
or ‘true’ tree.

To run the MCMC analysis, we use the programme
MirBayes v.3.1.2 (Huelsenbeck & Ronquist 2001). We start
however by selecting a model of evolution most appropriate
for our data.

Models

The simplest model of language evolution, as described in
the parsimony section above, is one where the rate of
cognate loss and cognate gain are equal. In other words, the
rate matrix is symmetrical and the model is defined by a
single parameter. This model is obviously simplistic, and
likely not very realistic. A more reasonable model would
consider differential rates of cognate loss and gain; through
defining a second parameter. This asymmetric rate model
would be able to accommodate the observation that cognate
classes, once arisen, are much more likely to be lost than for
another language to independently derive it. Additionally a
third parameter, to allow for among site rate variation
(ASRYV), should be considered. One of the early criticisms
of lexicostatistics, and glottochronology in particular, was
that they assumed a fixed rate of cognate evolution. This
assumption was subsequently found to be overly simplistic
and many times false, and opened the need for a
heterogeneous distribution of among site rates. A method,
frequently used in molecular phylogenetics, is to model the
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rates of change via a gamma distribution (Yang 1994). This
gamma parameter gives each character an inherent rate of
change, so that some cognates can evolve rapidly while
others can be more resistant to change.

This three-parameter model (unequal rates+ASRV), along
with the simple one-parameter model (single rate) were
tested in our Bayesian analyses. The two-parameter model
(unequal rates) was excluded from our study as it had been
found in a previous study (Lugman 2010, unpublished) to
fit consistently worse than the more flexible three-
parameter model for our set of languages. The models were
run with our binary encoded dataset, as MrBayes (and other
current phylogenetic Bayesian inference programmes®) did
not allow MCMC algorithms to be run with multistate
matrices of more than 10 character states (under the
standard or morphological datatype). This also allows us to
directly compare our results with those obtained from the
parsimony analyses (which used the same binary encoded
dataset).

Settings

We ran the MCMC analysis for 10 million generations™,
sampling every 1000 generations. We independently and
simultaneously ran two separate MCMC runs, starting
from different random trees, as a secondary measure of
convergence (the first measure being the plateauing of the
log likelihood values indicated by the average standard
deviation of the split frequencies approaching zero). We
Metropolis-coupled the MCMC runs (MCMCMC) by
running 4 separate chains; one cold and three heated, to
better sample the target distribution. Post analyses, we
discarded the first 2.5 million generation as burn-in, after
inspection of the log likelihood plots.

Results

Inspection of the convergence diagnostic revealed that our
MCMC runs were sufficiently convergent after 10 million
generations. This was confirmed by the potential scale
reduction factor (PSRF) approaching 1.000 and the average
standard deviation of split frequencies dropping below 0.01
towards the end of the runs. The two-rate model with
gamma distribution fit the data better than the single-rate,
fixed distribution model, as indicated by the Bayes Factor
(Bayes Factor = 41.8) (See Appendix AS for details). This
value for the Bayes Factor indicates very strong support for
the former model (interpretation after Jeffreys 1961; Kass &
Raftery 1995). This result supports our prediction that the
variable rate (3-parameter) model reflects true evolutionary
scenario much better than the fixed rate (one parameter)
model.

BE g. BayesPhylogenies (Pagel and Meade, 2004) and BEAST
(Drummond and Rambaut, 2007) were also considered.

14 .
to allow for sufficient convergence.



Figure 8. Bayesian inference 50% majority rule consensus tree (equal rates + no ASRV model), with posterior probabilities

Paiwan
Iranun
0.67
1 0.98 Bahasa_indonesia
Bahasa_melayu
= Iban
Maloh
1 [ Belait
058 L Berawan
Bintulu
0.87 Bukat
4'— Lahanan
0.98 Dayak_bakatiq
4|— Singhi
il 1 — Dayak_ngaju
I Katingan
Tunjung
0.85 .76 Kenyah
1 [~ Modang
I— Punan_kelai
— Melanau
0.6 |
Timugon
Idaan
0.0

Figure 9. Bavesian inference 50% majori

rule consensus tree (unequal rates + ASRV model), with posterior probabilities

_malay

|_ Dayak_ngaju

Paiwan
Kelabit
Timugon
0.92 |
1 073 Bahasa_indonesia
Bahasa_melayu
062
Iban
079 Malah
1
0.59
Tunjung
1 J| Belait
Bintulu
0.96 | Bukat
L iahenan
077
0.99 T Dayak_bakatiq
L Singhi
052 Kayan
1 [ Madang
0.7z
l— Punan_kelai
Kenyah
M
0.64 ’— Idaan

Iranun

12

L Katingan

_malay



Above (Figures 8 and 9), we show the two Bayesian
inferred trees drawn with their posterior probability values.
We see a fair difference at the base and mid-section of the
tree topologies, but also a fair number of similarities
between the terminal groups of the two models.

Groups
Clades that are common to both models (trees) are the:

o Maloh, 1ban, Banjarese Malay, Bahasa Indonesia and
Bahasa Melayu clade and subclades ;
e Tunjung, Dayak Ngaju and Katingan clade and

Discussion

subclades;

Belait and Berawan clade;

Bukat and Lahanan clade;

Dayak Bakatig-Sara and Singhi clade;
Kayan, Modang and Punan Kelai clade.

These clades represent most of the non-basal terminal
clades. The topologies at the basal section, represented by
Paiwan, Ida’'an, Iranun, Kelabit and Timugon, are somewhat
conflicting, as are the positions of Ma'anyan and Melanau.
We will compare the results obtained here, along with the
results from the other tested methods, with the traditional
classification in detail in the Discussion section below.

We compared the results obtained from the network reconstruction, maximum parsimony and Bayesian analyses with those
established from traditional comparative methods. Specifically, we took the NeighborNet method to represent the network
reconstruction method (as it is more resolved than the Split Decomposition method), the Dollo optimised parsimony run to
represent the maximum parsimony method (as it has better fit than the Fitch optimised run, as indicated by the RC indices)
and the two-rates plus ASRV model to represent the Bayesian results (as this had a higher likelihood, as indicated by the
Bayes Factor). We use the standard classification from the Ethnologue (Gordon 2005) to represent the traditional
comparative method, as this currently represents the most comprehensive and authoritative source for standard language
classification data’®. Below (Figure 10), we have constructed a cladogram for our language data set, based off the

classifications from the Ethnologue.

Figure 10. Cladogram of Bornean languages* — Classification from traditional comparative methods (from Gordon 2005)
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15 . . . .. .
Note: Some have expressed concern over the fact that the Ethnologue, and its parent company Summer Institute of Linguistics (SIL), are not purely academic

organisations; they are in fact Christian linguistic service organisations. Despite this, the Ethnologue remains an excellent linguistic resource, and is still used by

many (e. g. Gray et al 2009; Greenhill et al 2010; etc) for comparative academic work.
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*Note: Maloh is not represented in the above cladogram, as it was
absent(due to lack of data) from the Ethnologue.

Of the 13 clades defined in the cladogram above, we find
that the Dollo parsimony method correctly recovers 8,
while the three-parameter Bayesian model 7. It is difficult
to directly compare the NN network diagram to the tree
diagram above, for obvious topographical reasons.
However, at least 5 traditional clades ({Punan Kelai and
Modang}, {Dayak Ngaju and Katingan}, {Belait and
Berawan} and the {Iban, Banjarese Malay, {Bahasa Melayu
and Bahasa Indonesia}} complex) are evidently present in the
NN network diagram. Additionally, we find that all three

methods tested correctly recover:

1. the Malayic group and sub-groups; composed of Iban,
Banjarese Malay, Bahasa Melayu and Bahasa Indonesia.

2. the Barito sub-group of West Barito and Mahakam;
represented by Tunjung, Dayak Ngaju and Katingan.

3. the Land Dayak group; composed of Dayak Bakatig-

Sara and Singhi.

the Modang subgroup; of Modang and Punan Kelai.

the Berawan-Lower Baram subgroup; of Belair and

Berawan.

vk

Both maximum parsimony bootstrap values and Bayesian
posterior probability values strongly support the above five
groups and subgroups.

The groups that are most ambiguous are the Northwest and
Kayan-Murik groups, as well as the position of the
Ma’anyan language. We have constant rearrangement in
their positions and compositions across the tree topologies,
though the languages Kelabit, Timugon, Ida’an and Iranun
are consistently recovered as basal. It is difficult to assess
and compare the more basal clades across topologies as the
standard classification has many of them as unresolved
(under the Malayo-Polynesian node). If we remove all
unresolved clades (i.e. clades that multi-furcate into more
than two braches), we find that the maximum parsimony
method correctly recovers 8 out of 9 possible clades, while
Bayesian inference method, 7 out of 9.

This is a remarkably good match for both tested methods.
It may be tempting to conclude that the maximum
parsimony approach is the more accurate of the two
methods, as it matched the traditional classification better,
but this would be a hasty and unsound judgement. It is
difficult to compare and justifyingly select tree topologies
between the parsimony and Bayesian approaches, as their
trees are described under different indices of fit (RC values
for the former, likelihood values for the latter). One
possible way to approach this is to measure the topological
distance between the traditional tree and the test tree (via
e.g. the Robinson-Foulds distance (Robinson & Foulds
1981)) and select the tree with least topological distance.
However, this is potentially misrepresentative with non-
fully resolved trees (such as our traditional classification
tree), and operates under the heavy assumption that the
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traditional tree is in fact the true tree, so cannot be
considered further here.

There are of course some non-trivial differences between
the topologies of the tested methods and the traditional
method (specifically, the remaining unrecovered clades).
Whether these differences reflect a disparity in method,
models, characters, wordlists or prior assumptions is
unclear. Any or all of these aspects could have distanced our
tree from the true one. For example, our character number
and selection was far from ideal. We did not include
phonological or grammatical characters, and reduced our
lexical characters to only 64 units. With a revised and
updated wordlist, along with inclusion of phonological and
grammatical characters, it may be possible to gain up to 300
representative characters for our set of languages. More and
varying types of characters have been shown (Hillis 1998;
Page & Holmes 1998; Scotland et al 2003; Wortley &
Scotland 2006) to improve both phylogenetic accuracy and
support.

Additionally, some (e.g. Poser 2003) have expressed
scepticism on any purely lexical-based approach, with
reason that lexical change is much more subject to cultural
influence than other aspects of language change. Nakhleh et
al 2005 for example, have shown that including these other
aspects of linguistic change typically result in different and
improved phylogenetic inferences.

Nevertheless, it is remarkable and supportive to find that
the two phylogenetic methods tested (maximum parsimony
and Bayesian inference), which operate under such different
methodologies, can match traditional classification so well.
The close approximation between the classifications
inferred from these two methods with that established from
the traditional comparative method is suggestive that such
phylogenetic approaches can be used to infer language
evolutionary history’. Such quantitative and computational
methods are advantageous over traditional ones in that they
can be run much more quickly and objectively, and are
explicit in their confidence. The model plasticity of the
Bayesian method in particular, holds a wealth of untapped
potential. Different linguistic evolutionary scenarios can be
tested and compared, and the site rate heterogeneity allows
us to model time-calibrated evolution. This among site rate
heterogeneity is key as it has been shown (e.g. Pagel et al
2007; Greenhill et al 2010) that word evolution rate is not
fixed, rather it is variable. Gray & Atkinson (2003) and
Gray et al (2009) have led the way in this approach by using
a gamma distribution to model site rate variation and
consequently infer evolutionary time; though how accurate
this method is is still uncertain. Nonetheless, the potential
is there, and such inference power opens the door to many
possibilities. Questions regarding the time of divergence
events, age of languages, rates of cultural and linguistic

change, age and homeland (geographical origin) of

15 On condition of little or insignificant horizontal transmission.



language families, and even human expansion, migration ¢ Drummond AJ. & Rambaut, A. (2007) BEAST: Bayesian
and settlement scenarios can all be addressed by such time

luti lysis b ling trees. BMC Evoluti
calibrated models. These are questions not only interesting CYOMHONATY AnySIs by sampriung frees votumonary

to linguists and biologists, but to all of humanity.
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Appendix

Al. Language List

Banjarese Malay

Belait

Berawan (Long Terawan)
Bintulu

Bukat

Dayak Bakatiq-Sara/Riok
Dayak Ngaju

Iban

Ida’an

. Iranun

. Katingan

Kayan (Uma Juman)
Kelabit (Bario)
Kenyah (Long Anap)

Lahanan

. Ma’anyan

Bahasa Indonesia

Maloh

. Melanau (Mukah)

Bahasa Melayu

. Modang

. Punan Kelai

Singhi

. Timugon (Murut)
. Tunjung

Paiwan (Outgroup)



A2. Austronesian Basic Vocabulary Database Wordlist (filtered)

Bl e e

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

hand
left
right
leg/foot
to walk
road/path
to come
to turn
to swim
Dirty
dust

skin
back
belly
bone
intestines
liver
breast
shoulder
to know
to think
to fear
blood
head
neck
hair
nose

to breathe
to sniff, smell
mouth
tooth
tongue
to laugh
to cry

to vomit

36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

to spit

to eat

to chew

to cook

to drink

to bite

to suck
Ear

to hear
Eye

to see

to yawn

to sleep

to lie down
to dream
to sit

to stand
person/human being
man/male
woman/female
child
husband
wife
mother
father
house
thatch/roof
name

to say

rope

to tie up, fasten
to sew
needle

to hunt

to shoot

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.

to stab, pierce
to hit

to steal

to kill

to die, be dead
to live, be alive
to scratch

to cut, hack
stick/wood

to split

sharp

dull, blunt

to work

to plant

to choose

to grow

to swell

to squeeze

to hold

to dig

to buy

to open, uncover
to pound, beat
to throw

to fall

dog

bird

egg

feather

wing

to fly

rat

meat/flesh
fat/grease

tail

106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

snake
worm
louse
mosquito
spider
fish
rotten
branch
leaf

root
flower
fruit
grass
earth/soil
stone
sand
water

to flow
sea

salt

lake
woods/forest
sky
moon
star
cloud
fog

rain
thunder
lightning
wind

to blow

warm

cold

dry

141.
142.
143.
144,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154,
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174,
175.

wet
heavy
fire

to burn
smoke
ash
black
white
red
yellow
green
small
big

short
long
thin
thick
narrow
wide
painful, sick
shy, ashamed
old

new
good
bad, evil
correct, true
night
day

year
when?
to hide
to climb
at

in, inside

above

176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.

below
this
that
near
far
where?
I

thou
he/she
we

you
they
what?
who?
other
all

and

if

how?
no, not
to count
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Ten
Twenty
Fifty
One Hundred
One Thousand

Words used in study are indicated in bold. For word selection criteria, refer to Section 4 under Methods & Materials.



A3. Multistate Matrix

Key

Character

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

10

Night

55
56
57
58
59

Hand

1
2
3
4
5

2

Banjarese Malay

Belait

When

Left
Right
Road

Where

Berawan
Bintulu
Bukat

What

Who

Skin

One
Two
Three

60
61

Bone
Shoulder

8

Dayak Bakatiq
Dayak Ngaju

Iban

7

62
63
64

Fear

Four

Blood

9

Ida'an

Five

Neck

10
11

Iranun

Hair

Katingan
Kayan

Nose

12
13

10

Mouth

Kelabit

Tooth
Tongue

14
15

11
12

Kenyah

Lahanan

Laugh

16
17
18
19
20
21

Ma'anyan

Cry
Vomit

B. Indonesia

Maloh

Eat
Drink

Melanau

B. Melayu
Modang

Ear
Hear

22
23
24
25

10

13

Punan Kelai
Singhi
Timugon
Tunjung

Eye
Sleep

10

Dream

12

14
15
52

Child

26
28
29
30
31

12
56

10
54

Paiwan

Father
House

58 59 60 61 62 63 64

57

53 55

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

33

Continued..

2

Banjarese Malay

Belait

Kill

Die

Berawan
Bintulu
Bukat

Dog
Bird
Egg
Rat
Tail
Snake

32
33
34
35
36
37
38
39
40
41

1

Dayak Bakatiq
Dayak Ngaju

Iban

Ida‘an

Fish

Iranun

Leaf
Root

Katingan
Kayan

Flower
Fruit
Stone

Kelabit

42
43

11

11

Kenyah

12
13

10
11

Lahanan

Sand

44
45

Ma'anyan

Water

B. Indonesia

Maloh

Sky
Moon

46

14

12
13

47
48
49
50
51

15

Melanau

Star
Cloud

B. Melayu
Modang

Rain
Lightning

Punan Kelai
Singhi

16

14

Wet

52
53
54

13

14

Timugon
Tunjung
Paiwan

Heavy

Fire




A4. Binary Matrix

Note: Autapomorphic characters are not shown here

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Banjarese Malay 010000 0000 100 100 1000 1 0100 10 10 00000 001 10 00001 0010 O 100 1 0 10 100 10 10 1 0 1 1 000 010 1000 100 10 000
Belait 010000 0001 010 100 1000 1 1000 10 01 00100 100 10 00100 1000 1 000 1 1 10 001 10 00 1 0 1 1 100 100 0010 001 10 100
Berawan 000001 0100 010 100 1000 1 1000 00 01 00100 100 10 00100 1000 1 100 1 1 10 000 00 00 1 1 1 1 100 100 0010 00O 00 100
Bintulu 000100 0100 010 001 1000 1 0000 00 10 00100 100 10 00000 1000 1 100 1 1 00 000 10 00 1 0 1 1 100 100 1000 000 00 100
Bukat 000000 0100 010 000 0100 1 0001 10 10 00000  ??? 10 10000 0000 1 000 1 1 10 000 00 10 1 1 ? 1 100 100 0100 000 00 100
Dayak Bakatiq 000000 1000 010 010 1000 1 1000 00 10 00000 100 0O 10000 0000 O 000 O 0 10 000 00 10 1 0 0 1 000 100 0010 000 OO 100
Dayak Ngaju 001000 0010 010 010 0010 1 0100 01 10 00010 010 10 01000 0100 1 100 1 1 10 010 01 01 1 1 1 1 000 001 1000 001 10 100
lban 010000 0000 100 100 1000 1 0100 10 10 00000 100 10 10010 0000 1 100 O 1 10 010 01 10 1 1 1 1 010 010 1000 100 10 100
Ida‘an 000000 0001 100 100 1000 1 0000 00 10 10000 100 10 00000 1000 1 000 O 1 10 100 10 10 1 1 1 1 100 100 0001 100 10 100
Iranun 100000 0001 100 100 0000 1 1000 00 00 10000 100 01 00000 1000 1 000 O 1 10 100 10 00 1 1 0 0 100 100 0001 100 10 100
Katingan 001000 0010 010 010 0010 1 0100 01 10 00010 010 10 01000 0100 1 100 1 1 10 010 01 01 1 1 1 1 010 001 1000 001 10 100
Kayan 000000 0100 010 100 0100 1 0010 10 10 00000 100 10 10000 1000 1 000 1 1 10 000 00 00 1 1 1 1 100 100 1000 010 10 100
Kelabit 000001 0001 000 100 0100 1 0000 10 10 10000 100 10 00000 1000 1 000 1 1 10 010 00 10 1 0 1 1 100 100 1000 00O 10 010
Kenyah 000000 0001 010 100 0100 1 0010 10 10 00100 100 10 10000 1000 1 100 1 1 10 001 10 OO0 1 0 1 1 000 100 1000 010 10 100
Lahanan 000000 0100 010 001 0000 1 0001 10 10 01000 100 10 10000 1000 1 010 1 1 10 000 00 10 1 0 ? 1 100 100 0100 001 00 100
Ma'anyan 010000 1000 100 100 1000 1 1000 00 10 00000 000 10 10000 1000 1 000 O 1 10 000 00 10 1 0 1 0 100 100 0100 100 10 100
B. Indonesia 010000 1000 100 100 1000 1 0100 10 10 10000 001 10 00010 0010 1 100 1 1 10 100 10 10 1 1 1 1 001 010 1000 100 10 o001
Maloh 010000 0000 010 100 1000 1 0001 10 10 00001 100 0O 10000 0000 1 100 1 1 10 100 10 10 1 1 0 1 010 100 0000 100 10 100
Melanau 000100 0100 010 100 1000 1 1000 00 10 01000 100 10 10000 1000 1 100 1 1 10 000 10 10 1 1 1 1 100 100 0100 100 10 100
B. Melayu 010000 1000 100 100 1000 1 0100 10 10 10000 001 10 00010 0010 1 100 1 1 10 100 10 10 1 1 1 1 001 010 1000 100 10 001
Modang 000010 0100 001 100 0001 1 0010 10 10 00000 100 10 10000 0001 1 001 1 1 01 000 10 O1 1 1 1 1 100 100 0010 010 01 000
Punan Kelai 000010 0000 001 100 0001 1 0010 10 10 00000 100 10 00001 0001 1 001 1 1 01 000 00 O1 1 1 1 1 100 100 0010 000 01 100
Singhi 010000 0000 010 100 1000 1 0000 00 10 01000 100 10 10000 1000 1 100 O 1 10 100 00 10 O 0 0 1 100 100 ## 000 00 000
Timugon 001000 0000 000 100 0000 1 1000 00 10 10000 100 10 00000 1000 1 000 1 0 10 100 10 10 1 0 1 1 100 100 0001 001 10 010
Tunjung 010000 0100 010 100 1000 O ???? 00 10 00001 010 10 00000 0100 1 100 1 1 10 000 00 00 O 1 ? 0 000 100 ???? 001 10 000
Paiwan 100000 1000 100 100 0100 1 1000 10 00 10000 000 01 00000 0000 O 010 1 1 10 000 10 00 1 0 1 1 100 100 1000 010 10 100
Continued.. 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Banjarese Malay 010 1 01 0 01 00000 10 010 0100 1 1 0000  ???? 1 1 1 10 1 1 1 1 1 0100 001 00100 1000 010 10 10 10 1 1
Belait 100 1 10 0 10 00010 10 001 0001 O 1 0000 0000 1 1 0 ?? 0 0 0 1 0 0100 000 00001 0000 100 10 10 10 1 1
Berawan 100 1 10 1 10 00010 10 001 0001 O 1 0000 0000 0 1 0 10 1 0 0 1 1 0100 100 00000 0100 100 10 10 10 1 1
Bintulu 100 1 00 1 10 00000 10 011 1000 O 1 ???? 0001 1 1 1 00 1 1 1 1 0 0100 000 00001 0100 100 00 10 10 1 ?
Bukat 000 1 00 1 00 00000 10 010 0010 1 1 0100 1000 0 ? 0 10 O ? 0 1 1 0100 010 00000 0100 100 00 10 10 1 ?
Dayak Bakatiq 100 0 00 1 00 10000 10 ??? 1000 1 1 1000 0000 1 1 1 00 1 1 1 1 1 0001 100 00000 0O0OO 000 10 10 10 1 1
Dayak Ngaju 010 1 10 1 10 01000 10 100 0100 1 1 1100 1000 1 1 1 01 1 1 1 1 1 0100 000 00010 0010 001 10 10 10 1 1
lban 010 1 01 1 01 10000 10 100 1000 1 1 1000 0100 1 1 1 0 1 1 1 1 1 0100 000 00000  ## 010 01 10 01 1 1
Ida‘an 000 0 00 1 01 00001 10 010 0000 1 1 0100 0000 1 1 1 00 1 0 1 1 1 0010 100 00001 0100 000 10 10 10 1 1
Iranun 000 0 00 1 00 00000 10 000 0000 O 1 0000 0000 1 1 1 0 1 1 1 0 1 0010 000 00000 00OO 000 10 10 10 1 1
Katingan 010 0 10 1 10 01000 10 100 0100 1 1 0100 1000 1 1 1 01 1 1 1 1 1 0100 000 00010 0010 001 10 10 10 1 1
Kayan 100 1 10 1 10 00000 10 010  ???? 1 1 0000 0000 1 1 0 00 1 1 1 1 1 0100 100 10000 0100 100 10 10 10 1 1
Kelabit 100 1 10 1 00 00000 10 101 0001 1 1 0000 0001 1 1 1 00 1 1 1 1 1 1000 100 00000 0100 100 00 10 10 1 1
Kenyah 001 1 10 1 01 00100  ?? 010  ???? 1 1 0000 0000 1 1 1 0 1 1 1 1 0 0100 100 00001 0100 100 10 10 10 1 1
Lahanan 100 1 10 1 10 10000 10 001 0010 1 1 0000 1000 1 ? 1 00 1 ? 1 1 1 0100 000 00000 0100  ??? 10 10 10 1 ?
Ma'anyan 010 1 00 1 10 00000 10 010 1000 1 1 0001 1000 1 1 0 0 1 ? 0 1 1 0100 000 00000 0100 100 10 10 10 1 1
B. Indonesia 010 1 01 1 01 10000 10 110 1000 1 1 1000 0100 1 1 1 10 1 1 1 1 1 0100 001 00100 1000 010 01 10 01 1 1
Maloh 010 1 10 1 01 01000 10 100 1000 1 1 0001 1000 0 1 1 00 1 1 ? 1 1 0100 000 00000 1000 000 10 10 10 1 ?
Melanau 100 1 10 1 10 10000 10 011 1000 1 1 0000 1000 1 1 1 ?? 1 1 1 1 1 0100 000 00000 0100 100 11 10 10 1 1
B. Melayu 010 1 01 1 01 10000 10 010 1000 1 1 1000 0100 1 1 1 0 1 1 1 1 1 0100 001 00100 1000 010 01 10 01 1 1
Modang 100 1 00 1 10 00100 01 010 0000 1 1 0010 0010 1 1 0 10 1 0 1 1 1 0100 010 01000 0100 100 10 01 10 1 ?
Punan Kelai 100 1 00 1 10 00100 01 100 1000 1 1 0010 0010 1 1 0 0 1 1 1 1 1 0100 010 01000 0100 000 10 00 10 1 ?
Singhi 100 1 00 1 10 10000 10 110 27?7 1 1 1000 0000 1 1 1 10 1 1 1 1 1 0001 000 00000 0100 100 10 10 10 1 ?
Timugon 001 1 01 1 00 00001 10 010 0001 O 1 0000 0000 0 1 1 10 O 0 1 1 1 1000 100 00000 0000 100 10 10 10 1 ?
Tunjung 000 1 ?? 1 10 00000 10 010 1000 1 1 1000 1000 1 ? 1 10 1 ? 1 1 1 0100 100 00000 0001 000 10 01 10 1 1
Paiwan 000 1 10 1 00 00000 00 000 0000 O 0 0000 1000 0 0 1 00 1 0 0 0 1 0000 100 10000 0001 000 10 10 10 1 1




A5. Bayesian Inference results and the Bayes Factor

Below, we have the marginal log likelihoods for the Bayesian MCMC runs:

Estimated marginal log likelihoods for the single rate (1-parameter) model MCMC run:

Run Arithmetic mean Harmonic mean
1 -1498.13 -1522.53
2 -1498.28 -1526.63
Total -1498.20 -1525.96

Estimated marginal log likelihoods for the dual rate + ASRV (3-parameter) model MCMC run:

Run Arithmetic mean Harmonic mean
1 -1446.75 -1484.85
2 -1448.04 -1476.78
Total -1447.20 -1484.16

Bayes Factor

Bayes factor interpretation table (after Kass & Raftery 1995; based on Jeffreys 1961)

2 loge(B1o) loge(B1o) Evidence against Ho
0to2 Oto1l Not worth more than a inal likelihood £17
. Where B1o = Bayes factor = marnga 1 ef S ;
bare mention marginal likelihood HO
2t06 1to3 Positive loge(B10) = marginal likelihood H; — marginal likelihood H,
6 to 10 3to5 Strong
>10 >5 Very strong







Languages of Borneo Map Key

Location coordinates from the

Ethnologue (Lewis 2009)

1. Abai Sungai

2. Ampanang

3. Aoheng

4. Bahau

5. Bah-Biau Penan
6. Bakati'

7. Bakumpai

8. Balangingi

9. Balau

10. Banjar

11. Baram Kayan
12. Basap

13. Bau Bidayuh
14. Belait

15. Benyadu'

16. Berau Malay
17. Berusu

18. Biatah Bidayuh
19. Bintulu

20. Bolongan

21. Bonggi

22. Bookan

23. Brunei

24. Brunei Bisaya

25. Bukar-Sadong Bidayuh
26. Bukat

27. Bukit Malay

28. Bukitan

29. Busang Kayan

30. Central Berawan

31. Central Dusun

32. Central Melanau

33. Coastal Kadazan

34. Cocos Islands Malay
35. Daro-Matu Melanau
36. Dumpas

37. Dusun Deyah

38. Dusun Malang

39. Dusun Witu

40. East Berawan

41. Eastern Penan

42,
43.
44,
45.
46.

47.

Embaloh
Gana

Hovongan

Iban
Ida'an

Iranun

48. Jangkang

49.
50.
51
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

Kajaman

Kalabakan

Kanowit-Tanjong Melanau

Kayan Mahakam
Kayan River Kayan
Kelabit

Kembayan
Kendayan
Keningau Murut
Keninjal

Kereho

Kimaragang

Kiput

Klias River Kadazan
Kohin

Kota Bangun Kutai Malay

Kota Maruda Talantang
Kota Maruda Tinagas
Kuijau
Labuk-Kinabatangan

Kadazan
Lahanan

Lanas Lobu
Lawangan

Lengilu

Long Wat

Lotud

Lun Bawang (Lundayeh)
Ma'anyan
Mainstream Kenyah
Malay

Malayic Dayak
Mapun

Mendalam Kayan
Minokok
Modang

84. Molbog

85. Mualang

86. Murik

87. Narom

88. Ngaju

89. Okolod

90. Ot Danum

91. Paku

92. Paluan

93. Papar

94. Punan Aput

95. Punan Batu

96. Punan Merah
97. Punan Merap
98. Punan Tubu

99. Putoh

100. Rara Bakati'
101. Rejang Kayan
102. Remun

103. Ribun

104. Rungus

105. Sabah Bisaya
106. Sa'ban

107. Sajau Basap
108. Salako

109. Sanggau

110. Sara Bakati'
111. Seberuang

112. Sebop

113. Sebuyau

114. Segai

115. Sekapan

116. Selungai Murut
117. Semandang
118. Sembakung Murut
119. Serudung Murut
120. Sian

121. Siang

122. Sibu Melaunau
123. Southern Sama
124. Sugut Dusun
125. Tagal Murut
126. Taman

127. Tambunan Dusun

Case languages in bold

128. Tampias Lobu

129. Tatana

130. Tausug

131. Tawoyan

132. Tempasuk Dusun
133. Tenggarong Kutai Malay
134. Tidong

135. Timugon Murut
136. Tobilung

137. Tombonuo

138. Tring

139. Tringgus-Sembaan Bidayuh
140. Tunjung

141. Tutong

142. Ukit

143. Uma' Lasan

144. Uma' Lung

145. Upper Kinabatangan
146. Wahau Kayan

147. Wahau Kenyah

148. West Berawan

149. West Coast Bajau
150. Western Penan

Location coordinates from the

ABVD (Greenhill et al 2008)

151. Berawan (Long Terawan)
152. Katingan

153. Kayan (Uma Juman)

154. Kenyah (Long Anap)

155. Maloh

156. Melanau (Mukah)

157. Punan Kelai

158. Singhi

* Language Map and coordinates taken

with permission from the Ethnologue:
Languages of the World, Sixteenth
edition (Lewis, 2009) and the
Austronesian  Basic

Vocabulary
Database (Greenhill et al, 2008) *



	THESIS - revised2
	Appendix - Wordlist
	Appendix - Multistate - revised
	Appendix - Binary
	Appendix - Bayesian - revised
	Map
	Language map - revised

